Geometry and Large N limits in Laughlin states

Semyon Klevtsov

University of Cologne

[SK, JHEP'13], [Ferrari-SK, JHEP'14], [SK-Wiegmann, PRL'15], [SK-Ma-Marinescu-Wiegmann'15]

Workshop on Geometric aspects of QHE Cologne, December 14-18, 2015

Laughlin state

On the plateaus QHE is described by collective Laughlin state

$$\Psi(z_1, \dots, z_N) = \prod_{i < j}^{N} (z_i - z_j)^{\beta} e^{-\frac{B}{4} \sum_i |z_i|^2}, \quad \beta \in \mathbb{Z}_+$$

[Laughlin'83]

 $\beta = 1$: Integer QHE, non-interacting electrons.

 $\beta=3,5,7,...$ Fractional QHE, interacting (via Coulomb forces) system. Hall conductance $\sigma_H=1/\beta$.

Other candidate states were proposed for other plateaus (e.g. Pfaffian state $\mathrm{Pf} \frac{1}{z_z-z_z} \Delta(z)^2$).

Mathematically, the Laughlin state defines a sequence of probability measures μ_N on the configuration space \mathbb{C}^N/S_N of N point-particles

$$\mu_N = |\Psi(z_1, \dots, z_N)|^2 \prod_{j=1}^N d^2 z_j$$

Main problem: partition function

The partition function (L^2 norm of Laughlin state)

$$Z = \int_{\mathbb{C}^N} \prod_{i < j}^N |z_i - z_j|^{2\beta} e^{-\frac{B}{2} \sum_i |z_i|^2} \prod_{j=1}^N d^2 z_j$$

Central object in Log-gases (Coulomb gas, random matrix β -ensemble).

Main goal: Define Laughlin state(s) $\Psi_r(z_1,..,z_N),\ r=1,..,\beta^{\rm g}$ ([Wen-Niu'90]) on a genus-g Riemann surface Σ with arbitrary geometry: metric g, complex structure J, inhomogeneous magnetic field B, flat connections moduli $A=\frac{\varphi}{\tau-\bar{\tau}}d\bar{z}-\frac{\bar{\varphi}}{\tau-\bar{\tau}}dz,\quad \int_a A=\varphi_1,\quad \int_b A=\varphi_2.$ (solenoid fluxes, $Pic(\Sigma)$) φ etc. Determine the partition function $Z=\sum_r\langle\Psi_r,\Psi_r\rangle_{L^2}^2$ as a function of these geometric parameters

$$Z=Z[g,J,B,\varphi,\ldots]$$

in the limit of large number of particles.

Why: geometric adiabatic transport

Main idea behind this is geometric adiabatic transport [Thouless et.al.; Avron, Seiler, Simon, Zograf, ...]. Laughlin states on a Riemann surface (Σ,g,J) form a vector bundle over the parameter space Y (e.g. moduli space of flat connections $Y=Jac(\Sigma)$ or complex structure moduli $Y=\mathcal{M}_{\mathrm{g}}$). Let d_Y be an exterior derivative along the parameter space. Then adiabatic (Berry) connection and curvature are

$$\mathcal{A} = \langle \Psi, d_Y \Psi \rangle_{L^2}, \quad \mathcal{R} = d_Y \mathcal{A} = -d_Y \bar{d}_Y \log Z.$$

- Hall conductance σ_H is a Chern number of this vector bundle over $Y=Jac(\Sigma)$ (flat connections moduli) [Thouless et.al. '82'85, Tao-Wu'85, Avron-Seiler'85, Avron-Seiler-Zograf'94]
- Anomalous Hall viscosity η_H , associated with the adiabatic transport on the moduli space of a torus \mathcal{M}_1 . IQHE: [Avron-Seiler-Zograf'95, Levay'95], FQHE: [Tokatly-Vignale'07, Read'09]
- Transport on higher genus. IQHE: [Levay'97], FQHE [SK-Wiegmann'15].

