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Outline

nonselfadjoint operators: spectral instability, pseudospectrum,
quasimodes

semiclassical nonselfadjoint (pseudo)differential: pseudospectrum vs.
classical spectrum

perturbation by a small random (Gaussian) operator: probabilistic Weyl’s
law

can spectral correlations reveal more details of the symbol?

simplest model in 1D: spectral correlations (k-point functions) lead to the
Gaussian Analytic Function point process. Sketch of proof: effective
Hamiltonian (Grushin method)

more general models ; less elementary processes, still involving the
GAF.



Pseudospectrum of nonselfadjoint operators
P : H→ H selfadjoint: ‖(P − z)−1‖ = dist(z, Spec(P ))−1

P not selfadjoint: ‖(P − z)−1‖ may be very large far from Spec(P ):
pseudospectral effect.
; Specε(P )

def
= {z ∈ C , ‖(P − z)−1‖ ≥ ε−1} ε-pseudospectrum.

⇐⇒ instability of Spec(P ) w.r.t. perturbations⇐⇒ quasimodes:

z ∈ Specε(P )⇐⇒ ∃B ∈ L(H), ‖B‖ ≤ 1, z ∈ Spec(P + εB)

⇐⇒ ∃ez ∈ H, ‖(P − z)ez‖ ≤ ε‖ez‖ .

Ex: semiclassical (pseudo)differential operator Ph = Oph(p), with p(x, ξ)
complex-valued. [DENCKER-SJÖSTRAND-ZWORSKI’04]

Red: spectrum of Ph = −ih∂x + e2iπx on
L2(S1), h = 10−3: SpecPh = 2πhZ.

Blue: spectrum of P δh = Ph + δQ, with
‖Q‖ ≈ 1, δ = 10−9.

(the spectra are truncated horizontally)



A simple model nonselfadjoint operator

Model [HAGER’06]: Ph = −ih∂x + g(x) on L2(S1), with g ∈ C∞(S1,C).
Classical "symbol" p(x, ξ) = ξ + g(x) on T ∗S1. Elliptic =⇒ purely discrete
spectrum.

Where is the hN -pseudospectrum of Ph?

Define the classical spectrum Σ
def
= p(T ∗S1)= R + i[min Im g,max Im g].

• z ∈ C \ Σ fixed =⇒ ‖(Ph − z)−1‖ ≤ C uniform when h ∈ (0, h0]

Hence, if we perturb Ph by a perturbation δQ of size δ ∼ hN , then
Spec(Ph + δQ) ⊂ Σ + o(1).

For this model SpecPh = 2πhZ + ḡ lies on a line.
Main observation: for a generic perturbation
δQ, Spec(Ph + δQ) fills the whole of Σ.

The same phenomenon occurs for more
general operators.

Ex: 1D Schrödinger operator
Ph = −h2∂2

x + g(x) on S1 (or R), with a
complex-valued potential g(x).



Localized Quasimodes

To identify the hN -pseudospectrum of Ph = Oph(p), we construct
hN -quasimodes.

Assumption on p(x, ξ): for any z ∈ Ω b
◦
Σ, the "energy shell"

p−1(z) = {ρ = (x, ξ) ∈ T ∗S1, p(x, ξ) = z} consists in a
finite set of points ρj = ρj(z) ∈ T ∗S1, satisfying {Re p, Im p}(ρj) 6= 0.

Call ρ = ρ+ if {Re p, Im p}(ρ)< 0 (resp. ρ = ρ− if {Re p, Im p}(ρ)> 0).

Then:
• for each ρ+(z), one can construct a h∞-quasimode e+(z;h) of (Ph − z)
(that is, ‖(Ph − z)e+(z;h)‖ = O(h∞)), which is microlocalized on ρ+(z).

• for each ρ−(z), one can construct a h∞-quasimode e−(z;h) of (Ph − z)∗,
microlocalized on ρ−(z).
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Localized quasimodes: a "linear normal form"

What do the quasimodes e+(z, h) look like?

• If we linearize p(ρ) near ρ+, we are lead (after a symplectic transformation)
to a function of the type a(x, ξ) = ξ − ix: this is the classical symbol of the
annihilation operator Ah = −ih∂x − ix.

The symbol a(x, ξ) = ξ − ix has classical spectrum Σ = C.
For each z = Ξ− iX ∈ C, the "energy shell" a−1(z) = {ρ+(z) = (X,Ξ)}, and
satisfies {Re a, Im a}(ρ+) = −1.

