THERMOFIELD DYNAMICS \& GRAVITY

V. P. NAIR

City College of the CUNY

Geometric Aspects of the Quantum Hall Effect
Cologne, GERMANY
December 14, 2015

- Thermofield dynamics gives a way of discussing mixed states (which carry entropy) in terms of a pure state description. Can they be useful in gravity? (Israel; Maldacena; Jacobson; + others)
- Fuzzy spaces provide approximations to a differential manifold in terms of finite-dimensional matrices.

Can we combine these two to produce some version of gravity?

- What I hope to do is
- Describe a generalization of thermofield dynamics
- Apply this to gravity in $2+1$ dimensions
- We will make a specific proposal for gravity on fuzzy spaces which is different from the one based on the spectral action principle (Connes, Chamseddine, ...)
- Thermofield dynamics can be expressed by a coherent state path integral with action on two copies of $\mathbb{C P}^{N-1}$ with opposite orientation.
- It can also be expressed as a functional integral over spinor fields, with a particular limit taken at the end.
- For a fuzzy space, introduce gauge fields as a way of defining the large N limit.
- Double the Hilbert space modeling a fuzzy space to $\mathcal{H}_{N} \otimes \tilde{\mathcal{H}}_{N}$, with left chirality gravitational fields $\left(S O(3)_{L}\right.$ in $\left.2+1\right)$ on one component and right chirality fields $\left(S O(3)_{R}\right)$ on the tilde component
- This leads to

$$
S=-\frac{1}{4 \pi} \int\left[\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{L}-\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{R}\right]=\text { Einstein- Hilbert action }
$$

Thermofield Dynamics

- For a system with Hilbert space \mathcal{H}, the expectation value of observable \mathcal{O} is

$$
\langle\mathcal{O}\rangle=\operatorname{Tr}(\rho \mathcal{O})=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta H} \mathcal{O}\right), \quad Z=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

- We double the Hilbert space to $\mathcal{H} \otimes \tilde{\mathcal{H}}$ and introduce the pure state (called thermofield vacuum)

$$
|\Omega\rangle=\frac{1}{\sqrt{Z}} \sum_{n} e^{-\frac{1}{2} \beta E_{n}}|n, \tilde{n}\rangle
$$

- Then we get

$$
\langle\Omega| \mathcal{O}|\Omega\rangle=\frac{1}{Z} \sum_{m, n} e^{-\frac{1}{2} \beta\left(E_{n}+E_{m}\right)}\langle m| \mathcal{O}|n\rangle\langle\tilde{m} \mid \tilde{n}\rangle=\operatorname{Tr}(\rho \mathcal{O})
$$

- The Hamiltonian is taken as

$$
\check{H}=H-\tilde{H}=H \otimes \mathbf{1}-\mathbf{1} \otimes H, \quad \Longrightarrow \quad \check{H}|\Omega\rangle=0
$$

This formalism is very useful for considering time-dependent (nonequilibrium) effects at finite temperature.

- For a quantum system, the density matrix evolves by the Liouville equation

$$
i \frac{\partial \rho}{\partial t}=H \rho-\rho H
$$

- We can write an "action" for this,

$$
S=\int d t \operatorname{Tr}\left[\rho_{0}\left(U^{\dagger} i \frac{\partial U}{\partial t}-U^{\dagger} H U\right)\right]
$$

where U 's are to be varied, and $\rho=U \rho_{0} U^{\dagger}$.

- Our first step is to construct a similar action for thermofield dynamics.
- For this we start by using coherent states $\phi_{n}(z), \chi_{n}(w)$ such that

$$
\int_{\mathcal{M}} d \mu(\bar{z}, z) \phi_{n}^{*} \phi_{m}=\delta_{n m}, \quad \int_{\mathcal{M}} d \mu(\bar{w}, w) \chi_{n}^{*} \chi_{m}=\delta_{n m}
$$

There are many choices for the space of z, \bar{z} (and w, \bar{w}); the simplest is to use $\mathbb{C P}^{N-1}$.

