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Determinantal point process

Definition
A determinantal point process A is a random point process
such that the joint intensities have the form:

ρn(x1, . . . , xn) = det(K (xi , xj)i,j≤n).

Recall that the joint intensities ρk satisfy:

E
∑

x1,...,xk∈A

f (x1, . . . , xk ) =

∫
f (xi , . . . , xk )ρk (xi , . . . , xk )

for any f symmetric bounded and of compact support.
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General facts

If the point process has n points almost surely then the kernel
K defines an integral operator: the orthogonal projection onto a
subspace of L2 of dimension n.

In general

Theorem (Macchi, Soshnikov)

An hermitic kernel K (x , y) corresponds to a determinantal point
process if and only if the integral operator T : L2 → L2 has all
eigenvalues λ ∈ [0,1].

Moreover:

Theorem (Shirai, Takahashi)
In a determinantal process, the number of points that fall in a
compact set D has the same distribution as a sum of
independent Bernoulli(λD

i )) random variables where λD
i are the

eigenvalues of the operator T restricted to D.
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Spherical ensembles

Krishnapur considered the following point process: Let A,B be
n by n random matrices with i.i.d. Gaussian entries. Then he
proved that the generalized eigenvalues associated to the pair
(A,B), i.e. the eigenvalues of A−1B have joint probability
density (wrt Lebesgue measure):

Cn

n∏
k=1

1
(1 + |zk |2)n+1

∏
i<j

|zi − zj |2.

If we consider the stereographic projection to the sphere S2,
then the joint density (with respect to the product area measure
in the sphere) is

Kn
∏
i<j

‖Pi − Pj‖2R3 .
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The space of functions

Let Pn be the space functions defined as

q(z) =
p(z)

(1 + |z|2)(n−1)/2 ,

where p is a polynomial of degree less than n. Clearly
Pn ⊂ L2(µ), where dµ(z) = 1/(1 + |z|2)2. It is a reproducing
kernel Hilbert space. Its reproducing kernel is

Kn(z,w) =
(1 + zw̄)n−1

(1 + |z|2)(n−1)/2(1 + |w |2)(n−1)/2

.



A determinantal form

We have that the matrix q1(z1) ··· qn(z1)

...
. . .

...
q1(zn) ··· qn(zn)

( q1(z1) ··· q1(zn)

...
. . .

...
qn(z1) ··· qn(zn)

)
=

( Kn(z1,z1) ··· Kn(z1,zn)

...
. . .

...
Kn(zn,z1) ··· Kn(zn,zn)

)

Thus∣∣∣∣∣∣∣
Kn(z1, z1) · · · Kn(z1, zn)

...
...

Kn(zn, z1) · · · Kn(zn, zn)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
q1(z1) · · · q1(zn)

...
...

qn(z1) · · · qn(zn)

∣∣∣∣∣∣∣
2

Therefore the spherical ensemble generates a determinantal
point process.
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A more general setting

Let (X , ω) be a n-dimensional compact complex manifold
endowed with a smooth Hermitian metric ω. Let (L, φ) be a
holomorphic line bundle with a positive Hermitian metric φ. We
choose a basis of the global holomorphic sections s1, . . . , sN of
H0(X ,L)
We fix a probability measure on X , given by the normalized
volume form ωn, that we denote by σ.

Definition
Let β > 0. A β-ensemble is an N point random process on X
which has joint distribution given by

1
ZN
|det si(xj)|βφ dσ(x1)⊗ · · · ⊗ dσ(xN),



Weak convergence of empirical measure

Given a realization z1, . . . , zNk of the random point process we
denote by µk = 1

Nk

∑
i δzi to the empirical measure. We take a

sequence µk , k = 1,2, . . . of independent point process of the
β-ensemble associated to H0(X ,Lk ).