Results: Partition function for IQHE

$$\log Z = \frac{1}{2\pi} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{1 - 2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(1 - 2s)^2}{4} - \frac{1}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z$$
$$+ \mathcal{F}[B, R].$$

$$\mathcal{F}[B,R] = -\frac{1}{2\pi} \int_{\Sigma} \left[\frac{1}{2} B \log B + \frac{2 - 3s}{12} R \log B + \frac{1}{24} (\log B) \Delta_g(\log B) \right] \sqrt{g} d^2 z + \mathcal{O}(1/B).$$

[SK'13; SK-Ma-Marinescu-Wiegmann'15]

This holds for any genus, and is related to Bergman kernel expansion. Terminology: $A_z, A_{\bar{z}}$ are components of the gauge-connection 1-form for the magnetic field F=dA. Also $\omega_z, \omega_{\bar{z}}$ are components of spin-connection $\omega_z=i\partial \log g_{z\bar{z}}$, where $\mathrm{Ric}(g)=d\omega$, and $s\in \mathbb{Z}/2$ is gravitational spin. R is scalar curvature.

Results: relation to Chern-Simons theory

Note that generating functional $\log Z$ and 3d Chern-Simons (Wen-Zee) actions look similar:

$$\log Z = \frac{1}{2\pi} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{1 - 2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(1 - 2s)^2}{4} - \frac{1}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z$$

$$S_{CS} = \frac{1}{4\pi} \int_{\Sigma \cup R} \left[A dA + (1 - 2s) A d\omega + \left(\frac{(1 - 2s)^2}{4} - \frac{1}{12} \right) \omega d\omega \right]$$

These two actions are obviously very similar, but one is 2d and another one is

in 3d. What is the precise relation?

Results: relation to Chern-Simons theory

Consider geometric adiabatic transport of IQHE wave function along a contour C in the moduli space $V = Pio(\Sigma) \times M$

$$Y = Pic(\Sigma) \times \mathcal{M}_{g}$$

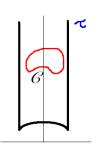
Define adiabatic conn

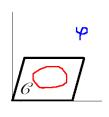
Define adiabatic connection:

$$\mathcal{A}_Y = \langle \Psi, d_Y \Psi
angle_{L^2}$$
 ,

and adiabatic phase:

$$e^{i\int_{\mathcal{C}}\mathcal{A}_{Y}}$$
.





Theorem ([SK-Ma-Marinescu-Wiegmann'15]):

$$\int_{\mathcal{C}} \mathcal{A}_Y = \frac{1}{4\pi} \int_{\Sigma_Y \times \mathcal{C}} \left[AdA + (1 - 2s)Ad\omega + \left(\frac{(1 - 2s)^2}{4} - \frac{1}{12} \right) \omega d\omega \right]$$

(proof relies on Quillen-Bismut theory: stay for next talk by Xiaonan Ma for the proof) $\{ (x_i, x_i) \in \mathbb{R}^n : (x_i, x_i) \in \mathbb{R}^n \}$

Results: Partition function for Laughlin states

$$\log Z = \frac{1}{2\pi\beta} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{\beta - 2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(\beta - 2s)^2}{4} - \frac{\beta}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z + \mathcal{F}[B, R].$$

$$\mathcal{F}[B,R] = -\frac{1}{2\pi} \int_{\Sigma} \left[\frac{2-\beta}{2\beta} B \log B \right] \sqrt{g} d^2 z + \dots$$

[Can-Laskin-Wiegmann'14; Ferrari-SK'14, SK-Wiegmann'15]

