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Laughlin state

On the plateaus QHE is described by collective Laughlin state

U(z1,...,2n8) = H(Zz — )l gez,

[Laughlin’83]
B = 1. Integer QHE, non-interacting electrons.
B =3,5,7,..: Fractional QHE, interacting (via Coulomb forces) system.
Hall conductance oy = 1/5.
Other candidate states were proposed for other plateaus (e.g. Pfaffian
state (2)?).
Mathematicajlly, the Laughlin state defines a sequence of probability
measures iy on the configuration space CV /Sy of N point-particles

un = |¥(z1,...,2 |2Hd22J



Main problem: partition function

The partition function (L? norm of Laughlin state)

N N
_B |12
Z:/ [[ 1z —=f?Pe 2 == [T
cN =1

i<j

Central object in Log-gases (Coulomb gas, random matrix ($-ensemble).
Main goal: Define Laughlin state(s) ¥,.(z1,..,2n), 7 = 1,.., 38
(Iwen-Niu'90]) on a genus-g Riemann surface ¥ with arbitrary geometry:
metric g, complex structure J, inhomogeneous magnetic field B, flat
connections moduli A = —2-dz — —£=dz, [ A=¢1, [, A= s
(solenoid fluxes, Pic(X)) ¢ etc. Determine the partition function

Z =3 ,(V,,¥,)?, as a function of these geometric parameters

Z = Z[g’ J7 B7 <)07 "']

in the limit of large number of particles.



Why: geometric adiabatic transport

Main idea behind this is geometric adiabatic transport [Thouless et.al.; Avron,
Seiler, Simon, Zograf, ..]. Laughlin states on a Riemann surface (X, g, J) form
a vector bundle over the parameter space Y (e.g. moduli space of flat
connections Y = Jac(X) or complex structure moduli Y = M,). Let dy
be an exterior derivative along the parameter space. Then adiabatic
(Berry) connection and curvature are

.AZ <\If,dy\I/>L2, RZdy.AZ —dyc?y IOgZ.

e Hall conductance oy is a Chern number of this vector bundle over
Y = Jac(X) (flat connections moduli) [Thouless et.al.'82'85, Tao-Wu'85,
Avron-Seiler'85, Avron-Seiler-Zograf'94]

o Anomalous Hall viscosity 75, associated with the adiabatic transport
on the moduli space of a torus M. IQHE: [Avron-Seiler-Zograf'95,
Levay'95], FQHE: [Tokatly-Vignale'07, Read’'09]

e Transport on higher genus. IQHE: [Levay'97], FQHE [SK-Wiegmann'15].



Results: Partition function for IQHE

902
log Z = i/ {A Az + (A wz +w,Az) + (w - i) wzwg] d*z
27 Js 2

4 12
+ F[B, R].
F[B,R] = —— / { Blog 3 (logB)Ag(logB)} Vgd’z
+O(1/B).

[SK’13; SK-Ma-Marinescu-Wiegmann'15]
This holds for any genus, and is related to Bergman kernel expansion.
Terminology: A., Az are components of the gauge-connection 1-form for the
magnetic field ' = dA. Also w.,wsz are components of spin-connection
w, = i0log g.z, where Ric(g) = dw, and s € Z/2 is gravitational spin. R is
scalar curvature.



Results: relation to Chern-Simons theory

Note that generating functional log Z and 3d Chern-Simons (Wen-Zee) actions
look similar:

1 1—2s (1-28)2 1 2
logZ = — A A+ ——(Asws 2 Az Y T 15 zWz
og 277/2{ +— (Azwz +w )+( 1 13 ) W= d°z

Ses = L {AdA +(1— 25)Adw + (% - 7) wdw}

A Js xR

These two actions are obviously very similar, but one is 2d and another one is
in 3d. What is the precise relation?