- The states can be taken for this case as

$$
\langle N \mid z\rangle=\frac{1}{\sqrt{1+\bar{z} \cdot z}}, \quad\langle i \mid z\rangle=\frac{z_{i}}{\sqrt{1+\bar{z} \cdot z}}, \quad i=1,2, \cdots,(N-1)
$$

- These can be made orthonormal with the integration measure corresponding to the standard Fubini-Study metric,

$$
d \mu=\frac{(N-1)!}{\pi^{N-1}} \prod_{i} d z_{i} d \bar{z}_{i} \frac{1}{(1+z \cdot \bar{z})^{N}}
$$

- Then the thermofield state $|\Omega\rangle$ can be represented as

$$
|\Omega\rangle=\chi_{n}^{*}(\sqrt{\rho})_{n m} \phi_{m}, \quad \mathcal{O}|\Omega\rangle=\chi^{\dagger} \sqrt{\rho} \mathcal{O} \phi
$$

- We get, as expected,

$$
\langle\Omega| \mathcal{O}|\Omega\rangle=\int \phi_{a}^{*}(\sqrt{\rho})_{a b} \chi_{b} \chi_{c}^{*}(\sqrt{\rho})_{c d}(\mathcal{O} \phi)_{d}=\operatorname{Tr}(\rho \mathcal{O})
$$

- One can also use coherent states based on other groups. For example, for $S U(2)$, i.e., for $\mathbb{C P}^{1}$, we use the rank r representation with

$$
\phi_{n}(z, \bar{z})=\left[\frac{(r+1)!}{n!(r-n)!}\right]^{\frac{1}{2}} \frac{z^{n}}{(1+\bar{z} z)^{r / 2}}, \quad n=0,1, \cdots, r
$$

- Introduce a slight change of notation,

$$
\Omega(\bar{z}, \bar{u})=\sum_{n m} \psi_{n}(\bar{u})(\sqrt{\rho})_{n m} \phi_{m}(\bar{z}), \quad \chi(w) \rightarrow \psi(\bar{u})
$$

- Time evolution is given by a path integral

$$
\begin{gathered}
\phi_{n}(\bar{z}, t)=\int[\mathcal{D} z] e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)} \phi_{n}\left(\bar{z}^{\prime}, 0\right) \\
\Omega(\bar{z}, \bar{u}, t)=\int[\mathcal{D} z \mathcal{D} u] e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)} e^{i \tilde{S}\left(u, \bar{u}, t \mid u^{\prime}, \bar{u}^{\prime}\right)} \Omega\left(\bar{z}^{\prime}, \bar{u}^{\prime}, 0\right)
\end{gathered}
$$

Thermofield Dynamics (conta.)

- The vacuum-to-vacuum amplitude is given by

$$
\begin{gathered}
F=\int[\mathcal{D} z \mathcal{D} u] \Omega^{*}(z, u) e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)} e^{i \tilde{S}\left(u, \bar{u}, t \mid u^{\prime}, \bar{u}^{\prime}\right)} \Omega\left(\bar{z}^{\prime}, \bar{u}^{\prime}\right) \\
=\sum(\sqrt{\rho})_{k l}^{*}\langle k| e^{-i H_{z} t}|a\rangle\langle l| e^{-i H_{u} t}|b\rangle(\sqrt{\rho})_{a b} \\
e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)}=\langle z| e^{-i H_{z} t}\left|z^{\prime}\right\rangle
\end{gathered}
$$

- We choose $H_{u}=-H^{T}$, to be consistent with the algebra, so that

$$
F=\operatorname{Tr}\left(\sqrt{\rho}^{\dagger} e^{-i H t} \sqrt{\rho} e^{i H t}\right)
$$

- This may be viewed as a contour integral as

THERMOFIELD DYNAMICS (contd.)