=⇒ one can construct quasimodes e+(z;h) of (Ah − z) for all z ∈ C.

Actually, for all z = Ξ− iX ∈ C, (Ah − z) admits an eigenstate, the coherent
state at (X,Ξ), η(x; z, h) = (πh)−1/4e−(x−X)2/2h+ixΞ/h.

• For a general p(x, ξ) and ρ+ ∈ p−1(z), the
quasimode e+(z, h) is approximately a
squeezed coherent state centered at the point
ρ+; its shape depends on the linearization
dp(ρ+). x
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Gaussian random perturbations: probabilitic Weyl’s law
• These quasimodes show that for any z ∈ Ω, for h < h0, there exists an
operator Q, ‖Q‖ ∼ 1, such that z ∈ Spec(Ph + δQ), where δ = hN .

What does the spectrum of Ph + δQ look like globally, for a typical
perturbation δQ?

• To construct a typical perturbation Q,
consider an orthonormal system (ϕk)
microlocally filling a nbhd of p−1(Ω).

Ex: take (ϕk(x) = e2iπkx)|k|≤C/h

(ϕk is localized on {(x, ξ = kh)}).
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Then define the Gaussian random operator

Q =
∑
k,k′

αkk′ϕk ⊗ ϕ∗k′ , with the αkk′ i.i.d. NC(0, 1) variables.

Q belongs to the Ginibre ensemble. With high probability ‖Q‖HS ≤ C̃/h.

• We then consider the randomly perturbed operator P δh = Ph + δQ, with a
perturbation strength δ = hN (N � 1).



Gaussian random perturbations: probabilitic Weyl’s law

Theorem (HAGER’06,HAGER-SJÖSTRAND’07)
With probability ≥ 1− hM , the spectrum of P δh = Ph + δQ satisfies a Weyl’s
law: for any smooth domain Γ ⊂ Ω ,

#(Spec(P δh) ∩ Γ) =
Vol

(
p−1(Γ)

)
2πh

+ o(h−1), when h↘ 0.

In particular, w.h.p. the spectrum fills up Ω.
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This probabilistic Weyl’s law can be expressed in terms of the average
spectral density: Dh(z) = (2πh)−1D(z) + o(h−1), with the "classical" density
D(z) dz = p∗(dx ∧ dξ).



Probabilitic Weyl’s law: various settings

#(Spec(P δh) ∩ Γ) =
Vol

(
p−1(Γ)

)
2πh

+ o(h−1)

This probabilistic Weyl’s law has been proved in more and more settings:

[HAGER’06]: Ph = −ih∂x + g(x) on S1, such that g−1(z) = {ρ+, ρ−} for

any z ∈
◦
Σ. Perturbation = Gaussian random operator Q .

[HAGER-SJÖSTRAND’08]: Ph = Oph(p) on Rn.

[HAGER’06B]: P = Oph(p) on R1, with symmetry p(x, ξ) = p(x,−ξ)
(+some assumptions).
Multiplicative perturbation: random potential V (x) =

∑
k≤C/h αkϕk(x),

with αk i.i.d. NC(0, 1).
Ex: Ph = −h2∂2

x + g(x) + δV (x), g(x) complex-valued.

[SJÖSTRAND’08,. . . ]: Same on Rn or M compact Riemannian mfold.

[BORDEAUX-MONTRIEUX’10]: P a (nonsemiclassical) differential operator.



Gaussian random perturbations: experiments
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Spectrum (inside some Γ) for various operators on S1, perturbed by δQ:

P1 = −ih∂x + e2iπx, P2 = −h2∂2
x + e2iπx, P3 = −h2∂2

x + e6iπx



Gaussian random perturbations: experiments
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Operator P3 = −h2∂2
x + e6iπx on S1, two types of perturbations:

random operator δQ (left) vs. random potential δV (right).

Do you see any difference?



Q vs. V perturbation: spectral correlations
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Answer: There are differences in the correlations between the eigenvalues.

Q: the eigenvalues seem to "repel" each other on the scale of the mean level
spacing, while for V they can present "clusters".



Spectral correlations: k-point functions
The spectrum of P δh defines a random point process on C, represented by the
(locally finite) random measure on C

Z
δ
h =

∑
zi∈SpecPδ

h

δzi .

