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Bulk-boundary correspondence in quantum Hall systems and beyond

Plan of the talk

• explain mathematical principles of bulk-boundary correspondence
on a simple one-dimensional model (Su-Schrieffer-Heeger):

Toeplitz extension, bulk and boundary invariants, index theorems

• d-dimensional disordered systems of independent Fermions
(topological insulators from class A and AIII, no real structures)

• bulk and boundary invariants and correspondence:

examples of QHE and surface QHE in 3d chiral system

• generalized Streda formula

• delocalized edge modes with non-trivial topology

• index theorems

Tools: K -theory, index theory and non-commutative geometry
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Start with concrete model in dimension d = 1

Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

H = 1
2 (σ1 + iσ2)⊗ S + 1

2 (σ1 − iσ2)⊗ S∗ + m σ2 ⊗ 1

where S bilateral shift on `2(Z), m ∈ R mass and Pauli matrices.
In their grading

H =

(
0 S − im

S∗ + im 0

)
on `2(Z)⊗ C2

Off-diagonal ∼= chiral symmetry σ∗3Hσ3 = −H. In Fourier space:

H =

∫ ⊕
dk Hk Hk =

(
0 e−ik − im

e ik + im 0

)
Topological invariant for m 6= −1, 1

Wind(k 7→ e ik + im) = δ(m ∈ (−1, 1))
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Chiral bound states

Half-space Hamiltonian

Ĥ =

(
0 Ŝ − im

Ŝ∗ + im 0

)
on `2(N)⊗ C2

where Ŝ unilateral right shift on `2(N)

Still chiral symmetry σ∗3Ĥσ3 = −Ĥ

If m = 0, simple bound state at E = 0 with eigenvector ψ0 =
(|0〉

0

)
.

Perturbations, e.g. in m, cannot move or lift this bound state ψm!

Positive chirality conserved: σ3ψm = ψm

Theorem (Basic bulk-boundary correspondence)

If P̂ projection on bound states of Ĥ, then

Wind(k 7→ e ik + im) = Tr(P̂σ3)
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Disordered model

Add i.i.d. random mass term ω = (mn)n∈Z:

Hω = H +
∑
n∈Z

mn σ2 ⊗ |n〉〈n|

Still chiral symmetry σ∗3Hωσ3 = −Hω so

Hω =

(
0 A∗ω
Aω 0

)

Bulk gap at E = 0 =⇒ Aω invertible

Non-commutative winding number, also called first Chern number:

Wind = Ch1(A) = i Eω Tr 〈0|A−1
ω i [X ,Aω]|0〉

where Eω is average over probability measure P on i.i.d. masses
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Index theorem and bulk-boundary correspondence

Theorem (Disordered Noether-Gohberg-Krein Theorem)

If Π is Hardy projection on positive half-space, then P-almost surely

Wind = Ch1(A) = − Ind(ΠAωΠ)

For periodic model as above, Aω = e ik ∈ C (S1)

Fredholm operator ΠAωΠ is then standard Toeplitz operator

Theorem (Disoreded bulk-boundary correspondence)

If P̂ω projection on bound states of Ĥω, then

Wind = Ch1(A) = Ch0(P̂ω) = Tr(P̂ωσ3)

Structural robust result:

holds for chiral Hamiltonians with larger fiber, other disorder, etc.
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Structure: Toeplitz extension (no disorder)

S bilateral shift on `2(Z), then C∗(S) ∼= C (S1)

Ŝ unilateral shift on `2(N), only partial isometry with a defect:

Ŝ∗Ŝ = 1 Ŝ Ŝ∗ = 1− |0〉〈0|

Then C∗(Ŝ) = T Toeplitz algebra with exact sequence:

0 −→ K −→ T −→ C (S1) −→ 0

K -groups for any C∗-algebra A (only rough definition):

K0(A) = {[P]− [Q] : projections in some Mn(A)}
K1(A) = {[U] : unitary in some Mn(A)}

Abelian group operation: Whitney sum

Example: K0(C) = Z = K0(K) with invariant dim(P)

Example: K1(C (S1)) = Z with invariant given by winding number
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6-term exact sequence for Toeplitz extension

C∗-algebra short exact sequence =⇒ K -theory 6-term sequence

K0(K) = Z −→ K0(T ) = Z −→ K0(C (S1)) = Z

Ind ↑ ↓ Exp

K1(C (S1)) = Z ←− K1(T ) = 0 ←− K1(K) = 0

Here: [A]1 ∈ K1(C (S1)) and [P̂σ3]0 = [P̂+]0 − [P̂−]0 ∈ K0(K)

Ind([A]1) = [P̂+]0 − [P̂−]0 (bulk-boundary for K -theory)

Ch0(Ind(A)) = Ch1(A) (bulk-boundary for invariants)