- Correlation functions (which are the observables of interest) are of the form

$$
\left\langle A\left(t_{1}\right) B\left(t_{2}\right)\right\rangle=\operatorname{Tr}\left(\sqrt{\rho} U\left(t, t_{1}\right) A U\left(t_{1}, t_{2}\right) B U\left(t_{2}, 0\right) \sqrt{\rho} U^{\dagger}(t, 0)\right)
$$

- This is not the Schwinger-Keldysh type contour-ordered correlator. If we define

$$
\Omega_{K}=\sum_{n m} \psi_{n}(\bar{u}) K_{n m} \phi_{m}(\bar{z})
$$

we have

$$
F=\int[\mathcal{D} z \mathcal{D} u] \Omega_{\sqrt{\rho}}^{*}(z, u) e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)} e^{i \tilde{S}\left(u, \bar{u}, t \mid u^{\prime}, \bar{u}^{\prime}\right)} \Omega_{\sqrt{\rho}}\left(\bar{z}^{\prime}, \bar{u}^{\prime}\right)
$$

- The Schwinger-Keldysh type contour-ordered correlator is

$$
F_{1 \rho}=\int[\mathcal{D} z \mathcal{D} u] \Omega_{\mathbf{1}}^{*}(z, u) e^{i S\left(z, \bar{z}, t \mid z^{\prime}, \bar{z}^{\prime}\right)} e^{i \tilde{S}\left(u, \bar{u}, t \mid u^{\prime}, \bar{u}^{\prime}\right)} \Omega_{\rho}\left(\bar{z}^{\prime}, \bar{u}^{\prime}\right)
$$

- Turning to the action for the coherent states

$$
S=\int d t\left[\left(i \bar{z}_{k} \dot{z}_{k}-\bar{z}_{k} H_{k l} z_{l}\right)+\left(i \bar{u}_{k} \dot{u}_{k}+\bar{u}_{k} H_{k l}^{T} u_{l}\right)\right]
$$

with the constraints

$$
\bar{z}_{k} z_{k}=1, \quad \bar{u}_{k} u_{k}=1
$$

- The symplectic form (for z, \bar{z}) is $\omega=i d \bar{z}_{k} \wedge d z_{k}$ and lead to wave functions of the form

$$
\Psi=\exp \left(-\frac{1}{2} z_{k} \bar{z}_{k}\right) f(\bar{z})
$$

with z_{k} acting as $\partial / \partial \bar{z}_{k}$ on the the f 's.

- The constraint shows that the f can have one power of \bar{z}, which implies that $f(\bar{z}) \sim \bar{z}_{k}$.
- There are exactly N states, giving the rank 1 representation of $U(N)$.

THERMOFIELD DYNAMICS (cont'd.)

- The Hamiltonian operator is

$$
H=\bar{z}_{k} H_{k l} \frac{\partial}{\partial \bar{z}_{l}}
$$

Matrix elements of this Hamiltonian $\Longrightarrow H_{k l}$.

- Story for u, \bar{u} is similar,

$$
\Psi=\exp (-u \cdot \bar{u} / 2) f(\bar{u}), \quad H=-\bar{u}_{k} H_{k l}^{T} \frac{\partial}{\partial \bar{u}_{l}}, \quad\langle k| H|l\rangle=-H_{k l}^{T}
$$

The operation $H \rightarrow-H^{T}$ represents conjugation in the Lie algebra of $U(N)$.

- It is useful to define

$$
z_{k}=\xi_{k 1}, \quad \bar{u}_{k}=w_{k}=\xi_{k 2}, \quad P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

which gives the action

$$
S=\int d t \sum_{\alpha, \beta=1,2} P_{\alpha \beta}\left(i \bar{\xi}_{k \beta} \dot{\xi}_{k \alpha}-\bar{\xi}_{k \beta} H_{k l} \xi_{l \alpha}\right)=\int d t \operatorname{Tr}\left[P\left(i \xi^{\dagger} \dot{\xi}-\xi^{\dagger} H \xi\right)\right]
$$

Thermofield Dynamics (conta.)

