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Outline

nonselfadjoint operators: spectral instability, pseudospectrum,
quasimodes

semiclassical nonselfadjoint (pseudo)differential: pseudospectrum vs.
classical spectrum

perturbation by a small random (Gaussian) operator: probabilistic Weyl's
law

@ can spectral correlations reveal more details of the symbol?
@ simplest model in 1D: spectral correlations (k-point functions) lead to the

Gaussian Analytic Function point process. Sketch of proof: effective
Hamiltonian (Grushin method)

more general models ~» less elementary processes, still involving the
GAF.



Pseudospectrum of nonselfadjoint operators
P : H — H selfadjoint: ||(P — 2) ™| = dist(z, Spec(P)) "

P not selfadjoint: ||(P — z)™*|| may be very large far from Spec(P):
pseudospectral effect.

~» Spec.(P) = {z €C, |(P — 2)

def

1| > €'} e-pseudospectrum.

<= instability of Spec(P) w.r.t. perturbations <= quasimodes:

z € Spec, (P) <= 3B € L(H), ||B|| £ 1, z € Spec(P + €B)
< Je. € K, ||(P —2)e|| < e€llex]|-

Ex: semiclassical (pseudo)differential operator P, = Op, (p), with p(z, &)
complex-valued. [DENCKER-SJOSTRAND-ZWORSKI'04]

Red: spectrum of P, = —ihd, + €2 on
LQ(Sl), h =1073: Spec P, = 2nhZ.

Blue: spectrum of P} = P, + 6Q, with
QI ~1,6 =107

(the spectra are truncated horizontally)



A simple model nonselfadjoint operator

Model [HAGER'06]: P, = —ihd, + g(z) on L*(S*), with g € C>(S*,C).
Classical "symbol" p(z, £) = € + g(z) on T*S*. Elliptic = purely discrete
spectrum.

Where is the hN -pseudospectrum of Py, ?

Define the classical spectrum X = p(T*S")= R + 4[min Im g, max Im g].

e 2cC\Xfixed = ||(P, — 2)™*|| < C uniform when h € (0, ho]

Hence, if we perturb P, by a perturbation §Q of size § ~ h”, then
Spec(Pr 4+ 0Q) C X + o(1).
For this model Spec P, = 2whZ + g lies on a line.

Main observation: for a generic perturbation
S b 0@, Spec(Py + 6Q) fills the whole of X.

o ) The same phenomenon occurs for more
general operators.

Ex: 1D Schrédinger operator
: Pyp = —h?82 + g(x) on S* (or R), with a
N i complex-valued potential g(x).




Localized Quasimodes

To identify the h™N-pseudospectrum of P, = Op,, (p), we construct
RN -quasimodes.

Assumption on p(z,&): forany z € Q & % the "energy shell"

pH(z) ={p=(2,8) € T*S", p(x,€) = z} consists in a ,

finite set of points p? = p’(2) € T*S*, satisfying {Re p, Tm p}(p’) # 0.
Call p = p; if {Rep,Imp}(p)< 0 (resp. p = p— if {Rep, Imp}(p)> 0).
Then:

e for each p.(z), one can construct a h*°-quasimode e (z; h) of (P, — z)
(thatis, ||(Pn — z)ey(z; h)|| = O(h®)), which is microlocalized on p (z).

e for each p_(z), one can construct a h*>°-quasimode e_(z; h) of (P, — 2)",
microlocalized on p_(z).




Localized quasimodes: a "linear normal form"

What do the quasimodes e (z, h) look like?

o If we linearize p(p) near p4, we are lead (after a symplectic transformation)
to a function of the type a(x, &) = £ — ix: this is the classical symbol of the
annihilation operator A, = —ih0, — ix.

The symbol a(z, &) = £ — iz has classical spectrum X = C.
For each z = Z —iX € C, the "energy shell" a™'(2) = {p4+(2) = (X, E)}, and
satisfies {Rea,Ima}(py) = —1.

= one can construct quasimodes e (z; h) of (A, — z) for all z € C.