Lowest Landau level (LLL) and IQHE state

Consider compact connected Riemann surface (Σ,g,J) and positive holomorphic line bundle (L^k,h^k) . The latter corresponds to the magnetic field. The curvature (1,1) form of the hermitian metric $h^k(z,\bar{z})$ is given by $F=-i\partial\bar{\partial}\log h^k$. This is the magnetic field strength of total flux k though the surface $\frac{1}{2\pi}\int_\Sigma F=k$. Magnetic field: $B=g^{z\bar{z}}F_{z\bar{z}}$. On the plane and for constant magnetic field B=k, this corresponds to $h^k=e^{-\frac{B}{2}|z|^2}$. LLL wave functions

$$\bar{\partial}_{L^k}\psi=0$$

are holomorphic sections of L^k ,

$$\psi_i = s_i(z), \quad i = 1, \dots, N_k = \dim H^0(\Sigma, L^k) = k + 1 - g$$

IQHE state: take N_k points on Σ : $z_1, z_2, \ldots, z_{N_k}$. The (holomorphic part F of the) IQHE state is Slater determinant:

$$F(z_1, \dots, z_{N_k}) = \det[s_i(z_j)]_{i,j=1}^{N_k}$$

Definition of Laughlin state (FQHE)

Consider now line bundle $(L^{\beta k},h^{\beta k})$. But number of points is still $N_k=k+1-\mathrm{g}$, i.e. only fraction of LLL states is occupied (thus fractional QHE). The (holomorphic part F of the) Laughlin state satisfies

- $F(z_1,...,z_{N_k})$ is completely anti-symmetric
- Fix all z_j except one, say z_m . Then $F(\cdot,..,\cdot,z_m,\cdot,..,\cdot)$ is a holomorphic section of $L^{\beta k}$.
- Vanishing condition near diagonal $z_i \sim z_j$ in local complex coordinate system on Σ ,

$$F(z_1, ..., z_{N_k}) \sim \prod_{i < j} (z_i - z_j)^{\beta}$$

.

Examples

1. Round sphere S^2 , constant magnetic field: $h_0^k=\frac{1}{(1+|z|^2)^k}$ Then $s_j=z^{j-1},\ j=1,..k+1.$ FQHE state: $F(z_1,...,z_{k+1})=\prod_{i< j}(z_i-z_j)^\beta$

$$|\Psi(z_1,...,z_{k+1})|^2 = \prod_{i < j} |z_i - z_j|^{2\beta} \prod_{j=1}^{k+1} h^{\beta k}(z_j) \tag{Haldane'83}$$

2. Flat torus, constant magnetic field:

$$s_j= heta_{rac{j}{k},0}(kz+arphi,k au), j=1,\ldots,k,\ h_0^k=e^{-2\pi irac{(z-ar{z})^2}{ au-ar{ au}}}.$$
 FQHE states:

$$F_r(z_1,..,z_k) = heta_{rac{r}{eta},0}(eta z_c + arphi,eta au)\prod_{i < j} \left(rac{ heta_1(z_i-z_j, au)}{\eta(au)}
ight)^eta$$
 [Haldane-Rezayi'85]

3. Higher genus $\Sigma_{g>1}$: β^g states.

Arbitary metric and inhomogeneous magnetic field

The advantage of the language of holomorphic line bundles is that it gives us a clear idea how to put the Laughlin state on Σ with arbitrary metric g and inhomogeneous magnetic field B. Consider some fixed (constant scalar curvature) metric g_0 , and constant magnetic field B_0 (and corresponding hermitian metric $h_0^k(z,\bar{z})$). Arbitrary metrics are parameterized by:

- Kähler potential $\phi(z,\bar{z})$: $g_{z\bar{z}} = g_{0\bar{z}z} + \partial_z \bar{\partial}_{\bar{z}} \phi$,
- "magnetic" potential $\psi(z,\bar{z})$: $F=F_0+\partial\bar{\partial}\psi$, $B=g^{z\bar{z}}F_{z\bar{z}}$

Partition function

For the integer QHE ($\beta=1$), the partition function on arbitrary Σ is

$$Z = \int_{\Sigma^{N_k}} |\det s_i(z_j)|^2 \prod_{j=1}^{N_k} h_0^k(z_j, \bar{z}_j) e^{-k\psi(z_j, \bar{z}_j)} \sqrt{g}^{1-s}(z_j) d^2 z_j$$