Theorem

With probability one µn
∗
⇀ σ. More precisely the

Kantorovich-Wasserstein distance KW1(µk , σ) . log k√
k

with
probability one.
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The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the KW1 distance
between two probability measures µ and ν supported in K as

KW1(µ, ν) = inf
ρ

∫∫
K×K

d(x , y)dρ(x , y),

where ρ is an admissible probability measure, i.e. the marginals
of ρ are µ and ν respectively.

Alternatively:

KW1(µ, ν) = inf
ρ

∫∫
K×K

d(x , y)d |ρ|(x , y),

where ρ is an admissible complex measure, i.e. the marginals
of ρ are µ and ν respectively
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The Lagrange functions

Given any sequence of points (z1, . . . , zNk ) we define the
Lagrange functions:

`j(x) =

∣∣∣∣∣∣
s1(x1) ··· s1(x) ··· s1(xNk

)

...
...

...
sNk

(x1) ··· sNk
(x) ··· sNk

(xNk
)

∣∣∣∣∣∣∣∣∣∣∣∣
s1(x1) ··· s1(xj ) ··· s1(xNk

)

...
...

...
sNk

(x1) ··· sNk
(xj ) ··· sNk

(xNk
)

∣∣∣∣∣∣
Clearly `j ∈ H0(X ,Lk ) and `j(xi) = 0 if i 6= j and |`j(xj)| = 1.



Lagrange functions and the density function

If we denote by ρk (x1, . . . , xNk ) = 1
ZNk
|det si(xj)|βφ then

|`j(x)|βφ =
ρk (x1, . . . , x , . . . , xNk )

ρk (x1, . . . , xj , . . . , xNk )
,

and thus E(‖`j‖β) ≤ 1



The transport plan

Consider the transport plan

p(z,w) =
1
n

n∑
j=1

δzj (w)Kn(z, zj)`j(z) dµ(z).

It has the right marginals 1
n
∑
δzj and µ respectively and thus

KW1(µn, µ) ≤
∫∫
|z−w |d |p| ≤ 1

n

n∑
j=1

∫
d(z, zj)|`j(z)||Kn(z, zj)|dµ(z).



Estimating the K-W distance

(EW )β ≤∫
X Nk

1
Nk

Nk∑
j=1

(∫
X

d(x , xj)|`j(x)||Kk (x , xj)|dσ(x)

)β
ρk (x1, . . . , xNk )dσ(xi)

≤
∫

X Nk

1
Nk

Nk∑
j=1

(∫
X

d(x , xj)|Kk (x , xj)|dσ(x)

)β/β′
×

×
(∫

X
|`j(x)|β|Kk (x , xj)|d(x , xj)dσ(x)

)
ρk (x1, . . . , xNk )dσ(xi).



Off diagonal decay of the reproducing kernel

sup
y∈X

∫
X

d(x , y)|Kk (x , y)|dσ(x) ≤ C√
k
.

Then, we obtain:

(EW )β ≤(
C√
k

)β/β′∫
X Nk

1
Nk

Nk∑
j=1

∫
X
|`j(x)|β|Kk (x , xj)|d(x , xj)ρk (x1, ., xj , ., xNk )dσ(x)dσ(xi)

=

(
C√
k

)β/β′∫
X Nk

1
Nk

Nk∑
j=1

∫
X
|Kk (x , xj)|d(x , xj)ρk (x1, ., x , ., xNk )dσ(x)dσ(xi).



The final estimate

Finally, integrating first in xj and applying again the offdiagonal
estimate we obtain

(EW )β ≤
( C√

k

)β/β′( C√
k

)
= O

( 1√
k

)β
,

The offdiagonal estimate for the kernel follows from the
pointwise estimate for the Bergman kernel

|Kk (x , y)| ≤ CNke−C
√

k d(x ,y),

which holds when the line bundle is positive,



A concentration of measure

We want to study now the empirical measure. For
determinantal process we have:

Theorem (Pemantle-Peres)
Let Z be a determinantal point process of n points. Let f be a
Lipschitz-1 functional on finite counting measures (with respect
to the total variation distance). Then

P(f − Ef ≥ a) ≤ 3 exp
(
− a2

16(a + 2n)

)

The functional f (σ) = nKW1( 1
nσ, µ) is Lipshchitz-1.
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Almost sure convergence

To finish take a = 10
√

n log(n), then

P
(

KW1(µn, µ) >
11
√

log(n)√
n

)
≤

3 exp

(
− 100n log(n)

16(10
√

n log(n) + 2n)

)
.