1-point density = average spectral density Dh(z)

∀ϕ ∈ C∞c (C),

∫
C
ϕ(z)Dh(z) dz = E[Zδh(ϕ)]

For any k ≥ 1, the k-point density of this process is defined (outside the
diagonal ∆ = {zi = zj for some i 6= j}) as:

∀ϕ ∈ C∞c (Ck \∆),

∫
Ck
ϕ(~z)Dk

h(~z) d~z = E
[ ∑
z1,...zk∈SpecPδ

h

ϕ(z1, . . . , zk)
]

= E[(Zδh)⊗k(ϕ)] .

k-point correlation function: normalize the k-point density by the local
average densities:

∀(z1, . . . , zk) ∈ Ck \∆, Kk
h(z1, . . . , zk)

def
=

Dk
h(z1, . . . , zk)

Dh(z1) · · ·Dh(zk)
.



2-point function for Hager’s model
Given Ph and random perturbation Q,V , can we compute the k-point
correlations of SpecP δh?

⊕ [VOGEL’14] computed K2
h(z1, z2) for the operator P δh = −ih∂x + g(x) + δQ,

in the case where p−1(z) = {ρ+(z), ρ−(z)} for each z ∈ Ω.

His formula suggests to rescale to the local mean spacing between nearby
eigenvalues, namely Dh(z)−1/2 ≈ `zh1/2, `z = (2π/D(z))1/2.

Theorem (VOGEL’14)
Assume p−1(z) = {ρ+(z), ρ−(z)} for all z ∈ Ω.
For any z0 ∈ Ω and any u1 6= u2 ∈ C, we have a scaling limit

K2
h

(
z0 + u1`z0h

1/2, z0 + u2`z0h
1/2) h→0−→ K̃2(u1, u2) ,

with K̃2(u1, u2) = κ
(π

2
|u1 − u2|2

)
, κ(t) =

(sinh2 t+ t2) cosh t− 2t sinh t

sinh3 t
.

the limit is uniform for (u1, u2) ∈ K b C× C \∆

the scaling limit is universal (dep. of g and z0 only through D(z0)).
quadratic repulsion at short rescaled distance: κ(t) = t+ O(t2), t→ 0.
decorrelation at large rescaled distance: κ(t) = 1 + O(t2e−2t), t→∞.



K̃2(u1, u2) and the Gaussian Analytic Function
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Red line: r 7→ κ(r2), where
K̃2(u1, u2) = k

(
π
2
|u1 − u2|2

)
.

Blue circles: numerical data for P1 + δQ, using
200 realizations of Q.

	 K̃2 differs from the case of the Ginibre ensemble (= spectrum Q alone):
K̃2
Gin(u1, u2) = 1− e−π|u1−u2|2 .

⊕ K̃2 is the 2-point function for the zeros of the Gaussian Analytic Function:

G(u) =
∑
n≥0

βj
πj/2uj√

j!
, u ∈ C, βj i.i.d. random variables NC(0, 1).

[HANNAY’96]

• The zero set of G(u) will be denoted by Z̃G, it is a well-studied random
point process on C [NAZAROV-SODIN’10]



GAF: k-point densities from the covariance function

Z̃G the zero process of the GAF G(u) =
∑
n≥0 βj

πj/2uj√
j!

.

To compute the k-point density Dk
G(~u) of this process, the essential

ingredient is the covariance function

C(u, v̄)
def
= E[G(u)G(v)] = exp(πuv̄).

Indeed, the identity between distributions
Z̃G(u)

def
=
∑
ui:G(ui)=0 δ(u− zi) = |G′(u)|2 δ(G(u)),

leads to the Kac-Rice-Hammersley formula:

Dk
G(~u) = EZ̃G(u1) · · ·ZG(uk) = E|G′(u1)|2δ(G(u1)) · · · |G′(uk)|2δ(G(uk)) .

The RHS only depends on the joint distribution of the Gaussian vector
{G(u1), · · · , G(uk), G′(u1), · · · , G′(uk)}, encoded in the
2k × 2k covariance matrix(

EG(ui)G(uj) EG′(ui)G(uj)

EG(ui)G′(uj) EG′(ui)G′(uj)

)
=

(
C(ui, ūj) ∂uiC(ui, ūj)

∂ūjC(ui, ūj) ∂ui∂ūjC(ui, ūj)

)
.



The rescaled spectrum has the statistics of the GAF

Vogel’s result for the spectrum of P δh = −ih∂x + g(x) + δQ extends to all
k-point functions.

Theorem (N-VOGEL’16)
Assume p−1(z) = {ρ+(z), ρ−(z)} for each z ∈ Ω. Take δ = hN , N > 5/2.