- The variables z_{k}, u_{k} with the constraint define (two copies of) $\mathbb{C P}^{N-1}$. Define $\xi_{k \alpha}=U_{k 0}^{(\alpha)}=\langle k| U^{(\alpha)}|0\rangle$, for two unitary matrices $U^{(\alpha)}$
- The action now takes the form

$$
S=\int d t\left[\left(i U^{(1) \dagger} \dot{U}^{(1)}-U^{(1) \dagger} H U^{(1)}\right)_{00}-\left(i U^{(2) \dagger} \dot{U}^{(2)}-U^{(2) \dagger} H U^{(2)}\right)_{00}\right]
$$

- The state Ω is

$$
\Omega=\bar{z}_{k} \sqrt{\rho}_{k l} w_{l}=\bar{\xi}_{k 1} \sqrt{\rho} k l \xi_{l 2}=\langle 0| U^{(1) \dagger} \sqrt{\rho} U^{(2)}|0\rangle
$$

- We can include the factors of $\sqrt{\rho}$ as well by defining

$$
\mathcal{A}=-i\left[H d t+\frac{i}{2 \pi} \log \rho d \theta\right]
$$

Thermofield Dynamics (conta.)

- The amplitude of interest is then

$$
F_{J}=\int[\mathcal{D} U] \exp \left[\oint_{C}\left(-U^{\dagger} \dot{U}+U^{\dagger} \mathcal{A} U\right)_{00}+\oint A J+B J^{\prime}\right]
$$

- With $J=J^{\prime}=0$,

$$
F_{J=0}(C)=\operatorname{Tr} \mathcal{P} e^{\oint_{C} \mathcal{A}}
$$

- The contour is on $\mathbb{R} \times S^{1}$ of the form

- The Renyi entropy can related to multiple holonomy around the S^{1} direction

$$
S_{R}(t)=\frac{1}{1-n} \log (W(C, n, t))
$$

A Field-Theoretic Representation

- Now we rewrite this as a field theory functional integral.

$$
\begin{aligned}
\langle k| e^{-i H t}|l\rangle & =\langle 0| a_{k} e^{-i H t} a_{l}^{\dagger}|0\rangle=\langle 0| T a_{k}(t) a_{l}^{\dagger}(0)|0\rangle \\
& =\mathcal{N} \int\left[d a d a^{*}\right] e^{i S} a_{k}(t) a_{l}^{\dagger}(0) \\
S & =\int d t\left[a_{k}^{*}\left(i \partial_{0}\right) a_{k}-a_{k}^{*} H_{k l} a_{l}\right], \quad \mathcal{N}^{-1}=\int\left[d a d a^{*}\right] e^{i S}
\end{aligned}
$$

- Introduce a (z, \bar{z})-dependent field (on $\mathcal{M})$

$$
\psi(z, \bar{z}, t)=\sum_{k} a_{k} z_{k}, \quad \psi^{\dagger}(z, \bar{z}, t)=\sum_{k} a_{k}^{\dagger} \bar{z}_{k}
$$

- The diagonal coherent state representation of operators also allows us to introduce $A_{0}(z, \bar{z})=H(z, \bar{z})$ such that

$$
H_{k l}=\int_{\mathcal{M}} d \mu(z, \bar{z}) \bar{z}_{k} H(z, \bar{z}) z_{l}=\int_{\mathcal{M}} d \mu(z, \bar{z}) \bar{z}_{k} A_{0}(z, \bar{z}) z_{l}
$$

- The action now becomes

$$
S=\int d t d \mu(z, \bar{z})\left[\psi^{*}\left(i \partial_{0}\right) \psi-\psi^{\dagger} A_{0}(z, \bar{z}) \psi\right]
$$

A Field-theoretic Representation (contad.)

- We can go beyond fields which are "holomorphic" to general ones by considering the holomorphic ones as the lowest Landau level of a mock quantum Hall system. Use the action

$$
S=\int d t d \mu(z, \bar{z})\left[\psi^{*}\left(i \partial_{0}-A_{0}(z, \bar{z})+\frac{D^{2}+E_{0}}{2 m}\right) \psi\right]
$$