Actually, for all z = 2 — iX € C, (A — z) admits an eigenstate, the coherent
state at (X, Z), n(x; 2, h) = (wh)~/4e~(#=X)*/2htiaZ/h,

e For a general p(z,£) and p1 € p~*(z), the &

quasimode e (z, h) is approximately a .y,
squeezed coherent state centered at the point ’ p(w)
p+; its shape depends on the linearization T

dp(p+)- x




Gaussian random perturbations: probabilitic Weyl’'s law

e These quasimodes show that for any z € Q, for h < ho, there exists an
operator Q, ||Q| ~ 1, such that z € Spec(Ps, + 6Q), where § = h™.

What does the spectrum of Py, + 6Q look like globally, for a typical
perturbation 6Q ?

e To construct a typical perturbation @,
consider an orthonormal system ()
microlocally filling a nbhd of p~* ().

Ex: take (gok(:r) = GQisz)‘MSc/h
(or is localized on {(z, & = kh)}).

Then define the Gaussian random operator

Q= Z Qe or @ iy, with the ay i.i.d. Ne(0,1) variables.
k,k’

Q belongs to the Ginibre ensemble. With high probability ||Q||zzs < C/h.

o We then consider the randomly perturbed operator P = P;, + 6Q, with a
perturbation strength 6 = h™¥ (N > 1).



Gaussian random perturbations: probabilitic Weyl’'s law

Theorem (HAGER’'06,HAGER-SJOSTRAND'07)

With probability > 1 — h™ | the spectrum of P = P, + 6Q) satisfies a Weyl's
law: for any smooth domainT C 0,

Vol (p~'(I"))

#(Spec(P) NT) = omh

+o(h™"), whenh 0.

In particular, w.h.p. the spectrum fills up .

8 7
)\

0 \ RE
)

This probabilistic Weyl's law can be expressed in terms of the average
spectral density: Dy (z) = (2mh) ™' D(z) 4+ o(h™1), with the "classical" density
D(z)dz = p*(dx A dE).



Probabilitic Weyl’s law: various settings

#(Spec(Py) NT) = W

This probabilistic Weyl’s law has been proved in more and more settings:

+o(h™h)

@ [HAGER'06]: P, = —ihd, + g(x) on S*, such that g=*(2) = {p4, p—} for
any z € X. Perturbation = Gaussian random operator Q .

@ [HAGER-SJOSTRAND'08]: P, = Op,(p) on R™.

@ [HAGER'068B]: P = Op,,(p) on R', with symmetry p(z, £) = p(z, —€)
(+some assumptions).
Multiplicative perturbation: random potential V'(z) = >_, - /), axpr(2),
with ay, i.i.d. Nc(0,1).
Ex: P, = —h?02 + g(x) + 6V (x), g(x) complex-valued.

@ [SUOSTRAND’'08,...]: Same on R"™ or M compact Riemannian mfold.

@ [BORDEAUX-MONTRIEUX'10]: P a (nonsemiclassical) differential operator.



Gaussian random perturbations: experiments

Spectrum (inside some T') for various operators on S*, perturbed by §Q:

Pl — 7’lhaz + e2i7rz, P2 _ 7}[/285 +62i7r:v! P3 _ 7h2ag +e(ii7‘rz




Gaussian random perturbations: experiments

a0 a2 a4 a6 a8 50 52 40 2 a4 6 28 50

Operator Ps = —h?92 + 5™ on S, two types of perturbations:
random operator 6Q) (left) vs. random potential 6V (right).

Do you see any difference?



Q@ vs. V perturbation: spectral correlations

Answer. There are differences in the correlations between the eigenvalues.

Q: the eigenvalues seem to "repel” each other on the scale of the mean level
spacing, while for V' they can present "clusters".