For any k ≥ 2, the k-point correlation function for the eigenvalues of Ph + δQ

satisfy, near any z0 ∈
◦
Σ, the scaling limit

∀~u ∈ Ck \∆, Kk
h

(
z0 + ~u `z0h

1/2) h→0−→ K̃k(~u),

where K̃k(~u) is the k-point function of the GAF.

In other words, the rescaled spectral measure centered at z0,

Z̃
δ
h,z0 =

∑
zi∈SpecPδ

h

δ
ui=

zi−z0
`z0h

1/2

,

converges in distribution to the point process Z̃G when h↘ 0.



History: the GAF as a "holomorphic random wave"
The GAF has been used as a model for:

eigenfunctions (in Bargmann representation) of 1D quantized chaotic
maps [LEBOEUF-VOROS’91, BOGOMOLNY-BOHIGAS-LEBOEUF’96, HANNAY’96,
PROSEN’96, N-VOROS’98]: Bj(z) = 〈η̃(z), ψj〉, with η̃(z) holom. coh. st.

Left: random Bargmann
function on T2 (Husimi).

Right: Bargmann
eigenfunction of a chaotic
quantum map on T2.

[BLEHER-SCHIFFMAN-ZELDITCH’00]: M compact Kähler mfold, L positive
line bundle: study random holomorphic sections s(z) on L⊗N , in the limit
N →∞ (N ∼ h−1).
Covariance Es(z)s(w)= ΠN (z, w) Bergman kernel, rescale by N−1/2

; universal scaling limit C(u, v̄) [TIAN, CATLIN, ZELDITCH’98,. . . ]

dimCM = 1: at each z0 ∈M , the rescaled zero process Z̃s,z0
N→∞→ Z̃G.

In the present work, the GAF mimicks an effective spectral determinant.



How to study Zδh? Use an effective Hamiltonian

Heuristics: the spectrum of P δh near z is governed by the action of P δh , resp.
P δ∗h in the

√
h-neighbourhood of ρ±(z) ; involves the quasimodes e±(z).

• Idea: construct a Grushin problem: extend (Ph − z) by "filling" its
approximate kernel and cokernel ; invertible operator

P(z)
def
=

(
Ph − z R−(z)
R+(z) 0

)
: H ⊕ C→ H ⊕ C.

Auxiliary operators R+(z)u = 〈e+(z), u〉, R−(z)u− = u−e−(z).

Call P(z)−1 =

(
E(z) E+(z)
E−(z) E−+(z)

)
.

• Schur’s complement formula =⇒ z ∈ Spec(Ph)⇐⇒ E−+(z) = 0.
E−+(z) is an effective Hamiltonian for Ph.
• e±(z) are h∞-quasimodes =⇒ E−+(z) = O(h∞), ∀z ∈ Ω.

• use same Grushin extension for P δh ; randomly perturbed eff. Hamil.

Eδ−+(z) = E−+(z) + δF (z) + O(δ2h−1/2), with F (z) = −〈Qe+(z), e−(z)〉.

⊕ w.h.proba., Q couples e+(z) to e−(z), so that F (z) � 1.

=⇒ Eδ−+(z) ≈ δ F (z) a Gaussian random function of z.



Computing the covariance of F (z)

+

e(z)
−

10

ξ

x

+
e(w)

e(w)
−

e(z)

Q

F (z) = −〈Qe+(z), e−(z)〉 can couple e+

to e−, because the phase space spanned
by Q contains ρ+, ρ−.

We need to study the zeros of the function
〈Qe+(z), e−(z)〉+ small ; compute its
covariance:

E〈Qe+(z), e−(z)〉〈Qe+(w), e−(w)〉 = 〈e+(z), e+(w)〉〈e−(w), e−(z)〉+ O(h∞)

The quasimode e+(z) is microlocalized in a
√
h-nbhd of ρ+(z).

For |z − w| > h1/2−ε, 〈e+(z), e+(w)〉 = O(h∞). If z, w = z0 + O(
√
h),

〈e+(z0 +
√
hu), e+(z0 +

√
hv)〉 = exp

(
σ+uv̄ + φ+(u) + φ+(v) + O(

√
h)
)
,

Similar for 〈e−(•), e−(•)〉 =⇒ up to a change of gauge, we get e(σ++σ−)uv̄.
One shows that σ+ + σ− = D(z0)/2, so rescaling u, v by `z0 we obtain the
covariance eπuv̄ = C(u, v̄) in the limit h→ 0.

�



1D operators with J quasimodes
Let us now assume that for any z ∈ Ω, the "energy shell"
p−1(z) = {ρ1

+(z), . . . , ρJ+(z), ρ1
−(z), . . . , ρJ−(z)}. Ex: p(x, ξ) = ξ + e2iJπx.