- Collecting results,

$$
\begin{aligned}
F= & \mathcal{N} \int\left[d \psi d \psi^{*} d \phi d \phi^{*}\right] e^{i S} \Omega^{*}(t) \Omega(0) \\
\Omega\left(\psi^{*}, \phi^{*}\right)= & \int_{\mathcal{M}} d \mu(z, \bar{z}) d \mu(w, \bar{w}) \psi^{*}(z) \phi^{*}(w)\left(z_{k} \sqrt{\rho}_{k l} w_{l}\right) \\
S= & \int d t d \mu(z, \bar{z})\left[\psi^{*}\left(i \partial_{0}-A_{0}(z, \bar{z})+\frac{D^{2}+E_{0}}{2 m}\right) \psi-\psi \rightarrow \phi\right] \\
= & \int d t \int_{\mathcal{M}} d \mu(z, \bar{z}) \psi^{*}\left(i \partial_{0}-A_{0}(z, \bar{z})+\frac{D^{2}+E_{0}}{2 m}\right) \psi \\
& \quad+\int d t \int_{\tilde{\mathcal{M}}} d \mu(z, \bar{z}) \phi^{*}\left(i \partial_{0}-A_{0}(z, \bar{z})+\frac{D^{2}+E_{0}}{2 m}\right) \phi
\end{aligned}
$$

- Take the states to be of the form $|k\rangle=|\alpha I\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and define a set of fermion fields $\psi_{I}=\sum_{\alpha} a_{\alpha I} z_{\alpha} \Longrightarrow$

$$
\begin{aligned}
S=\int d t & \int_{\mathcal{M}} d \mu(z, \bar{z}) \psi_{I}^{*}\left(i \partial_{0} \delta_{I J}-\left(A_{0}(z, \bar{z})_{I J}+\frac{D^{2}+E_{0}}{2 m} \delta_{I J}\right) \psi_{J}\right. \\
& +\int d t \int_{\tilde{\mathcal{M}}} d \mu(z, \bar{z}) \phi_{I}^{*}\left(i \partial_{0} \delta_{I J}-\left(A_{0}(z, \bar{z})\right)_{I J}+\frac{D^{2}+E_{0}}{2 m} \delta_{I J}\right) \phi_{J}
\end{aligned}
$$

Labels $I, J \sim$ some internal symmetry or degrees of freedom.

- If $\mathcal{M} \times \mathbb{R}$ admits spinors, we can replace the action by the Dirac type action

$$
S=\int d t \int_{\mathcal{M}} d \mu(z, \bar{z}) \bar{\Psi}_{I}\left(i \gamma^{\mu} D_{\mu}\right)_{I J} \Psi_{J}+\int d t \int_{\tilde{\mathcal{M}}} d \mu(z, \bar{z}) \bar{\Phi}_{I}\left(i \gamma^{\mu} D_{\mu}\right)_{I J} \Phi_{J}
$$

Ψ and Φ are spinors, $\gamma^{\mu}=$ the standard Dirac matrices and $\bar{\Psi}=\Psi^{\dagger} \gamma^{0}, \bar{\Phi}=\Phi^{\dagger} \gamma^{0}$. The
Hamiltonian for Ψ / Φ now has the form $H^{\prime}+A_{0}$ with $H^{\prime}=-i \gamma^{0} \gamma^{i} D_{i}$.

- Fuzzy spaces can be defined by the triple $\left(\mathcal{H}_{N}\right.$, Mat $\left._{N}, \Delta_{N}\right)$
- $\mathcal{H}_{N}=N$-dimensional Hilbert space
- $\operatorname{Mat}_{N}=$ matrix algebra of $N \times N$ matrices which act as linear transformations on \mathcal{H}_{N}
- $\Delta_{N}=$ matrix analog of the Laplacian.
- In the large N approximation
- $\mathcal{H}_{N} \longrightarrow$ Phase space \mathcal{M}
- $\mathrm{Mat}_{N} \longrightarrow$ Algebra of functions on \mathcal{M}
- $\Delta_{N} \longrightarrow$ needed to define metrical and geometrical properties.
- $\mathcal{M}_{F} \equiv\left(\mathcal{H}_{N}, \operatorname{Mat}_{N}, \Delta_{N}\right)$ defines a noncommutative and finite mode approximation to \mathcal{M}.
- Quantum Hall Effect on a compact space \mathcal{M}, lowest Landau level $\sim \mathcal{H}_{N}$
- Observables restricted to the lowest Landau level $\in \operatorname{Mat}_{N}$
- Thermofield dynamics as a field theory functional integral is a realization of this

