Toda chain

Vincent PASQUIER

IPhT Saclay

Collaboration with Olivier Babelon, Simon Ruisjenaars

Former contributions

Former contributions:

- Gutzwiller
- Gaudin
- Sklyanin
- Pasquier Gaudin
- Karchev Lebedev
- Shatashvili, Nekrasov
- Kozlowski Techner

Schroedinger in periodic potential

Hamiltonian:

$$
H=p^{2}+2 \cos (2 \pi x)
$$

Schroedinger in periodic potential

Hamiltonian:

$$
H=p^{2}+2 \cos (2 \pi x)
$$

Schroedinger equation:

$$
\omega^{2} \psi(x)=-\psi^{\prime \prime}(x)+2 \cos (2 \pi x)
$$

Schroedinger in periodic potential

Hamiltonian:

$$
H=p^{2}+2 \cos (2 \pi x)
$$

Schroedinger equation:

$$
\omega^{2} \psi(x)=-\psi^{\prime \prime}(x)+2 \cos (2 \pi x)
$$

- electrons moving in a periodic potential.
- Floquet theory $\psi(x)=e^{i \mu x} \sum_{n} a_{n} e^{2 \pi i n x}$.

Hill determinant

Recursion:

$$
a_{n+1}+a_{n-1}+V_{n} a_{n}=0
$$

with:

$$
V_{n}=(n+\mu)^{2}-\omega^{2}
$$

Recursion:

$$
a_{n+1}+a_{n-1}+V_{n} a_{n}=0
$$

with:

$$
V_{n}=(n+\mu)^{2}-\omega^{2}
$$

- Two decaying solutions at infinity need to be matched.
- Wronskian equal to zero is the infinite determinant of a tridiagonal matrix:

$$
W=\left|1 / V_{n}, 1,1 / V_{n}\right|
$$

Recursion:

$$
a_{n+1}+a_{n-1}+V_{n} a_{n}=0
$$

with:

$$
V_{n}=(n+\mu)^{2}-\omega^{2}
$$

- Two decaying solutions at infinity need to be matched.
- Wronskian equal to zero is the infinite determinant of a tridiagonal matrix:

$$
W=\left|1 / V_{n}, 1,1 / V_{n}\right|
$$

Hill determinant-2

Periodicity and asymptotic:

$$
W(\mu)=\frac{\sin (\mu-\delta) \sin (\mu+\delta)}{\sin (\mu-\omega) \sin (\mu+\omega)}
$$

Determines the spectrum as the zeros of W :

$$
\mu=\delta(\omega)
$$

Hofstadter

Hamiltonian:

$$
H=X+X^{\dagger}+Y+Y^{\dagger}
$$

Hofstadter

Hamiltonian:

$$
\begin{gathered}
H=X+X^{\dagger}+Y+Y^{\dagger} \\
X=e^{i \alpha n+\theta}, Y f(n)=f(n+1)
\end{gathered}
$$

Hofstadter

Hamiltonian:

$$
\begin{gathered}
H=X+X^{\dagger}+Y+Y^{\dagger} \\
X=e^{i \alpha n+\theta}, Y f(n)=f(n+1)
\end{gathered}
$$

Schroedinger equation:

$$
E \psi_{n}=\psi_{n+1}+\psi_{n-1}+2 \cos (\alpha n+\theta) \psi_{n}
$$

Hamiltonian:

$$
\begin{gathered}
H=X+X^{\dagger}+Y+Y^{\dagger} \\
X=e^{i \alpha n+\theta}, Y f(n)=f(n+1)
\end{gathered}
$$

Schroedinger equation:

$$
E \psi_{n}=\psi_{n+1}+\psi_{n-1}+2 \cos (\alpha n+\theta) \psi_{n}
$$

- Lattice electrons moving in a periodic potential α times the lattice period.
- 2D lattice electrons in a strong magnetic field with α fluxes per unit cell.

How to obtain spectrum:

Construct recursion relation for ψ :

$$
\begin{gathered}
\binom{\psi_{n+1}}{\psi_{n}}=\left(\begin{array}{cc}
E-V_{k} & -1 \\
1 & 0
\end{array}\right)\binom{\psi_{n}}{\psi_{n-1}} \\
V_{k}=2 \cos (2 \pi \alpha k)
\end{gathered}
$$

How to obtain spectrum:

Construct recursion relation for ψ :

$$
\begin{gathered}
\binom{\psi_{n+1}}{\psi_{n}}=\left(\begin{array}{cc}
E-V_{k} & -1 \\
1 & 0
\end{array}\right)\binom{\psi_{n}}{\psi_{n-1}} \\
V_{k}=2 \cos (2 \pi \alpha k)
\end{gathered}
$$

Spectrum for $\left|\psi_{n}\right|$ bounded when $\mid n \pm \infty$.
if $\alpha=p / q$,

$$
\operatorname{tr}\left(M^{q}\right)=g(E) \pm 2 \cos (q \theta)
$$

$|g(E)|$ is a polynomial of degree q.
Typically q bands. Fractal spectrum.