Results: relation to Chern-Simons theory

Consider geometric adiabatic
transport of IQHE wave
function along a contour C
in the moduli space

Y = Pic(S) x M, =
Define adiabatic connection: v
Ay = (U, dy )2, C))O
and adiabatic phase: @
et e Ay
R

Theorem ([SK—Ma—Marinescu—Wiegmann'15])Z

1 (1-2s)?2 1
Ay = — [AdA—i— 1—2s Adw+(—) wdw]
/C Y dr Js e ( ) 4 12

(proof relies on Quillen-Bismut theory: stay for next talk by Xiaonan Ma
for the proof)



Results: Partition function for Laughlin
states

1 -2 —2s)?
10gZ - m/; |:AZA2 + %(Azwi +sz2) + (u - ﬁ) wzw2:| dzz

+ F[B, R].

F|B,R] = 7/{ 35 BlogB} Vadiz + ...

[Can-Laskin-Wiegmann'14; Ferrari-SK'14, SK-Wiegmann'15]



Lowest Landau level (LLL) and IQHE state

Consider compact connected Riemann surface (X, g, J) and positive
holomorphic line bundle (L*, h¥). The latter corresponds to the magnetic
field. The curvature (1,1) form of the hermitian metric h*(z, 2) is given
by F = —i0dlogh*. This is the magnetic field strength of total flux k
though the surface % fz F = k. Magpnetic field: B = ¢g**F,;. On the
plane and for constant magnetic field B = k, this corresponds to

h* = e~ %I:I* LLL wave functions

5L’Cw =0
are holomorphic sections of L,
Vi =si(2), i=1,...,Ny=dimH(Z, L") =k+1-¢g

IQHE state: take Ny points on X: 21, 22,...,2n,. The (holomorphic
part F of the) IQHE state is Slater determinant:

F(Zl, ce 7ZNk,) - det[sl(zj)]f\fjk:l



Definition of Laughlin state (FQHE)

Consider now line bundle (L% hA*). But number of points is still
N, =k+1—g, i.e. only fraction of LLL states is occupied (thus
fractional QHE). The (holomorphic part F' of the) Laughlin state satisfies

e F(z1,...,zn,) is completely anti-symmetric
e Fix all z; except one, say z,,. Then F(-, ..., 2p,-,..,-) is a
holomorphic section of LAF.

¢ Vanishing condition near diagonal z; ~ z; in local complex
coordinate system on 3,

F(z1, .25, ~ [ [ (i = 2)°

i<j



Examples

1. Round sphere S2, constant magnetic field: h’g = W Then
sj =271, j=1,.k+1 FQHE state: F(z1, ..., 2x11) = [[,; (2 — 2)°

k+1
|\If(21, ey Zk+1)|2 = H ‘Zz — Zj|2’8 H hﬁk(2j> [Haldane'83]
i<j =1
2. Flat torus, constant magnetic field:

(z—%

. 2
5;= 0, o(kz+@.k1),j =1,k hf = ¢ 2757 FQHE states:

01(zi — 25, 7)

[Haldane-Rezayi'85]
n(7) )

Fr(zly D) Zk) = aﬁ,O(ﬂZc +§0767—) H (

1<J

3. Higher genus Y~ 1: (3% states.



Arbitary metric and inhomogeneous
magnetic field

The advantage of the language of holomorphic line bundles is that it
gives us a clear idea how to put the Laughlin state on X with arbitrary
metric g and inhomogeneous magnetic field B. Consider some fixed
(constant scalar curvature) metric go, and constant magnetic field By
(and corresponding hermitian metric hf(z, z)). Arbitrary metrics are
parameterized by:

e Kihler potential ¢(2,2): g.z = goz. + 0,0z,
e "magnetic’ potential ¥(2,2): F = Fy + 00y, B = g**F,;



Partition function

For the integer QHE (8 = 1), the partition function on arbitrary X is

Ny
z =/ | det si(z))|* [ [ b (25, 2)e 5020 /'~ (2))d>z
Nk

j=1
For the fractional QHE

ng

7 = Z/ (215 -5 2NN, |2Hh 7kﬂw(zj’zj)\/§175(zj)d22j.



Derivation of log Z in IQHE

For B = 1 the partition function satisfies determinantal formula:

Ny
zZ :/m | det si(zj)th’g(zj’gj)efkw(zj,zj)\/g(zj)dzzj
= det(s;, ;) 2
Denoting Gj; = <Sj, s1), we get
0logZ =46Tr log(sj, 1)
- / ( (Agdg) + k&/}) sjslhkf 542,

1

N (H(AQB'C(Z’Z)) 60+ kB(2,7) aw) Vi,
™ Jn 2

where By (z, Z) is the Bergman kernel on diagonal.



