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Plan of the talk

e explain mathematical principles of bulk-boundary correspondence
on a simple one-dimensional model (Su-Schrieffer-Heeger):

Toeplitz extension, bulk and boundary invariants, index theorems

e d-dimensional disordered systems of independent Fermions
(topological insulators from class A and Alll, no real structures)

e bulk and boundary invariants and correspondence:
examples of QHE and surface QHE in 3d chiral system

e generalized Streda formula
e delocalized edge modes with non-trivial topology

e index theorems

Tools: K-theory, index theory and non-commutative geometry
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Start with concrete model in dimension d = 1

Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)
H = %(01+i02)®5+%(01—i02)®5*+m02®1

where S bilateral shift on £2(Z), m € R mass and Pauli matrices.
In their grading

0 S—im
H = on (3(Z) ® C2
S*+im 0 ) (2)
Off-diagonal = chiral symmetry 03Ho3 = —H. In Fourier space:

® 0 ik
H:/ dk Hy Hk:<.k o€ 'm>
e +im 0

Topological invariant for m #£ —1,1

Wind(k — e* 4+ im) = §(m € (-1,1))
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Chiral bound states

Half-space Hamiltonian
i (5* i 5_0,-m> e
where S unilateral right shift on ¢2(N)
Still chiral symmetry a§ﬁa3 =-H
If m =0, simple bound state at £ = 0 with eigenvector ¢y = (|g>).
Perturbations, e.g. in m, cannot move or lift this bound state ¢!

Positive chirality conserved: o3¢, = ¥,

Theorem (Basic bulk-boundary correspondence)

If P projection on bound states of H, then
Wind(k s e 4 im) = Tr(Po3)
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Disordered model

Add i.i.d. random mass term w = (mp)pez:
Ho = H + > mao2@n)(n|
nezZ

Still chiral symmetry o3 H,,03 = —H,, so

A*
H, = 0 ¢
A, 0
Bulk gap at E =0 = A, invertible

Non-commutative winding number, also called first Chern number:

Wind = Chy(A) = i E, Tr (0]A1i[X, A,]|0)

where E,, is average over probability measure IP on i.i.d. masses



Bulk-boundary correspondence in quantum Hall systems and beyond

Index theorem and bulk-boundary correspondence

Theorem (Disordered Noether-Gohberg-Krein Theorem)

If N is Hardy projection on positive half-space, then P-almost surely

For periodic model as above, A, = e’ € C(S!)
Fredholm operator A, is then standard Toeplitz operator

Theorem (Disoreded bulk-boundary correspondence)

If I3w projection on bound states of ﬁw, then

Wind = Chy(A) = Cho(P,) = Tr(P,o3)

Structural robust result:

holds for chiral Hamiltonians with larger fiber, other disorder, etc.
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Structure: Toeplitz extension (no disorder)

S bilateral shift on ¢?(Z), then C*(S) = C(Sh)
S unilateral shift on /2(N), only partial isometry with a defect:
5*5=1 55 =1—0)(0|

-~

Then C*(S) = T Toeplitz algebra with exact sequence:
0—K—T—CSH)—0

K-groups for any C*-algebra A (only rough definition):
Ko(A) = {[P] —[Q] : projections in some M,(A)}
Ki(A) = {[U] : unitary in some M,(A)}

Abelian group operation: Whitney sum

Example: Ko(C) = Z = Ko(K) with invariant dim(P)

Example: Ki(C(S!)) = Z with invariant given by winding number
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6-term exact sequence for Toeplitz extension

C*-algebra short exact sequence = K-theory 6-term sequence

Ko(K) =Z — Ko(T)=12 — Ko(C(SY)) =7
Ind 1 J Exp

Kl(C(Sl)) =7 <+— Kl(T) =0 <— Kl(/C) =0
Here: [A]; € Ki(C(S!)) and [Paslo = [Pi]o — [P_]o € Ko(K)
Ind([Al1) = [P+Jo—[P-lo  (bulk-boundary for K-theory)
Cho(Ind(A)) = Chi(A) (bulk-boundary for invariants)