1
n2 .

Now a standard application of the Borel-Cantelli lemma shows
that with probability one

KW1(µn, µ) ≤
10
√

log n√
n

.
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The torus

Let Λ = AZd be a lattice in Rd . Let Ω ⊂ Rd be the fundamental
domain. One can identify Ω with the flat torus Rd/Λ.

The dual lattice

Λ∗ = {x ∈ Rd : ∀λ ∈ Λ 〈x , λ〉 ∈ Z},

is given by the matrix (At )−1.
We denote by |Λ| = |det A|, the co-volume of Λ and dµ is the
normalized measure in Ω
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The periodic potential

For s > d , the Epstein Hurwitz zeta function for the lattice Λ
defined by

ζΛ(s; x) =
∑
v∈Λ

1
|x + v |s

, x ∈ Rd ,

is the Λ-periodic potential generated by the Riesz s-energy
|x |−s.

Fs,Λ(x) = ζΛ(s; x) +
2πd/2|Λ|−1

Γ
( s

2

)
(d − s)

, s > d ,

∑
v∈Λ

∫ +∞

1
e−|x+v |2t t

s
2−1

Γ
( s

2

)dt+
1
|Λ|

∑
w∈Λ∗\{0}

e2πi〈x ,w〉
∫ 1

0

πd/2

td/2 e−
π2|w|2

t
t

s
2−1

Γ
( s

2

)dt
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The energy in the torus

For ω ∈ ΩN define, for 0 < s < d , the periodic Riesz s-energy
of ω = (x1, . . . , xN) by

Es,Λ(ω) =
∑
k 6=j

Fs,Λ(xk − xj),

and the minimal periodic Riesz s-energy by

Es,Λ(N) = inf
ω∈(Rd )N

Es,Λ(ωN).

This was considered by Hardin, Saff and Simanek who
computed the leading terms.



Known results in the torus

Hardin, Saff, Simanek and Su proved that for 0 < s < d there
exists a constant Cs,d independent of Λ such that for N →∞

Es,Λ(N) =
2πd/2|Λ|−1

Γ
( s

2

)
(d − s)

N2 + Cs,d |Λ|−s/dN1+ s
d + o(N1+ s

d ).

It is also shown that for 0 < s < d

Cs,d ≤ inf
Λ
ζΛ(s),

where Λ runs on the lattices with |Λ| = 1.

The Epstein zeta
function ζΛ(s) defined by

ζΛ(s) =
∑

v∈Λ\{0}

1
|v |s

, s > d ,

can be extended analytically to C \ {d}.
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Some estimates

Sarnak and Strömbergsson observed that∫
ζΛ(s)dλd (Λ) = 0,

thus Cs,d < 0.

But all explicitly known lattices in large dimensions are such
that the corresponding Epstein zeta function have a zero in
0 < s < d .
The value of Cs,d it is known only for d = 1 and
Cs,1 = ζZ(s) = 2ζ(s). For d = 2 it is known that infΛ ζΛ(s) is
attained for the triangular lattice.
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Determinantal processes and projection kernels

To define the processes we will consider only projection
kernels.

Definition
We say that K is a projection kernel if it is a Hermitian
projection kernel, i.e. the integral operator in L2(µ) with kernel
K is selfadjoint and has eigenvalues 1 and 0.

A projection kernel K (x , y) defines a determinantal process
with N points a.s. if the trace for the corresponding integral
operator equals N, i.e. if∫

Ω
K (x , x)dµ(x) = N.