Hofstadter

- Dynamics

$$
H=\sum_{i=1}^{N} p_{i}^{2}+e^{q_{i}-q_{i+1}}
$$

- Dynamics

$$
H=\sum_{i=1}^{N} p_{i}^{2}+e^{q_{i}-q_{i+1}}
$$

Two particles in the center of mass frame:

$$
-\frac{d^{2} \psi}{d q^{2}}+4 \cosh (q) \psi=E \psi
$$

- Hyperbolique Mathieu equation
- Model is integrable in addition to the Hamiltonian N conserved quantities can be encoded in a transfer matrix $T(u)$
- The complete solution holds in a single Mathieu equation:

$$
T(u) q(u)=i^{N} q(u+i \hbar)+i^{-N} q(u-i \hbar)
$$

- Model is integrable in addition to the Hamiltonian N conserved quantities can be encoded in a transfer matrix $T(u)$
- The complete solution holds in a single Mathieu equation:

$$
T(u) q(u)=i^{N} q(u+i \hbar)+i^{-N} q(u-i \hbar)
$$

- $q(u)$ is an entire function vanishing as $e^{-N \pi|u| / 2}$ in the real axis.

Hill determinant

- Model is integrable in addition to the Hamiltonian N conserved quantities can be encoded in a transfer matrix $T(u)$
- The complete solution holds in a single Mathieu equation:

$$
T(u) q(u)=i^{N} q(u+i \hbar)+i^{-N} q(u-i \hbar)
$$

- $q(u)$ is an entire function vanishing as $e^{-N \pi|u| / 2}$ in the real axis.
- Two solutions Q^{+}, Q^{-}with the incorrect asymptotic behavior can be constructed by solving the recursion.
- We can recover the correct asymptotic by dividing them with a product of $\sinh \left(u-u_{k}\right)$:

Bethe equations

$$
\frac{Q_{+}(u)-\zeta Q_{-}(u)}{\prod_{k=1}^{N} \sinh \left(u-u_{k}\right)}
$$

- Analyticity? how to eliminate the poles?
- Require the numerator to vanish, Wronskian:

$$
W=|1 / T(u+i n), 1,1 / T(u+i n)|
$$

Bethe equations

$$
\frac{Q_{+}(u)-\zeta Q_{-}(u)}{\prod_{k=1}^{N} \sinh \left(u-u_{k}\right)}
$$

- Analyticity? how to eliminate the poles?
- Require the numerator to vanish, Wronskian:

$$
\begin{gathered}
W=|1 / T(u+i n), 1,1 / T(u+i n)| \\
W=\frac{\prod_{k=1}^{N} \sinh \left(u-\delta_{k}\right)}{\prod_{k=1}^{N} \sinh \left(u-u_{k}\right)}
\end{gathered}
$$

Bethe equations

$$
\frac{Q_{+}(u)-\zeta Q_{-}(u)}{\prod_{k=1}^{N} \sinh \left(u-u_{k}\right)}
$$

- Analyticity? how to eliminate the poles?
- Require the numerator to vanish, Wronskian:

$$
\begin{gathered}
W=|1 / T(u+i n), 1,1 / T(u+i n)| \\
W=\frac{\prod_{k=1}^{N} \sinh \left(u-\delta_{k}\right)}{\prod_{k=1}^{N=1} \sinh \left(u-u_{k}\right)}
\end{gathered}
$$

- Quantization conditions:

$$
\zeta=\frac{Q_{+}\left(\delta_{k}\right)}{Q_{-}\left(\delta_{k}\right)}
$$

Does not depend on k.

deformed Toda Lattice

- Is there some analogous of lattice Schroedinger for Toda?
- Ruisjenaars Hamiltonian:

$$
H=\sum_{1}^{N} Y_{k}\left(1-X_{k-1} / X_{k}\right)
$$

deformed Toda Lattice

- Is there some analogous of lattice Schroedinger for Toda?
- Ruisjenaars Hamiltonian:

$$
H=\sum_{1}^{N} Y_{k}\left(1-X_{k-1} / X_{k}\right)
$$

$$
X=e^{x}, \quad Y f(x)=f(x+i \alpha)
$$

- α is the analogous of the flux per unit cell.
- i has migrated from X to Y :
$X^{\dagger}=X, Y^{\dagger}=Y$.
- Can easily be truncated on Harmonic oscillator basis.
- Model is integrable in addition to the Hamiltonian N conserved quantities can be encoded in a transfer matrix $T(u)$
- The complete solution holds in a single Mathieu equation:

$$
T(u) q(u)=i^{N} q(u+i \alpha)+i^{-N} q(u-i \alpha)
$$

- Model is integrable in addition to the Hamiltonian N conserved quantities can be encoded in a transfer matrix $T(u)$
- The complete solution holds in a single Mathieu equation:

$$
T(u) q(u)=i^{N} q(u+i \alpha)+i^{-N} q(u-i \alpha)
$$

- $T(u)$ is now a trigonometric polynomial: $T=\prod \sinh \left(u-u_{k}\right)$
- $q(u)$ is an entire function.
- Two solutions Q^{+}, Q^{-}with the incorrect asymptotic behavior cannot be constructed by solving the recursion.

$$
W=|1 / T(u+i \alpha n), 1,1 / T(u+i \alpha n)|
$$

$$
W=|1 / T(u+i \alpha n), 1,1 / T(u+i \alpha n)|
$$

- $T(u)$ is now a trigonometric polynomial, so, the situation is similar to Hofstadter, in particular periodicity for α rational.

$$
W=|1 / T(u+i \alpha n), 1,1 / T(u+i \alpha n)|
$$

- $T(u)$ is now a trigonometric polynomial, so, the situation is similar to Hofstadter, in particular periodicity for α rational.
- Natural guess for the Hill determinant:

$$
W=\frac{\prod_{k=1}^{N} \theta_{1}\left(u-\delta_{k}\right)}{\prod_{k=1}^{N} \theta_{1}\left(u-u_{k}\right)}
$$

- Period τ should be i α Absurd!

Conclusion

- Thank You Semyon for organizing such a nice conference!