For the fractional QHE

$$Z = \sum_{r=1}^{n_{\beta}} \int_{\Sigma^{N_k}} |F_r(z_1, ..., z_{N_k})|^2 \prod_{j=1}^{N_k} h_0^{\beta k}(z_j, \bar{z}_j) e^{-k\beta \psi(z_j, \bar{z}_j)} \sqrt{g}^{1-s}(z_j) d^2 z_j.$$

Derivation of $\log Z$ in IQHE

For $\beta = 1$ the partition function satisfies determinantal formula:

$$Z = \int_{\Sigma^{N_k}} |\det s_i(z_j)|^2 \prod_{j=1}^{N_k} h_0^k(z_j, \bar{z}_j) e^{-k\psi(z_j, \bar{z}_j)} \sqrt{g}(z_j) d^2 z_j$$
$$= \det \langle s_i, s_j \rangle_{L^2}$$

Denoting $G_{jl} = \langle s_j, s_l \rangle$, we get

$$\begin{split} \delta \log Z &= \delta \operatorname{Tr} \log \langle s_j, s_l \rangle = \\ &= -\frac{1}{2\pi} \sum_{j,l} G_{lj}^{-1} \int_{\Sigma} \left(\frac{s-1}{2} (\Delta_g \delta \phi) + k \delta \psi \right) \bar{s}_j s_l h^k \sqrt{g}^{1-s} d^2 z \\ &= -\frac{1}{2\pi} \int_{\Sigma} \left(\frac{s-1}{2} (\Delta_g B_k(z, \bar{z})) \delta \phi + k B_k(z, \bar{z}) \delta \psi \right) \sqrt{g}^{1-s} d^2 z, \end{split}$$

where $B_k(z,\bar{z})$ is the Bergman kernel on diagonal.

Bergman kernel

 B_k is the Bergman kernel on the diagonal. For orthonormal basis of sections $\{s_j\}$:

$$\begin{split} B_k(z,\bar{z}) &= \sum_{i=1}^{N_k} ||s_i||_{h^k}^2 = \\ &= B + \frac{1-2s}{4}R + \frac{1}{4}\Delta_g \log B + \frac{1}{12}\Delta_g(B^{-1}R) + \mathcal{O}(1/k^2) \,. \end{split}$$

[Zelditch'98, Catlin'99]

In QM, Bergman kernel is the density of states ψ_i on "completely filled" LLL

$$B_k(z,\bar{z}) = \sum_{i=1}^{N_k} |\psi_i(z)|^2 = \lim_{T \to \infty} \int_{x(0)=z}^{x(T)=z} e^{-\int_0^T (\dot{x}^2 + A\dot{x})dt} \mathcal{D}x(t)$$

[Douglas, SK'09]

$\log Z$ in Integer QHE

$$\log Z = \frac{1}{2\pi} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{1 - 2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(1 - 2s)^2}{4} - \frac{1}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z + \mathcal{F}[B, R].$$

Liouville action is a hallmark of gravitational (conformal) anomaly. CFT partition function transforms within the conformal class $g=e^{2\sigma}g_0$

$$\log \frac{Z^{CFT}(g)}{Z^{CFT}(g_0)} = -\frac{c}{12\pi} S_L(\sigma) = -\frac{c}{24\pi} \int_{\Sigma} \omega_z \omega_{\bar{z}} d^2 z$$

where c is central charge. What we derived is Laughlin state is the mixed electromagnetic-gravitational anomaly

Since the theory is not conformal (there is a scale, magnetic area: $l^2 \sim V/k$) we now have infinite asymptotic expansion.

$\log Z$ for Laughlin states: derivation

The proof is based on the free field representation of Laughlin states

$$\sum_r^{n_\beta} |\Psi_r|^2 = \int e^{i\sqrt{\beta}X(z_1)} \dots e^{i\sqrt{\beta}X(z_{N_k})} e^{-\frac{1}{2\pi}S(g,X)} \mathcal{D}_g X \quad \text{[Moore-Read'91]}$$

where sum goes over all degenerate Laughlin states on Riemann surface and the free field action is

$$S = \int_{M} \left(\partial X \bar{\partial} X + i \frac{\beta - 2s}{\sqrt{\beta}} X R \sqrt{g} + \frac{i}{\sqrt{\beta}} A \wedge dX \right)$$

for compactified boson: $X\sim X+2\pi\sqrt{\beta}$. Novelty: "background charge" $Q=\frac{\beta-2s}{\sqrt{\beta}}$, gauge connection coupling.