Translation invariant kernels

For w ∈ Λ∗, the Laplace-Beltrami eigenfunctions
fw (u) = e2πi〈u,w〉 of eigenvalue −4π2〈w ,w〉 i.e. satisfying

∆fw + 4π2〈w ,w〉fw = 0,

are ortonormal in L2(Ω), with respect to the normalized
lebesgue measure µ,∫

Ω
fw (u)fw ′(u)dµ(u) = δw ,w ′

for w ,w ′ ∈ Λ∗.

We consider functions κ = (κN)N≥0 where each
κN : Λ∗ −→ {0,1} has compact support define the kernels

KN(u, v) =
∑

w∈Λ∗

κN(w)e2πi〈u−v ,w〉,
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Expected Energies

The expected periodic Riesz s-energy of TN points is

E(Es,Λ(x)) =

∫
Ω2

(T 2
N − |KN(u, v)|2)Fs,Λ(u − v)dµ(u)dµ(v).

Theorem

Let x = (x1, . . . , xTN ) be drawn from the determinantal process
Then, for 0 < s < d, the expected energy is

2πd/2

Γ
( s

2

)
(d − s)|Λ|−1 (TN

2−TN)−
πs− d

2 Γ
(

d−s
2

)
Γ
( s

2

)
|Λ|

∑
w ,w ′∈Λ∗

w 6=w ′

κN(w)κN(w ′)
|w − w ′|d−s .
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Frequencies in an open set

Definition

Let D ⊂ Rd be open, bounded with |∂D| = 0. Take

kN(w) =

{
1 if w ∈ Λ∗ ∩ N1/dD,
0 otherwise.

Proposition

Let |Λ||D| = 1. Then Ex∈(Rd )N∗ (Es,Λ(x)) is

2πd/2|Λ|−1

Γ
( s

2

)
(d − s)

N∗2 −
πs− d

2 Γ
(

d−s
2

)
Γ
( s

2

)
|Λ|

IDµ∗N
1+s/d
∗ + o(N1+s/d

∗ ),

IDµ∗ =

∫
D×D

1
|x − y |d−s dµ∗(x)dµ∗(y),

Ω∗ is a fundamental domain for Λ∗ and µ∗(Ω∗) = 1.



Frequencies in an open set

Definition

Let D ⊂ Rd be open, bounded with |∂D| = 0. Take

kN(w) =

{
1 if w ∈ Λ∗ ∩ N1/dD,
0 otherwise.

Proposition

Let |Λ||D| = 1. Then Ex∈(Rd )N∗ (Es,Λ(x)) is
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Final optimization

A natural question is now, given a fixed lattice Λ, to find the
optimal D ⊂ Rd .

Theorem (Riesz inequality)

Given f ,g,H nonnegative functions in Rd with h(x) = H(|x |)
symmetrically decreasing. Then∫
Rd

∫
Rd

f (x)g(y)H(|x−y |)dxdy ≤
∫
Rd

∫
Rd

f̃ (x)g̃(y)H(|x−y |)dxdy ,

where f̃ , g̃ are the symmetric decreasing rearrangements of f
and g.



Upper bounds for the minimal Energy

Proposition
If we take

D = Bd (0, rd ), with rd =

(
d

ωd−1|det A|

)1/d

.

Then
πs− d

2 Γ
(

d−s
2

)
Γ
( s

2

)
|Λ|1−

s
d

IDµ∗ =

Γ
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)
Γ (d + 1) Γ

(s+1
2

)
2d+1Γ

(
d
2 + 1

)
Γ
( s

2 + 1
)

Γ
(

d+s
2 + 1

)
Γ
(

d+1
2

) .



d = 1

In the one-dimensional case Cs,1 = 2ζ(s) and our bound is

−
πs−1/2Γ

(1−s
2

)
Γ
( s

2

) 2
s(s + 1)

.
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Riesz Potentials in the sphere

Given a Riesz potential:

Kα(x , y) =

{
|x − y |−α if α > 0
log |x − y |−1 if α = 0,

and given n points Pn at the sphere, we want to minimize the
energy

Eα =
∑

x ,y∈Pn, x 6=y

Kα(x , y),

among all collections of points Pn ⊂ Sd . When α = d − 2 we
have the Newtonian potential that corresponds to the Thomson
problem. When α→∞, we recover Tammes problem.