A Simple Fuzzy Space $\mathbb{C P}_{F}^{1}=S_{F}^{2}$

- Consider the $(n+1) \times(n+1)$ angular momentum matrices $J^{a}, n=2 j$
- Define

$$
X^{a}=\frac{J^{a}}{\sqrt{j(j+1)}}
$$

- These obey

$$
X^{a} X^{a}=1
$$

- Functions of these matrices are functions of $\mathbf{1}, X^{a}, X^{(a} X^{b)}-\frac{1}{3} \delta^{a b}, \cdots$; there are $(n+1)^{2}$ independent functions for a basis.
- This agrees with

$$
f\left(S^{2}\right)=\sum_{0}^{n} f_{l m} Y_{m}^{l}(\theta, \varphi), \quad \sum_{0}^{n}(2 l+1)=(n+1)^{2}
$$

- Further, when $n \rightarrow \infty$,

$$
\left[X^{a}, X^{b}\right]=i \epsilon^{a b c} \frac{X^{c}}{\sqrt{j(j+1)}} \Longrightarrow 0
$$

- We can generalize to fuzzy versions of $\mathbb{C P}^{k}$, for arbitrary k. by considering QHE on $\mathbb{C P}^{k}$ $(U(1)$ and $S U(k)$ background fields)
- $\mathbb{C P}^{k}$ is given as

$$
\mathbb{C P}^{k}=\frac{S U(k+1)}{U(k)} \sim \frac{S U(k+1)}{U(1) \times S U(k)}
$$

- This allows the introduction of constant background fields which are valued in $\underline{U(k)} \sim \underline{U(1)} \oplus \underline{S U(k)}$
- Useful comparison:
Minkowski = Poincaré/Lorentz
- Changing the gauge fields of $U(1) \times S U(k)$ (and more generally $S U(k+1)$) is the same gauging the isometry group. \Longrightarrow suggest interpreting as gravity
- The Hilbert space $\mathcal{H} \sim \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ with states of the form $|\alpha, a, I\rangle$, where \mathcal{H}_{3} refers to matter system of interest.
- For gravity, as a first approximation, we will not need to consider excitations of the matter system, which means that we can restrict the matter fields to the ground state. In this case, the
- States $\sim|\alpha, a, 0\rangle$ corresponding to a representation $R_{1} \otimes R_{2}$ of G with the transformation

$$
|\alpha, a, 0\rangle^{\prime}=g_{\alpha \beta}^{(1)} g_{a b}^{(2)}|\beta, b, 0\rangle
$$

R_{1} defines \mathcal{H}_{1}, we take $\operatorname{dim} \mathcal{H}_{1} \rightarrow \infty . R_{1}$ is a highest weight representation \rightarrow can define symbols and $*$-products.
$R_{2}=$ Fixed representation, defines \mathcal{H}_{2}
Both are unitary representations

- Since $\mathbb{C P}^{1} \sim S^{2}=S U(2) / U(1)$, start with choosing $g=\exp (i \sigma \cdot \theta / 2) \in S U(2)$ as coordinates for the space (and a gauge direction).
- Wave functions are given by the Wigner \mathcal{D}-functions

$$
\mathcal{D}_{m s}^{(j)}(g)=\langle j, m| \exp (i J \cdot \theta)|j, s\rangle
$$

subject to a condition on s.

- Define right translations as $R_{a} g=g t_{a}$.
- The covariant derivatives $D_{ \pm}=i R_{ \pm} / r$. Since

$$
\left[R_{+}, R_{-}\right]=2 R_{3} \quad \Longrightarrow \quad\left[D_{+}, D_{-}\right]=-\frac{2 R_{3}}{r^{2}}
$$

we must choose R_{3} to be $-n$ for the Landau problem.