Spectral correlations: k-point functions
The spectrum of P} defines a random point process on C, represented by the
(locally finite) random measure on C

5 z :
Z’h == 6211 .
z; ESpec P}f

1-point density = average spectral density D, (z)
V€ CZ(C), [ ¢(2) Dr(a)ds = EIZ} ()
C

For any k > 1, the k-point density of this process is defined (outside the
diagonal A = {z; = z; for some i # j}) as:

Vo € C2(CF\ A), /@k @(2) Dy(2)dz =E| Z (21, .., 2k)]

Z1,...2 €ESpec P,‘Is

= E[(23)%"(#)]-

k-point correlation function: normalize the k-point density by the local
average densities:

e Dkz,...,z
Worooa) € VAL Kh(aryo) & D)



2-point function for Hager’s model
Given P, and random perturbation @, V', can we compute the k-point
correlations of Spec P2 ?

@ [VoGEL14] computed K7 (z1, z2) for the operator P = —ihd, + g(z) + 6Q,
in the case where p~'(2) = {p+(2), p—(2)} for each z € Q.

His formula suggests to rescale to the local mean spacing between nearby
eigenvalues, namely Dy, (z) /2 ~ £,h'/?, (. = (2r/D(2))"/2.
Theorem (Voger14)

Assume p~ ' (z) = {p1(2),p—(2)} forall z € Q.
For any zy € Q and any u1 # u2 € C, we have a scaling limit

K% (Zo + ulfz()hlﬂ, 20 + UszUh1/2) h—_>(>) RZ(U17UQ) s

(sinh? ¢ 4 t?) cosh t — 2t sinht

ith k2 — (T — usl? t) =
wit (u1,u2) "‘(2|“1 uel”), k(1) sinh® ¢

@ the limit is uniform for (u;,u2) € K € C x C\ A

@ the scaling limit is universal (dep. of g and zo only through D(z0)).

@ quadratic repulsion at short rescaled distance: () = t + O(t?), t — 0.
@ decorrelation at large rescaled distance: x(t) = 1+ O(t%e™2%), t — oo.



K?(u1,us) and the Gaussian Analytic Function

M‘M i 2
o7 B Red line: r — (r<), where
/:m/ K2(u1,u2):k(g|u1—uz\2).
& . . .
3 Blue circles: numerical data for P, + 6Q, using
K/ 200 realizations of Q.

2
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© K? differs from the case of the Ginibre ensemble (= spectrum @ alone):
f(ém(ul,uz) =1 e mlu—ual®,
& K? is the 2-point function for the zeros of the Gaussian Analytic Function:
7rj/2uj i .
G(u) = Z B; Nl u € C, pjiid.random variables N¢(0, 1).
J:

n>0

[HANNAY’96]

e The zero set of G(u) will be denoted by Z, it is a well-studied random
point process on C [NAZAROV-SODIN'10]



GAF: k-point densities from the covariance function

/24,3

Z the zero process of the GAF G(u) = 2onz0Bi T4

To compute the k-point density D () of this process, the essential
ingredient is the covariance function

def P=T20%

C(u,v) = E[G(u)G(v)] = exp(muv).

Indeed, the identity between distributions

It ef ’

Za(u) = Y, o 01 — 2) = |G (w)? 6(G(w)),
leads to the Kac-Rice-Hammersley formula:

Dg (@) = EZq (1) -+~ 2 (ur) = EIG (wn)[*8(G (wr)) -+ |G (ur) *6(G () -

The RHS only depends on the joint distribution of the Gaussian vector
{G(u1),--,G(u), G (u1),- - ,G'(ux)}, encoded in the
2k x 2k covariance matrix

(EG(Ui)G(Uj) EG/(W)G(UJ')) :< C(ui, uy) Ou; C (ui, 1)
EG(u:)G' (uj) EG (ui)G (uy) 0z;C(ui, t5)  Ou;0a; C(us, Uj)




The rescaled spectrum has the statistics of the GAF

Vogel's result for the spectrum of P} = —ihd, + g(z) + 6Q extends to all
k-point functions.

Theorem (N-VoGeL'16)

Assume p~'(z) = {p+(2),p—(2)} foreach z € Q. Take § = k¥, N > 5/2.
For any k > 2, the k-point correlation function for the eigenvalues of P, + 6Q
satisfy, near any zo € XO) the scaling limit

Vi e CF\ A, Kf(zo+@l,h?) 20 KF (@),

where K* (i) is the k-point function of the GAF.