“Well distributed” points on the sphere

Sd = {x = (x1, . . . , xd+1) ∈ Rd+1 : x2
1 + · · ·+ x2

d+1 = 1}

: 529 random uniform independent points



“Well distributed” points on the sphere

: R. Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/ 529 Fekete points



It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff,
Brauchart) for d ≥ 2 and 0 < s < d there exist constants
C, c > 0 such that

−cn1+s/d ≤ E(s,n)− Vs(Sd )n2 ≤ −Cn1+s/d ,

for n ≥ 2.

Conjecture (BHS) : there is a constant As,d such that

E(s,n) = Vs(Sd )n2 +
As,d

ω
s/d
d

n1+s/d + o(n1+s/d ).

Furthermore, when d = 2,4,8,24

As,d = |Λd |s/dζΛd (s), (1)

where |Λd | stands for the co-volume and ζΛd (s) for the Epstein
zeta function of the lattice Λd . Here Λd denotes the hexagonal
lattice for d = 2, the root lattices D4 for d = 4 and E8 for d = 8
and the Leech lattice for d = 24.
Recall that in the logarithmic case the constant exist.
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The harmonic ensemble in Sd

Let ΠL of spherical harmonics of degree at most L in Sd .

By Christoffel-Darboux formula the reproducing kernel of ΠL

KL(x , y) =
πL(L+ d

2
L

)P(1+λ,λ)
L (〈x , y〉), x , y ∈ Sd ,

where λ = d−2
2 and the Jacobi polynomials are

P(1+λ,λ)
L (1) =

(L+ d
2

L

)
.

By definition

P(x) = 〈P,KL(·, x)〉 =

∫
Sd

KL(x , y)P(y)dµ(y), for P ∈ ΠL.

ΠL is the space of polynomials in Rd+1 restricted to Sd ,

dim ΠL = πL =
2

Γ(d + 1)
Ld + o(Ld ),

and KL(x , x) = πL for every x ∈ Sd .



The harmonic ensemble in Sd

The harmonic ensemble is the determinantal point process in
Sd with πL points a.s. induced by the kernel

KL(x , y) =
πL(L+ d

2
L

)P(1+λ,λ)
L (〈x , y〉)

.

We study different aspects of this process:
Expected Riesz energies
Linear statistics and spherical cap discrepancy
Separation distance
Energy optimality among isotropic processes
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Let x = (x1, . . . , xn) where n = πL be drawn from the harmonic
ensemble. Then, for 0 < s < d ,

Ex∈(Sd )n (Es(x)) = Vs(Sd )n2 − Cs,dn1+s/d + o(n1+s/d ),

for some explicit constant Cs,d > 0.

The general case (and the limiting cases) are more difficult: we
improve the constants or match the order (s=d).

For d = 2 the BHS conjecture is

E(s,n) = Vs(S2)n2 +
(
√

3/2)s/2ζΛ2(s)

(4π)s/2 n1+s/2 + o(n1+s/2),

where ζΛ2(s) is the zeta function of the hexagonal lattice
(Dirichlet L-series).
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(4π)s/2 in black, 2−sΓ(1− s
2 ) (spherical) in red,

the constant Cs,2 (harmonic) in green and 1/(2
√

2π)s in blue.



Optimality

Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

d(x , y) = d(z, t) =⇒ K (x , y) = K (z, t), x , y , z, t ∈ Sd ,

and then K (〈x , y〉) for some K : [−1,1] 7→ C.
We need that for any x1, . . . , xk ∈ Sd the matrix

(K (〈xi , xj〉))1≤i,j≤k ,

is nonnegative definite.
If we want n points a.s. in Sd then all the eigenvalues must
be 1 (projection kernel).



Optimality

Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

d(x , y) = d(z, t) =⇒ K (x , y) = K (z, t), x , y , z, t ∈ Sd ,

and then K (〈x , y〉) for some K : [−1,1] 7→ C.