Disordered case: analogous
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Tight-binding toy models in dimension d

One-particle Hilbert space ¢?(Z9) @ Ct
Fiber Ct = C?t! ® C" with spin s and r internal degrees
eg. C' = Cih ® C2 particle-hole space and sublattice space

Typical Hamiltonian
d

Ho = AP + W, = ) (757 + 6(SP)") + W,
i=1
Magnetic translations SJBSI-B = e"B'UJ'SI-BSJ-B in Laudau gauge:

513 =S 525 _ e’Bl,2X152 533 — 6131,3X1+IB2,3X253

t; matrices L x L, e.g. spin orbit coupling, (anti)particle creation

matrix potential W, = W = > 74 [n)wa(n| with matrices wj,
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Observable algebra

Configurations w = (wp),czs € Q compact probability space (€, P)

PP invariant and ergodic w.r.t. T:Z9 x Q — Q

Covariance w.r.t. to dual magnetic translations V, SB SBV
V,H,V: = Hr, acZ?

IIA|l = sup,, ||Asl| is C*-norm on

Ag = C"{A=(A,)ucq finite range covariant operators}
>~ twisted crossed product C(Q) xg 29

Fact: Suppose €2 contractible
= rotation algebra C*(SJ-B) is deformation retract of Ay

In particular: K-groups of C*(SJ-B) and Ay coincide
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Pimsner-Voiculescu (1980)

K(Ad) = KO(.Ad) S Kl(.Ad) = Z2d_1 b Z2d_1 = ZQd

Explicit generators [G;] of K-groups labelled by I C {1,...,d}
Top generator | = {1,...,d} identified with K;(C(S9)) = Z
Example Gy, 5, Powers-Rieffel projection and Bott projection
In general, any projection P € M,(Ay4) can be decomposed as
Pl= > n[G] n € Z, |l] even
1c{1,....d}
Invariants ny, top invariant ngy 4 € Z called strong , others weak

Questions: calculate n; = ¢; Chy(P), physical significance
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K-group elements of physical interest

Fermi level 1 € R in spectral or mobility gap of H,
P, = x(H, < p) covariant Fermi projection

Hence: P = (P,).cq € Ay fixes element in Ko(Ay) (if gapped)

If chiral symmetry present: Fermi invertible (or unitary)

H, = —J'H,J = 0 A J= 10
AL 0 0 -1

If £ =0in gap, A= (A,)weq € Ay invertible and [A]; € K1(Ay)

Remark Sufficient to have an approximate chiral symmetry

B, A
H, = v with invertible A,
AL Gy
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Definition of topological invariants

For invertible A € Ay and odd |/|, with p: {1,...,[/|} = I

11 /]
Chy(A) = '(”,T”,f (-1 T HA WW,A| € R
PES)

where T (A) = Ep Tr; (0]A,]0) and VA, =i[X}, ALl
For even |/| and projection P € Ay:

1/ |

Chy(P) = (277)'2 S (<7 | PI[V,P] € R

2" pES j=1

Theorem (Connes 1985)
Ch/(A) and Ch;(P) homotopy invariants; pairings with K(Ay)
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Bulk-boundary via Toeplitz extension

edge half-space bulk
0 —» & —» TA) —= Ay — 0

Moreover: &y = Ayg_1 ® K(£?(N)) so Ch; same with extra trace

Ko(Ag-1) —  Ko(T(Aq)) — Ko(Aq)
Ind % } Exp

Ki(Ag) <+  Ki(T(Ag)) <+  Ki(Ag-1)

Chyya(A) = Chy(Tnd(A))  |/] even , [A] € Ki(Aqg)

Chyay(P) = Chy(Exp(P))  |/| odd , [P] € Ko(Ad)
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Physical implication in d = 2: QHE

P Fermi projection below a bulk gap A C R. Kubo formula:

Hall conductance = Chy; 2y(P)
Bulk-boundary:
Chy12)(P) = Chyy(Exp(P)) = Wind(Exp(P))
With continuous g(E) =1 for E < A and g(E) =0 for E > A:
Exp(P) = exp(—2mig(H))

Theorem (Quantization of boundary currents)

Chyi1(P) = E Z (0, nalg’(H)i[X2, H]|0, n2)

n>0
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Chiral system in d = 3: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) = Fermi unitary A

Chy1231(A) = Chy2y(Ind(A))
Magnetic field perpendicular to surface opens gap in surface spec.