In other words, the rescaled spectral measure centered at zo,

&0
L,z = Z 5%_: zi=20

1/2
z; ESpec P"f Lzgh

converges in distribution to the point process Z¢ when h ™\, 0.



History: the GAF as a "holomorphic random wave"

The GAF has been used as a model for:

0.8 1

@ eigenfunctions (in Bargmann representation) of 1D quantized chaotic

maps [LEBOEUF-VOROS'91, BOGOMOLNY-BOHIGAS-LEBOEUF'96, HANNAY'96,
PROSEN’96, N-VOR0s'98]: B;(z) = (7(2), v;), with 7;(z) holom. coh. st.

sup 1# H au sup # H aM
56182 14144 04442 05377 9.0802 13041 0.3504 O5TYS
. - 0.5 Sy
Left: random Bargmann
‘ ‘ function on T2 (Husimi).

P

u o:' #- Right: Bargmann

J
k . 5
eigenfunction of a chaotic
: 9" P 4 :\ L ,\b 9

quantum map on T2,

-0.5

08 1 - .5 os

N= 58 K= 81 P=- mealom- 0.437300

@ [BLEHER-SCHIFFMAN-ZELDITCH'00]: M compact Kahler mfold, L positive

line bundle: study random holomorphic sections s(z) on L&Y in the limit
N = oo (N ~h™1).

Covariance Es(z)s(w)=IIx(z,w) Bergman kernel, rescale by N
~» universal scaling limit C'(u, v) [TIAN, CATLIN, ZELDITCH'98,...]

—00 5

dime M = 1: at each z, € M, the rescaled zero process Z. ., N2 2.

—1/2

@ In the present work, the GAF mimicks an effective spectral determinant.



How to study 29? Use an effective Hamiltonian
Heuristics: the spectrum of PP near z is governed by the action of P}, resp.
P{* in the v/h-neighbourhood of p. () ~» involves the quasimodes e ().

e Idea: construct a Grushin problem: extend (P, — z) by "filling" its
approximate kernel and cokernel ~» invertible operator

P(z) & (ZHZ; R*O(Z)> :H®C - HaoC.

Auxiliary operators R4 (z)u = (e4(2),u), R—(z)u— = u_e_(z).

(B Bi(2)
Call P(z)"" = (Ei(z) FL—:(Z)).

e Schur’s complement formula => z € Spec(FP,) <= E_1(z) = 0.
E_(z) is an effective Hamiltonian for P.
e ci(z) are h*™-quasimodes =— E__,(z) = O(h*>), Vz € Q.

e use same Grushin extension for P} ~» randomly perturbed eff. Hamil.
B2 (2) = E_4(2) + 0F(2) + 0(8°h~ %), with  F(z) = —(Qe4(2), e~ (2))-
@ w.h.proba., Q couples e (z) to e_(z), so that F(z) < 1.

— E’ () = & F(z) a Gaussian random function of z.



Computing the covariance of F'(z)

: F(2) = —(Qe+(2),e—(z)) can couple e
) | to e, because the phase space spanned
e(;)\° % by @ contains p., p_.
¢
Q H .
0 e ¥ > We need to study the zeros of the function

(Qey(z),e—(z)) + small ~ compute its

®c(z) \
covariance:

E{Qe+(2), e~ (2))(Qe (w), e~ (w)) = (e4(2), ex (w)) (e~ (w), e—(2)) + O(h™)

The quasimode e (z) is microlocalized in a v/A-nbhd of py (z).
For |z — w| > hY/?27¢, (e4(2), er (w)) = O(h™). If z,w = zo + O(VRh),

(e+(20 + Vhu), e1 (20 + Vhv)) = exp (04ud + ¢4 (u) + 61 (v) + O(VR)),

Similar for (e_ (), e_ (o)) = up to a change of gauge, we get ¢(7++7-)u7,
One shows that o + o = D(z0)/2, so rescaling u, v by £, we obtain the
covariance ™" = C(u, v) in the limit A — 0.

d



1D operators with J quasimodes
Let us now assume that for any z € 2, the "energy shell"
pH(2) =P (2), -l (2), L (2), s pL(2)}. EX: p(a,€) = € 4 2
(Pn — z) and (P, — z)* have J quasimodes ¢’ (z) microlocalized on p?_(z).
The effective Hamiltonian E°_ (z) is now a J x J matrix, and
z € Spec(P}) <= det E° (z) = 0.