We need that for any x1, . . . , xk ∈ Sd the matrix

(K (〈xi , xj〉))1≤i,j≤k ,

is nonnegative definite.
If we want n points a.s. in Sd then all the eigenvalues must
be 1 (projection kernel).



Optimality

Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

d(x , y) = d(z, t) =⇒ K (x , y) = K (z, t), x , y , z, t ∈ Sd ,

and then K (〈x , y〉) for some K : [−1,1] 7→ C.
We need that for any x1, . . . , xk ∈ Sd the matrix

(K (〈xi , xj〉))1≤i,j≤k ,

is nonnegative definite.

If we want n points a.s. in Sd then all the eigenvalues must
be 1 (projection kernel).



Optimality

Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

d(x , y) = d(z, t) =⇒ K (x , y) = K (z, t), x , y , z, t ∈ Sd ,

and then K (〈x , y〉) for some K : [−1,1] 7→ C.
We need that for any x1, . . . , xk ∈ Sd the matrix

(K (〈xi , xj〉))1≤i,j≤k ,

is nonnegative definite.
If we want n points a.s. in Sd then all the eigenvalues must
be 1 (projection kernel).



Schoenberg theorem

We must have

K (x , y) = K (〈x , y〉), K (t) =
∞∑

k=0

akCd/2−1/2
k (t),

where Cd/2−1/2
k is a Gegenbauer polynomial and the

ak ∈
[
0, 2k+d−1

d−1

]
satisfy:

trace(K ) = K (1) =
∞∑

k=0

ak

(
d + k − 2

k

)
<∞.

To have a projection kernel with with n points we take

ak ∈
{

0,
2k + d − 1

d − 1

}
with

∞∑
k=0

ak

(
d + k − 2

k

)
= n. (∗)
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Theorem
Let Ka and Kb be two kernels with coefficients a = (a0,a1, . . .)
and b = (b0,b1, . . .) satisfying conditions (∗). Let Ea and Eb
denote respectively the expected value of

E2(x) =
∑
i 6=j

1
‖xi − xj‖2

,

when x = (x1, . . . , xn) is given by the determinantal point
process associated to Ka and Kb. Assume that for every i , j ∈ N
we have:

if i < j ,ai = 0 and aj > 0 then bi = 0. (2)

Then, Ea ≤ Eb, with strict inequality unless a = b. In particular,
the harmonic kernel is optimal since (2) is trivially satisfied in
that case.



Discrepancy

There are other ways of quantifying the “equidistribution” of the
point process: A measure of the uniformity of the distribution of
a set x = {x1, . . . , xn} ⊂ Sd of n points is the spherical cap
discrepancy. We denote as d(x , y) = arccos〈x , y〉 the geodesic
distance in Sd . A spherical cap is a ball with respect to the
geodesic distance.
The spherical cap discrepancy of the set x is

D(x) = sup
A

∣∣∣1
n

n∑
i=1

χA(xi)− µ(A)
∣∣∣,

where A runs on the spherical caps of Sd .
Lubotzky, Philips and Sarnak found (a deterministic)
construction with discrepancy smaller than (log n)2/3

n1/3 .
This was improved by T. Wolff to c

n1/3 and by Beck to

n−
1
2 (1+ 1

d ) log n



Theorem

Let A = AL be a spherical cap of radius θL ∈ [0, π) with

lim
L→∞

θL ∈ [0, π),

and LθL →∞ when L→∞. Let φ = χA. Then

Var(X (φ)) . Ld−1 log L + O(Ld−1),

where the constant is limL→∞ θL
d−1 4

2dπΓ( d
2 )

2 .

Corollary
For every M > 0 the spherical cap discrepancy of a set of
n = πL points x = (x1, . . . , xn) drawn from the harmonic
ensemble satisfies

D(x) = O(L−
d+1

2 log L) = O(n−
1
2 (1+ 1

d ) log n)

with probability 1− 1
nM , i.e. with overwhelming probability.