With P = .5+ +P_ projection on central surface band, as in SSH:

Ind(A) = [Py] — [P]

Suppose either I3+ =0orP_=0 (conjectured to hold). Then:

Chy12,33(A) # 0 = surface QHE, Hall cond. imposed by bulk

Experiment? No chiral topological material known
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Generalized Streda formulae

In QHE: integrated density of states grows linearly in magnetic field
E (0|P|0) = Chy(P)

integrated density of states:

1
9, Chy(P) = o Chyy 3 (P)

1 ..
8Bi,j ChI(P) = E ChlU{i,j}(P) |/|even, I, J gl

1 .
Og,; Chy(A) = 5 Chigip(A)  |fodd , ij ¢!

Application: magneto-electric effects in d = 3
Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. B given by Ch{1,273,4}(P)
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Link to Volovik-Essin-Gurarie invariants

Express the invariants in terms of the Green function/resolvent
Consider path z: [0,1] — C\ o(H) encircling (—oo, u] N o(H)
Set

For |I| even and with Vo = 0,

|1l

Chy(P,) = \(/I|7T)2 _ > (1) /dtT [[c®) v, 6()

" PESILL0} Jj=1

Proof by suspension. Similar formula for odd pairings.
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Delocalization of boundary states

Hypothesis: bulk gap at Fermi level u

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem

For even d, if strong invariant Chyy  qv(P) # 0,
then no Anderson localization of boundary states in bulk gap.

Technically: Aizenman-Molcanov bound for no energy in bulk gap.

Theorem
For odd d > 3, if strong invariant Chyg;  43(A) # 0,

then no Anderson localization at p = 0.

N,
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Index theorem for strong invariants and odd d

Y1, --,7d irrep of Clifford Cy4 on 2
d d
—1)/2
D = Z Xi@1®7; Dirac operator on /2(Z9)® Ct ® 2/
j=1
Dirac phase F = 0] | provides odd Fredholm module on Ag:

F?=1 [F,A,] compact and in £97¢ fiir A= (Ay)weq € Aqg

Theorem (Local index = generalizes Noether-Gohberg-Krein)

Let E = 3(F + 1) be Hardy Projektion for F. For invertible A,

Chyy._a1(A) = Ind(E A.E)

The index is P-almost surely constant.
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Local index theorem for even dimension d

As above 71, ..., vq Clifford, grading T = —i=9/2~; - - .~y

0

Dirac D = Dl = |D| (
F*

g) even Fredholm module

Theorem (Connes d = 2, Prodan, Leung, Bellissard 2013)

Almost sure index Ind(P, FP,) equal to Chyy  43(P)

X1+iXo
[X1+iXa|

Special case d = 2: F = and
Ind(P,FP,) = 2m T(P[[X1, P], [X2, P]])
Proofs: geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime

implementation of discrete symmetries (CPT)
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Résumé

e invariants for bulk and boundary
e bulk-boundary correspondence
e index theorems for strong invariants in complex classes

e proof of delocalized boundary states

Current aims:
e Index theory for weak invariants via KK-theory
e bulk-edge correspondence in real cases

e stability of invariants w.r.t. interactions
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Related works and references

Other groups (each with personal point of view):

e Essin, Gurarie

e Carey, Rennie, Bourne, Kellendonk
e Mathai, Thiang, Hanabus

e Zirnbauer, Kennedy

e Loring, Hastings, Boersema

e Graf, Porta

e many theoretical physics groups

Kellendonk, Richter, Schulz-Baldes: Edge channels & Chern nbs
(Rev. Math. Phys. 2002, see arXiv)

Prodan, Schulz-Baldes: Bulk and Boundary Invariants for complex

topological insulators (Springer Monograph 2016, see arXiv)