We get E°(2)7 = —§(Qe’.(2), ¢’ (2)) + small
W.h.p., B2, (z) is dominated by the .J x .J matrix
F(z) of entries F;;(z) = (Qe' (2), €’ (2)).

LA x, e each F,(z) is a GAF with rescaled (and
2 A / \”. 1 re-gauged) covariance exp((oy; + o ;)ud).
éz) ® &) o the Fj;(z) are independent of e.o. when h — 0.

Theorem (N-VoGeL'16)

After rescaling by h*/? near zo, i‘fmo converges to the zero process of the
random holomorphic function G’ (u) = det (Gi;(u)), where (Gi;(u)) is a
matrix of J x J independent GAFs with variances ¢(7+iT7-)uv,

Qu: can we compute the k-correlations of the zeros of G (u)?



Operators with J quasimodes

1 15 2

Blue circles: numerics for the rescaled 2-point function for operators

Py = —h%292 4+ ¥7//22 ] =2 6,10. In the spectral region we consider,
(P; — z) admits J quasimodes.

Red: for comparison, the function K?(u,v) as a function of |u — .
Conjecture

For any J > 1, the zeros of G” (u) repel each other quadratically.

(weak form of universality).



Operators with J quasimodes — multiplicative perturbation

Replace the perturbation 6@ by the multiplicative perturbation §V (), with
V(z) = Zu <C/h arpr(z).

The effectlve ‘Hamiltonian is the J x J matrix with entries

E% (2)7 = =§(Ve' (2),€ (2)) + small.

The coupling of V' is local:
. (Vey(2),e—(2)) = [ Ve, e_dz. Hence V can couple
g .1 ep(z)withe_(z) only provided x4 =z _.
bl 52 i == consider symmetric symbols p(z, —§) = p(x, &):
i then each p’. = (x,¢.) is associated with

x pl = (a4, —€4).

i~ Quasimodes are related by el (z) =€’ (2).
e 4z | The Gaussian function Fi;(z fVefF(z)2 x has
! covariance E[F;;(2) Fi(w)] :( L(2)?, el (w)?).
After h'/2-rescaling, this covariance ~ ¢27"".
The matrix Fj;(z) is then approximately diagonal, so that
det B2 | (2) = (—0)’ H}le Fii(z) + small.

Theorem (N-VoGeL16)

Around zo, the h'/?-rescaled spectrum of P} converges to the superposition
of J independent GAF processes, with respective variances e>°"".



Operators with J quasimodes —multiplicative perturbation

gl )
B T RS —

a0 B 25 /
\\;“’/ 08 f:on / o8 /
ok /

Blue circles: numerics of the rescaled 2-point correlation function for
operators Py = —h282 + €2™//2® ] = 2.4, 6, and perturbation §V .

Observe the absence of quadratic repulsion at the origin, due to the presence
of J independent processes, allowing clusters of < .J eigenvalues.

TO DO: Compute explicitly the k-point densities by superposing the J
independent processes.



Conclusion

Small perturbations of nonselfadjoint 1D (pseudo)differential operators lead
to interesting spectral phenomena

@ ubiquity of Weyl’s law

@ ubiquity of the Gaussian Analytic Function, and partial universality

@ if the law of the perturbation parameters «;; is not Gaussian but
sufficiently regular, we expect the same result (CLT)

@ spectral correlations are sensitive to the structure (cardinal) of p~*(z),
symmetry £ — —¢ of the symbol, and type of random perturbation
— probabilistic spectral information on p(z, £).

@ can we compute the k-point functions for the zeros of det(G;;(u))?

@ nonselfadjoint operators in dimension n > 1: energy shell is a
codimension 2 submanifold = quasimodes form a subspace of
dimension ~ h~"*! — E’ _(2) is a large random matrix. What can be
said about spectral correlations?