Bergman kernel

By, is the Bergman kernel on the diagonal. For orthonormal basis of
sections {s;}:
N
Bi(z,2) =) llsillie =
i=1

1—-2 1 1
- "R+ 1Ay log B+ A, (B7'R) + O(1/k?).

—B+

[Zelditch'98, Catlin'99]
In QM, Bergman kernel is the density of states ¢; on "completely filled”
LLL
N z(T)==z - ]
Bi(2,2) = Y [(2)]” = lim e o @HADDy (1)
i=1

T— o0 z(0)=z

[Douglas, SK'09]



log Z in Integer QHE

logZ——/ {AA +1 5 (A ws +w,Az)+

1-2 1
n ((45) . 12) wzwz} &z + F|B, R).
Liouville action is a hallmark of gravitational (conformal) anomaly. CFT
partition function transforms within the conformal class ¢ = €27 g
Z°" (g) c
Sp(o) =

log —— 2/ — Lwzd?
og ZCFT (g 19 5L wywzd“z

c
24

where c is central charge. What we derived is Laughlin state is the mixed

electromagnetic-gravitational anomaly

Since the theory is not conformal (there is a scale, magnetic area:

12 ~ V/k) we now have infinite asymptotic expansion.



log Z for Laughlin states: derivation

The proof is based on the free field representation of Laughlin states

ng
Z |\IJ7.|2 = /ei\/BX(Zl) . ei\/BX(ZNk)e_iS(g’X)DgX [Moore-Read'91]

s

where sum goes over all degenerate Laughlin states on Riemann surface
and the free field action is

8 —2s
VB

for compactified boson: X ~ X + 27+/B.
Novelty: "background charge” @ = 5_—\/%’ gauge connection coupling.

XRyG + —=ANdX)

S = 0X0X +i
[, oxex+ v



log Z for Laughlin states: derivation

Step 1. The "anomalous part” of the expansion comes from
transformation properties under the deformation of the metric and the
magnetic field go — g = go + 0,050, Ag — A = Ay + 0v,

/ez‘x/EX(m) . VX GN) = F S0 X)p

_ ¢Samo / GVEXG) | VX () S0 X)p X

Step 2. The remainder term F[R, B] of the expansion of log Z comes
from the interacting path integral

L/ d:“M571 /eiiS(%X)iufM eiﬁX(Z)\/@FZDgX)
L'(s) Jo

at s = —N;.
[Ferrari-SK(JHEP2014)]



log Z for Laughlin states

o _ 2
log Z = %/E {AZAE + B 228 (Azwz +w:Az) + (M - ﬁ) wzwz} 4’z

4 12
1 2—-p >
- — ———BlogB d
21 Js { 28 o8 } vedzt

Laughlin states form a non-trivial vector bundle of rank 3% over

Y = Jac(X) x Mg (In particular, ¥, have non-trivial monodromies under S, T
transformations on torus.)

Yet, For Laughlin states, adiabatic connection and curvature on

Y = Jac(X) x Mg the are controlled by the partition function, due to the

property W, (y,¥) = j;fyy;)

Ars = (Fr,dyFs) 2 = (0ylog Z)drs
Rrs = (idydglog Z)drs



New transport coefficient on higher genus

Consider complex structure deformations g.:|dz|?> — g.z|dz + pdz|?,
where Beltrami differential is = g2 iq:_l?’ N0y, and 7, is a basis of
holomorphic quadratic differentials.

Berry curvature, associated with these deformations is

1
R =idydglog Z = <4k5 + igx(M)> Qwp,
where Quwp = z‘fM dyp A dgli g»zd>z is the Weil-Petersson form on the
moduli space. Here
(8 —2s)?
cg=1-3—-7>+-—"-—
g
is a new transport coefficient, transpiring on higher genus surfaces, since
on torus x(M) = 0.
[SK-Wiegmann'15]



Thank you