(Ph − z) and (Ph − z)∗ have J quasimodes ej±(z) microlocalized on ρj±(z).
The effective Hamiltonian Eδ−+(z) is now a J × J matrix, and
z ∈ Spec(P δh)⇐⇒ detEδ−+(z) = 0.

e(z)
2

e(z)
−
1

e(z)
+

1

e(z)
−
2

0

ξ

1

+

x

We get Eδ(z)ij = −δ〈Qei+(z), ej−(z)〉+ small

W.h.p., Eδ−+(z) is dominated by the J × J matrix
F (z) of entries Fij(z) = 〈Qei+(z), ej−(z)〉.
• each Fij(z) is a GAF with rescaled (and
re-gauged) covariance exp((σ+i + σ−j)uv̄).
• the Fij(z) are independent of e.o. when h→ 0.

Theorem (N-VOGEL’16)
After rescaling by h1/2 near z0, Z̃δh,z0 converges to the zero process of the
random holomorphic function GJ(u) = det

(
Gij(u)

)
, where (Gij(u)) is a

matrix of J × J independent GAFs with variances e(σ+i+σ−j)uv̄.

Qu: can we compute the k-correlations of the zeros of GJ(u)?



Operators with J quasimodes
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Blue circles: numerics for the rescaled 2-point function for operators
PJ = −h2∂2

x + e2iπJ/2x, J = 2, 6, 10. In the spectral region we consider,
(PJ − z) admits J quasimodes.
Red: for comparison, the function K̃2(u, v) as a function of |u− v|.

Conjecture
For any J ≥ 1, the zeros of GJ(u) repel each other quadratically.

(weak form of universality).



Operators with J quasimodes – multiplicative perturbation
Replace the perturbation δQ by the multiplicative perturbation δV (x), with
V (x) =

∑
|k|≤C/h αkϕk(x).

The effective Hamiltonian is the J × J matrix with entries
Eδ−+(z)ij = −δ〈V ei+(z), ej−(z)〉+ small.

−
2

+
e(z)
2

e(z)
+

1

e(z)
−
1

0 1

x

e(z)

ξ

The coupling of V is local:
〈V e+(z), e−(z)〉 =

∫
V e+e− dx. Hence V can couple

e+(z) with e−(z) only provided x+ = x−.
=⇒ consider symmetric symbols p(x,−ξ) = p(x, ξ):
then each ρi+ = (xi+, ξ

i
+) is associated with

ρi− = (xi+,−ξi+).

Quasimodes are related by ei−(z) = ei+(z).

The Gaussian function Fii(z) =
∫
V ei+(z)2 dx has

covariance E[Fii(z)Fii(w)] = 〈ei+(z)2, ei+(w)2〉.
After h1/2-rescaling, this covariance ≈ e2σiuv̄.

The matrix Fij(z) is then approximately diagonal, so that
detEδ−+(z) = (−δ)J

∏J
j=1 Fii(z) + small.

Theorem (N-VOGEL’16)
Around z0, the h1/2-rescaled spectrum of P δh converges to the superposition
of J independent GAF processes, with respective variances e2σiuv̄.



Operators with J quasimodes –multiplicative perturbation
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Blue circles: numerics of the rescaled 2-point correlation function for
operators PJ = −h2∂2

x + e2iπJ/2x, J = 2, 4, 6, and perturbation δV .

Observe the absence of quadratic repulsion at the origin, due to the presence
of J independent processes, allowing clusters of ≤ J eigenvalues.

TO DO: Compute explicitly the k-point densities by superposing the J
independent processes.



Conclusion

Small perturbations of nonselfadjoint 1D (pseudo)differential operators lead
to interesting spectral phenomena

ubiquity of Weyl’s law

ubiquity of the Gaussian Analytic Function, and partial universality

if the law of the perturbation parameters αij is not Gaussian but
sufficiently regular, we expect the same result (CLT)

spectral correlations are sensitive to the structure (cardinal) of p−1(z),
symmetry ξ → −ξ of the symbol, and type of random perturbation
=⇒ probabilistic spectral information on p(x, ξ).

can we compute the k-point functions for the zeros of det(Gij(u))?

nonselfadjoint operators in dimension n > 1: energy shell is a
codimension 2 submanifold =⇒ quasimodes form a subspace of
dimension ∼ h−n+1 =⇒ Eδ−+(z) is a large random matrix. What can be
said about spectral correlations?