Disordered case: analogous
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Tight-binding toy models in dimension d

One-particle Hilbert space `2(Zd)⊗ CL

Fiber CL = C2s+1 ⊗ Cr with spin s and r internal degrees

e.g. Cr = C2
ph ⊗ C2

sl particle-hole space and sublattice space

Typical Hamiltonian

Hω = ∆B + Wω =
d∑

i=1

(t∗i S
B
i + ti (S

B
i )∗) + Wω

Magnetic translations SB
j S

B
i = e iBi,jSB

i S
B
j in Laudau gauge:

SB
1 = S1 SB

2 = e iB1,2X1S2 SB
3 = e iB1,3X1+iB2,3X2S3

ti matrices L× L, e.g. spin orbit coupling, (anti)particle creation

matrix potential Wω = W ∗
ω =

∑
n∈Zd |n〉ωn〈n| with matrices ωn
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Observable algebra

Configurations ω = (ωn)n∈Zd ∈ Ω compact probability space (Ω,P)

P invariant and ergodic w.r.t. T : Zd × Ω→ Ω

Covariance w.r.t. to dual magnetic translations VaS
B
j = SB

j Va

VaHωV
∗
a = HTaω a ∈ Zd

‖A‖ = supω ‖Aω‖ is C∗-norm on

Ad = C∗
{
A = (Aω)ω∈Ω finite range covariant operators

}
∼= twisted crossed product C (Ω) oB Zd

Fact: Suppose Ω contractible

=⇒ rotation algebra C∗(SB
j ) is deformation retract of Ad

In particular: K -groups of C∗(SB
j ) and Ad coincide
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Pimsner-Voiculescu (1980)

Theorem

K (Ad) = K0(Ad)⊕ K1(Ad) = Z2d−1 ⊕ Z2d−1
= Z2d

Explicit generators [GI ] of K -groups labelled by I ⊂ {1, . . . , d}

Top generator I = {1, . . . , d} identified with Kj(C (Sd)) = Z

Example G{1,2} Powers-Rieffel projection and Bott projection

In general, any projection P ∈ Mn(Ad) can be decomposed as

[P] =
∑

I⊂{1,...,d}

nI [GI ] nI ∈ Z, |I | even

Invariants nI , top invariant n{1,...,d} ∈ Z called strong , others weak

Questions: calculate nI = cI ChI (P), physical significance
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K -group elements of physical interest

Fermi level µ ∈ R in spectral or mobility gap of Hω

Pω = χ(Hω ≤ µ) covariant Fermi projection

Hence: P = (Pω)ω∈Ω ∈ Ad fixes element in K0(Ad) (if gapped)

If chiral symmetry present: Fermi invertible (or unitary)

Hω = − J∗HωJ =

(
0 Aω

A∗ω 0

)
J =

(
1 0

0 −1

)
If µ = 0 in gap, A = (Aω)ω∈Ω ∈ Ad invertible and [A]1 ∈ K1(Ad)

Remark Sufficient to have an approximate chiral symmetry

Hω =

(
Bω Aω

A∗ω Cω

)
with invertible Aω
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Definition of topological invariants

For invertible A ∈ Ad and odd |I |, with ρ : {1, . . . , |I |} → I :

ChI (A) =
i(iπ)

|I |−1
2

|I |!!
∑
ρ∈SI

(−1)ρ T

 |I |∏
j=1

A−1∇ρjA

 ∈ R

where T (A) = EP TrL 〈0|Aω|0〉 and ∇jAω = i [Xj ,Aω]

For even |I | and projection P ∈ Ad :

ChI (P) =
(2iπ)

|I |
2

|I |
2 !

∑
ρ∈SI

(−1)ρ T

P

|I |∏
j=1

∇ρjP

 ∈ R

Theorem (Connes 1985)

ChI (A) and ChI (P) homotopy invariants; pairings with K (Ad)
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Bulk-boundary via Toeplitz extension

edge half-space bulk

0 → Ed → T (Ad) → Ad → 0

Moreover: Ed ∼= Ad−1 ⊗K(`2(N)) so ChI same with extra trace

K0(Ad−1) −→ K0(T (Ad)) −→ K0(Ad)

Ind ↑ ↓ Exp

K1(Ad) ←− K1(T (Ad)) ←− K1(Ad−1)

Theorem

ChI∪{d}(A) = ChI (Ind(A)) |I | even , [A] ∈ K1(Ad)

ChI∪{d}(P) = ChI (Exp(P)) |I | odd , [P] ∈ K0(Ad)
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Physical implication in d = 2: QHE

P Fermi projection below a bulk gap ∆ ⊂ R. Kubo formula:

Hall conductance = Ch{1,2}(P)

Bulk-boundary:

Ch{1,2}(P) = Ch{1}(Exp(P)) = Wind(Exp(P))

With continuous g(E ) = 1 for E < ∆ and g(E ) = 0 for E > ∆:

Exp(P) = exp(−2πi g(Ĥ))

Theorem (Quantization of boundary currents)

Ch{1,2}(P) = E
∑
n2≥0

〈0, n2|g ′(Ĥ)i [X2, Ĥ]|0, n2〉
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Chiral system in d = 3: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) =⇒ Fermi unitary A

Ch{1,2,3}(A) = Ch{1,2}(Ind(A))

Magnetic field perpendicular to surface opens gap in surface spec.