$\log Z$ for Laughlin states: derivation

Step 1. The "anomalous part" of the expansion comes from transformation properties under the deformation of the metric and the magnetic field $g_0 \to g = g_0 + \partial_z \partial_{\bar{z}} \phi, A_0 \to A = A_0 + \partial \psi$,

$$\int e^{i\sqrt{\beta}X(z_1)} \dots e^{i\sqrt{\beta}X(z_{N_k})} e^{-\frac{1}{2\pi}S(g,X)} \mathcal{D}_g X$$

$$= e^{S_{\text{ano}}} \int e^{i\sqrt{\beta}X(z_1)} \dots e^{i\sqrt{\beta}X(z_{N_k})} e^{-\frac{1}{2\pi}S(g_0,X)} \mathcal{D}_{g_0} X$$

Step 2. The remainder term $\mathcal{F}[R,B]$ of the expansion of $\log Z$ comes from the interacting path integral

$$\frac{1}{\Gamma(s)} \int_0^\infty d\mu \, \mu^{s-1} \, \int e^{-\frac{1}{2\pi} S(g,X) - \mu \int_M e^{i\sqrt{\beta}X(z)} \sqrt{g} d^2 z} \mathcal{D}_g X \,,$$

at $s = -N_k$.

[Ferrari-SK(JHEP2014)]

$\log Z$ for Laughlin states

$$\log Z = \frac{1}{2\pi\beta} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{\beta - 2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(\beta - 2s)^2}{4} - \frac{\beta}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z$$
$$- \frac{1}{2\pi} \int_{\Sigma} \left[\frac{2 - \beta}{2\beta} B \log B \right] \sqrt{g} d^2 z + \dots$$

Laughlin states form a non-trivial vector bundle of rank β^{g} over $Y=Jac(\Sigma)\times\mathcal{M}_{\mathrm{g}}$ (In particular, Ψ_{r} have non-trivial monodromies under S,T transformations on torus.)

Yet, For Laughlin states, adiabatic connection and curvature on $Y = Jac(\Sigma) \times \mathcal{M}_{\mathrm{g}}$ the are controlled by the partition function, due to the property $\Psi_r(y,\bar{y}) = \frac{F_r(y)}{\sqrt{Z}(y,\bar{y})}$.

$$\mathcal{A}_{rs} = \langle F_r, d_y F_s \rangle_{L^2} = (\partial_y \log Z) \delta_{rs}$$

$$\mathcal{R}_{rs} = (i d_u d_{\bar{u}} \log Z) \delta_{rs}$$

New transport coefficient on higher genus

Consider complex structure deformations $g_{z\bar{z}}|dz|^2 \to g_{z\bar{z}}|dz + \mu d\bar{z}|^2$, where Beltrami differential is $\mu = g_{z\bar{z}}^{-1} \sum_{\kappa=1}^{3g-3} \eta_\kappa \delta y_\kappa$ and η_κ is a basis of holomorphic quadratic differentials.

Berry curvature, associated with these deformations is

$$\mathcal{R} = id_y d_{\bar{y}} \log Z = \left(\frac{1}{4}k\beta + \frac{c_H}{12}\chi(M)\right)\Omega_{WP},$$

where $\Omega_{WP}=i\int_M d_y\mu\wedge d_{\bar y}\bar\mu\;g_{z\bar z}d^2z$ is the Weil-Petersson form on the moduli space. Here

$$c_H = 1 - 3\frac{(\beta - 2s)^2}{\beta}$$

is a new transport coefficient, transpiring on higher genus surfaces, since on torus $\chi(M)=0$.

[SK-Wiegmann'15]

Thank you