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Beta-ensemble:

2D Coulomb charges confined to a contour |

(The Dyson gas on an arbitrary contour)



Partition function:
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W(z) =W(z,2) is a (real valued) potential.

Parameters:

® . ‘“inverse temperature”

e /. a “quasiclassical” parameter introduced for

large N limit: h — 0 simultaneously with N — oo



Distribution functions
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An(z) = H(Ei — z;) is the Vandermonde determinant.

Sum rules:

%R(,@) ldz| = Nh, %R(a,z) ldz| = (N—1) h R(a)
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Observables:

e Density p(z) =Y or(z,z

e Potential

p(z) = —_Bﬁ.z log |z — z|2 = —28 jé log |z — €| p(&)|de]
; I

Jump on the contour:

OF o(z) — 0, p(2) = 4nBp(z), z€T



T he Green’s functions

The Green's function Gint(z, ) of the Laplace operator
in the domain D (" =0dD):

o Gint(z.0) = Gint(¢, z) is harmonic in D in each vari-
able except z = (¢ and

Gint(2.¢) =109 |z = (| + ...
as z — (;

o Gint(z.¢) =0 if z or ¢ belongs to the boundary I".



In terms of the conformal map wi,r from D onto the
unit disk:

wint(2) — wint(¢)

Gint(z,¢) = log
1 — U-*int(ﬁ)mint(C)

Solution to the Dirichlet boundary value problem in
D:
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The Green's function Gext(z,() of the Laplace opera-
tor in the domain C\ D:

o Gext(z,() = Gext((.z) is harmonic in C\ D and
bounded at infinity in each variable except z = ¢
and

Gext(2,() =100 |z — (| + ... as z — G,

o Gexi(z,0) =0 if z or ¢ belongs to the boundary I".

In terms of the conformal map wexr from C\ D onto
the exterior of the unit disk:

‘wext(ﬁ) — ’erxt(C)
1 — wext(2)wext (€)

Solution to the Dirichlet boundary value problem in C\ D:

Gext(z,() = log |
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The Neumann jump operator

The Neumann jump operator takes a func-
tion f on the contour [ to the difference
between normal derivatives of its harmonic

extensions to the interior and to the exterior

of I
Nef(2) =0 fu(z) =0, f1(2), =€l

In terms of the Neumann jump operator
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Correlation functions

Correlation functions of densities are variational deriva-
tives of log Zy w.r.t. the potential:

5 0log Zy

(p(2)) = 722

2(p(z1)) _ ;4 071097y

(p(z1)p(22))e = 72 rrs = W S S )

(p(21)p(22)). = (p(21)p(22)) — (p(21)) (p(22))
IS the connected part of the correlation function.

T he correlation functions and the distribution func-
tions are related as follows:

(p(a)) = R(a)

(pa)p(b)) = R(a,b) + T (p(a))or(a,b).



T he loop equation

T he obvious identity which follows from invariance of
the partition function under reparametrizations of the
contour (changes of the integration variables):
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(this is the first equation of the BBGKY chain)



A better way to write the loop equation

Introduce

L 3212 OW (z;)
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(an analog of the holomorphic component of the stress-
energy tensor). In terms of the fields o, p it is

oW (&)p(€)

o e

T(2) = (9p(2))° + (1=B)Rd%p(2) + Qﬁ’jé
-

The mean value (1T'(z)) is a holomorphic function in
the exterior and interior of the contour I with a jump

(T()] 1= (T(e4)) = (T(=)



T he loop equation is

Im (uz(;j) [<T(#))}r) =0, zel

where v(z) = —idz/|dz| is the outward looking unit

normal vector to [ at the point z.

Example: the model on the real line R.

In this case v = —1 and the jump of (T) is purely imaginary, so
the loop equation says that the jump vanishes:

[<T<z)>] = (T(e4i0) ~ (T(:=i0)) =0

Since (T'(z)) is holomorphic everywhere in the upper and lower
half-planes and vanishes at infinity, this means that (T(z)) = 0

everywhere in the plane.



Components of the stress-energy tensor:

AT, = v2T + 02T — 20

ATss = —1°T — 02T — 20

o

4T5-n_ — '?:L"QT — ?J:"'QT
(©:= —trT).

T he loop equation is equivalent to the bound-
ary condition for the mixed component:

(Tsﬂ(z»]r —0, ser



Different forms of the loop equation

((2)) (0:((2)) = OW (2)) = (B=1)T0:(p(2))

1
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Variations of the contour

on(&) = normal displacement of the point £ € [
under a small deformation



T he variation of the free energy:
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Large N limit

The large N Iimit: N - o0, h - 0, t := Nh fixed

F Fi /o
=3 ﬁ/ :F1+O(ﬁ))

Zny = NINP=DN exp (

T he h-expansion of the mean density:

(p(2)) = po(z) + hp1/2(z) + 7°p1(2) + ...



The leading order

T he free energy:

Fo = Bt?logr + tWH (00) 4

1
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where

r= |im

Z—00

Wext (2)
IS the exterior conformal radius (Robin's constant).



The mean density:

L
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T he 2-point function:
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where
j\-'*(;_;‘. C) — an:angc;int(ﬂ, C) ‘I‘ aﬂ.: angf;ext(ﬂf C)

IS the kernel of the Neumann jump operator.



T he 2-point function of potentials:
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Corollary:
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IS the Schwarzian derivative.



T he next-to-leading order

T he free energy:.

Fy2 = (,.S—l)jt{pu l0g po |dz|
r

T he mean density:
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Iterative solution of the loop equation

Here we assume that W(z) = 0, i.e. we study the
partition function

N
In = % . % H |2 — zj| %P H |dzy|
B B L—1

i<j

T he 'stress-energy tensor’:

T(2) = (09(2))* + (1=B)h 9%p(2)



Some technical details.

We have the expansions:
() = po + Ppyjn+ R2p1 ...

(¥) = o+ Rp1o + Ri01 + ...
(T) =To+ RTy1/ + T+ ...

where

To = (0p0)?

Ty /5 = 20000p1 /2 + (1—5)0%¢o0

T1 = (8p1/2)* + (1—B)8%p1/2 + 20000p1 + w
and

W= m} h2 <(@:p)2>c



T he strategy of the iterative solution is as follows: first use the
“loop equation”

Tm (1;2(3)[Tj(z)]r) = 0,

to find ¢; on I, then extend it harmonically to the complex plane
and find F; from the variation

. 1 i :
oF; = Re (uz(z) [Tj(z)]r)dn(z)|dz| . 7=20
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An input for each step of the iterations are the data obtained at

the previous steps, so the procedure is well-defined.

The first 2 orders:

Fo = pBt?logr

I = (1-35)tlogr 4+ const

(recall that t = Nh)



The result for 7 at g =1

/
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T he Polyakov-Alvarez formula for determinants of Laplace
operators in planar domains allows one to see that

w; int “ext

= —% log det(—Aijnt) — % log det(—Aext)

Using the “gluing formula”
det(—Ajnt) det(—Aext) det(Nr) = const

one can write the result as

Fy = % log det (NF)



Effective action

“Path integral” representation of the parti-
tion function

Z—/[Dp [p] / R2

with the effective action

Alp) = B¢ ¢ p(2)100 |2 = | p(C)dz||dC|
+ ¢ W()p()ld=

+7(8—1) ¢ p(=) l0g p(=)]dz|

+ A (f p()ldz] —t)
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