- This corresponds to a field $a=i n \operatorname{Tr}\left(t_{3} g^{-1} d g\right)$.
- The wave functions are thus

$$
\Psi_{m}(g) \sim \mathcal{D}_{m,-n}^{(j)}(g)
$$

- Choose the Hamiltonian as

$$
\mathcal{H}=\frac{1}{4 m r^{2}}\left[R_{+} R_{-}+R_{-} R_{+}\right]
$$

- The left action

$$
L_{a} g=t_{a} g
$$

commutes with \mathcal{H} and corresponds to "magnetic translations".

- The lowest Landau level (LLL) has the further condition (holomorphicity condition)

$$
R_{-} \Psi_{m}(g)=0
$$

- LLL states also correspond to co-adjoint orbit quantization of $a=\operatorname{in} \operatorname{Tr}\left(t_{3} g^{-1} d g\right)$.

Matrix formulation of LLL dynamics

- Start with the action

$$
S=\int d t \operatorname{Tr}\left[i \rho_{0} U^{\dagger} \partial_{t} U-\rho_{0} U^{\dagger} \mathcal{A}_{0} U\right]
$$

- The LLL has N available states, K occupied by fermions, $\quad 1 \ll K \ll N$
- Form a QH droplet, specified by the density matrix: $\rho_{0}=\sum_{i=1}^{K}|i\rangle\langle i|$,

- We will take the fully occupied case, $K=N$. ($K<N$ can be analyzed, leads to boundary terms (which are WZW actions).)

MATRIX FORMULATION OF LLL DYNAMICS (contad.)

- The symbol is defined by

$$
(\hat{A})_{i k}=A_{i k}=\langle-s, i| h^{(s) \dagger} \hat{A} h^{(s)}|-s, k\rangle
$$

$|-s\rangle$ is the highest weight state of the spin-s representation. As a 2×2 matrix,

$$
h=\frac{1}{\sqrt{1+\bar{z} z}}\left(\begin{array}{cc}
1 & z \\
-\bar{z} & 1
\end{array}\right)\left(\begin{array}{cc}
e^{i \theta / 2} & 0 \\
0 & e^{-i \theta / 2}
\end{array}\right)
$$

- The symbol for the product of two operators is

$$
\begin{aligned}
(\hat{A} \hat{B})_{i k} & =\langle-s, i| h^{\dagger} \hat{A} \hat{B} h|-s, k\rangle \\
& =\sum_{a, j}\langle-s, i| h^{\dagger} \hat{A} h|a, j\rangle\langle a, j| h^{\dagger} \hat{B} h|-s, k\rangle \\
& =A_{i j} B_{j k}+\sum_{r=1}^{N-1}\langle-s, i| h^{\dagger} \hat{A} h|-s+r, j\rangle\langle-s+r, j| h^{\dagger} \hat{B} h|-s, k\rangle \\
& =A_{i j} B_{i k}+\sum_{r=1}^{N-1}\left[\frac{(N-1-r)!}{r!(N-1)!}\right]\left(R_{+}^{r} A\right)_{i j}\left(R_{-}^{r} B\right)_{j k} \equiv(A * B)_{i k}
\end{aligned}
$$

TAKING THE LARGE N LIMIT

- The action has the gauge invariance

$$
U \rightarrow g U, \quad \mathcal{A}_{0} \rightarrow g \mathcal{A}_{0} g^{-1}+\dot{g} g^{-1}
$$

For transformations g close to the identity, $g \approx 1+\hat{\Phi}$ and

$$
\hat{\mathcal{A}}_{0} \rightarrow \hat{\mathcal{A}}_{0}-\partial_{0} \hat{\Phi}-\hat{\mathcal{A}}_{0} \hat{\Phi}+\hat{\Phi} \hat{\mathcal{A}}_{0}
$$

- In terms of symbols

$$
\mathcal{A}_{0} \rightarrow \mathcal{A}_{0}-\partial_{0} \Phi-\mathcal{A}_{0} * \Phi+\Phi * \mathcal{A}_{0}
$$

This has the full content of the operator transformation. \mathcal{A} and Φ are functions on $\mathbb{C P}^{1} \times \mathbb{R}$ and are also 2×2 matrices.