With P̂ = P̂+ + P̂− projection on central surface band, as in SSH:

Ind(A) = [P̂+] − [P̂−]

Theorem

Suppose either P̂+ = 0 or P̂− = 0 (conjectured to hold). Then:

Ch{1,2,3}(A) 6= 0 =⇒ surface QHE, Hall cond. imposed by bulk

Experiment? No chiral topological material known
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Generalized Streda formulæ

In QHE: integrated density of states grows linearly in magnetic field

integrated density of states: E 〈0|P|0〉 = Ch∅(P)

∂B1,2 Ch∅(P) =
1

2π
Ch{1,2}(P)

Theorem

∂Bi, j
ChI (P) =

1

2π
ChI∪{i , j}(P) |I |even, i , j 6∈ I

∂Bi, j
ChI (A) =

1

2π
ChI∪{i , j}(A) |I | odd , i , j 6∈ I

Application: magneto-electric effects in d = 3

Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. B given by Ch{1,2,3,4}(P)
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Link to Volovik-Essin-Gurarie invariants

Express the invariants in terms of the Green function/resolvent

Consider path z : [0, 1]→ C \ σ(H) encircling (−∞, µ] ∩ σ(H)

Set
G (t) = (H − z(t))−1

Theorem

For |I | even and with ∇0 = ∂t ,

ChI (Pµ) =
(iπ)

|I |
2

i(|I | − 1)!!

∑
ρ∈SI∪{0}

(−1)ρ
∫ 1

0
dt T

 |I |∏
j=1

G (t)−1∇ρjG (t)



Proof by suspension. Similar formula for odd pairings.
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Delocalization of boundary states

Hypothesis: bulk gap at Fermi level µ

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem

For even d, if strong invariant Ch{1,...,d}(P) 6= 0,

then no Anderson localization of boundary states in bulk gap.

Technically: Aizenman-Molcanov bound for no energy in bulk gap.

Theorem

For odd d ≥ 3, if strong invariant Ch{1,...,d}(A) 6= 0,

then no Anderson localization at µ = 0.
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Index theorem for strong invariants and odd d

γ1, . . . , γd irrep of Clifford Cd on C2(d−1)/2

D =
d∑

j=1

Xj ⊗1⊗γj Dirac operator on `2(Zd)⊗CL⊗C2(d−1)/2

Dirac phase F = D
|D| provides odd Fredholm module on Ad :

F 2 = 1 [F ,Aω] compact and in Ld+ε für A = (Aω)ω∈Ω ∈ Ad

Theorem (Local index = generalizes Noether-Gohberg-Krein)

Let E = 1
2 (F + 1) be Hardy Projektion for F . For invertible Aω

Ch{1,...,d}(A) = Ind(E AωE )

The index is P-almost surely constant.
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Local index theorem for even dimension d

As above γ1, . . . , γd Clifford, grading Γ = −i−d/2γ1 · · · γd

Dirac D = −ΓDΓ = |D|

(
0 F

F ∗ 0

)
even Fredholm module

Theorem (Connes d = 2, Prodan, Leung, Bellissard 2013)

Almost sure index Ind(PωFPω) equal to Ch{1,...,d}(P)

Special case d = 2: F = X1+iX2
|X1+iX2| and

Ind(PωFPω) = 2πı T (P[[X1,P], [X2,P]])

Proofs: geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime

implementation of discrete symmetries (CPT)
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Résumé

• invariants for bulk and boundary

• bulk-boundary correspondence

• index theorems for strong invariants in complex classes

• proof of delocalized boundary states

Current aims:

• Index theory for weak invariants via KK -theory

• bulk-edge correspondence in real cases

• stability of invariants w.r.t. interactions
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Related works and references

Other groups (each with personal point of view):

• Essin, Gurarie

• Carey, Rennie, Bourne, Kellendonk

• Mathai, Thiang, Hanabus

• Zirnbauer, Kennedy

• Loring, Hastings, Boersema

• Graf, Porta

• many theoretical physics groups

Kellendonk, Richter, Schulz-Baldes: Edge channels & Chern nbs

(Rev. Math. Phys. 2002, see arXiv)

Prodan, Schulz-Baldes: Bulk and Boundary Invariants for complex

topological insulators (Springer Monograph 2016, see arXiv)