- It is convenient to introduce $A_{\mu} d x^{\mu}$ and a function Λ such that

$$
\left.\begin{array}{l}
A_{0} \rightarrow A_{0}+\partial_{0} \Lambda+\left[A_{0}, \Lambda\right] \\
A_{i} \rightarrow A_{i}+\partial_{i} \Lambda+\left[A_{i}, \Lambda\right]
\end{array}\right\} \Longrightarrow \mathcal{A}_{0}+\partial_{0} \Phi+\mathcal{A}_{0} * \Phi-\Phi * \mathcal{A}_{0}
$$

where \mathcal{A}_{0} and Φ are functions of A_{μ} and Λ.

TAKING THE LARGE N LIMIT (cont'd.)

- The solution is given by (Karabali; VPN)

$$
\begin{aligned}
\mathcal{A}_{0} & =A_{0}+\frac{P^{a b}}{2 n}\left[\partial_{a} A_{0} A_{b}-A_{a} \partial_{b} A_{0}+F_{a 0} A_{b}-A_{a} F_{b 0}\right]+\cdots \\
\Phi & =\Lambda+\frac{P^{a b}}{2 n}\left(\partial_{a} \Lambda A_{b}-A_{a} \partial_{b} \Lambda\right)+\cdots \\
P^{a b} & \equiv \frac{1}{2}\left[\frac{g^{a b}}{2 \pi}+i\left(\omega_{K}^{-1}\right)^{a b}\right]
\end{aligned}
$$

- We get

$$
\begin{aligned}
\int d t \operatorname{Tr}_{\mathcal{H}_{1} \otimes \mathcal{H}_{2}} \hat{\mathcal{A}}_{0} & =\int d t \int_{\mathcal{M}} \operatorname{Tr}_{\mathcal{H}_{2}} \mathcal{A}_{0}=-\frac{1}{4 \pi} \int \operatorname{Tr}_{\mathcal{H}_{2}}\left[(a+A) d(a+A)+\frac{2}{3}(a+A)^{3}\right] \\
& =-\frac{1}{4 \pi} \int \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right), \quad a+A \rightarrow A
\end{aligned}
$$

- Including the tilde sector

$$
S=-\frac{1}{4 \pi} \int\left[\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{L}-\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{R}\right]
$$

- The basic proposal is that, for the gravitational part of $\mathcal{H} \otimes \tilde{\mathcal{H}}, S O(3)_{L}$ fields couple to \mathcal{H} while $S O(3)_{R}$ fields couple to $\tilde{\mathcal{H}}_{R}$. i.e., $A_{L} \sim S O(3)_{L}, A_{R} \sim S O(3)_{R}$.
- We identify

$$
\begin{gathered}
A=-i P_{a} e^{a}-\frac{i}{2} S_{a b} \omega^{a b} \\
P_{a}=\frac{\gamma_{3} \gamma_{a}}{2 i l}, \quad S_{a b}=\frac{1}{4 i}\left(\gamma_{a} \gamma_{b}-\gamma_{b} \gamma_{a}\right), \quad a, b=0,1,2 . \\
S=-\frac{l}{32 \pi G} \int \operatorname{Tr}\left[\gamma_{5}\left(A d A+\frac{2}{3} A^{3}\right)\right], \quad l / 8 G \rightarrow 1 \\
\\
=\frac{1}{16 \pi G} \int d^{3} x \operatorname{det} e\left(R-\frac{3}{2 l^{2}}\right)
\end{gathered}
$$

- A_{i} are auxiliary fields introduced for simplicity of representing the transformation. So it must be eliminated.
- It is also not clear what A_{0} should be for gravity. Eliminating both A_{0} and A_{i} via the equations of motion gives the gravitational field equations.
- We obtain dynamical gravity as a large N effect.
- The level number is 1 so far, we need multiplicity $(l / 8 G)$ for a large level number.
- One can continue to Minkowski space using the field theory representation for the thermofield path integral.
- One can use the $S L(2, \mathbb{R})$ orbits of the Virasoro group to carry out a similar construction. One has to use large-central-charge limit to simplify the action.
- Generalization to any even +1 dimension is possible.
- Coupling matter fields is being explored.

Thank you

