Conformal Scaling Limit
of the Network Model
for the Integer Quantum Hall Transition

Martin R. Zirnbauer (U of Cologne)
@ Rutgers Stat. Mech. Conference
(May 7, 2017)
Integer Quantum Hall Effect

Two-dimensional disordered electron gas at low temperature and in a strong magnetic field. Hall resistance exhibits plateaus: \(R_H = \frac{h}{ne^2} \)

Transition between plateaus is a critical phenomenon (of Anderson-localization type). Could/should be a paradigm, but is not understood in quantitative detail ...
Nonlinear sigma model \cite{Pruisken1983}

\[L = \frac{\sigma_{xx}}{8} \text{Str} \, \partial_\mu Q \, \partial_\mu Q \\
+ \frac{\sigma_{xy}}{8} \, \epsilon_{\mu\nu} \, \text{Str} \, \partial_\nu Q \, \partial_\mu Q \, \partial_\nu Q \]

\[\text{weak localization} \]

\[\Theta \text{-term} \]

Wegner-Efetov SUSY method in target space
\[Q = \eta \Sigma_3 \eta^{-1}, \quad \Sigma_3 = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \]

is complex Grassmann manifold \mathcal{U}/K

with global symmetry group $\mathcal{U} = \mathcal{U}(r, r | 2r)$

\[\text{CFT} = ? \]

\[\text{Pruisken-Khmelnitskii RG flow diagram} \]

\[\text{(conjectured, 1983)} \]
The Conundrum
Apparent Conflict

- Symmetry group $U = U(r, r|2r)$ must act (by conjugation) on target X.

- All known CFTs with continuous symmetries are Wess-Zumino-Witten models or Goddard-Kent-Olive coset theories ($=\text{gauged WZW models}$).

- WZW models (with non-compact target X) are ruled out by
 - RG-instability against infinity of relevant U-invt perturbations
 - exact results for related critical point (class C)

 Mudry, Chamon & Wen, 1995
 Read & Saleur, 2001

- Coset theories X/H with $H \subset U$ greater than center of U are
 ruled out by U-symmetry.

- Gauging by center $H = U(1)$ does not suffice to remove RG instability.
WZW model - operator formalism

WZW field \(M : \Sigma \rightarrow X \).

Left and right translations \(M \mapsto g_L M g_R^{-1} \) \((g_L, g_R \in G)\) give rise to

Currents \(J^A = k \text{Str} \left(A \partial M \cdot M^{-1} \right) \) holomorphic

\(\bar{J}^A = k \text{Str} \left(A M^{-1} \bar{\partial} M \right) \) anti-holomorphic.

Current algebra \(\hat{G} \). Operator product expansion:

\[
J^A(z) J^B(w) \sim -\text{Str}(AB) \frac{k}{(z-w)^2} + \frac{J^{[A,B]}(w)}{z-w}
\]

Energy-momentum tensor (Sugawara) \(T = \frac{1/2}{k+c_V} (\bar{J}^e_i J^e_i) \)

is Virasoro: \(T(z) T(w) \sim \frac{c/2}{(z-w)^4} + \frac{2 T(w)}{(z-w)^2} + \frac{\partial T(w)}{z-w} \)

due to \(T(z) J^A(w) \sim \frac{J^A(w)}{(z-w)^2} + \frac{\partial J^A(w)}{z-w} \)
GKO coset CFT (gauged WZW model)

Subgroup $H \subset G$ with anomaly-free action $M \mapsto h_L M h_R^{-1}$

Current subalgebra $\hat{h} \subset \hat{g}$.

Energy-momentum tensor $T^{\hat{g}/\hat{h}} := T^{\hat{g}} - T^{\hat{h}}$ generates Virasoro algebra with central charge $c_{g/h} = c_g - c_h$.

NOTE: gauging by H-action is incompatible with action $M \mapsto u M u^{-1}$ by symmetry group U.

How to get around this difficulty? Totally new ideas needed??
"Internal" coset construction

Observation. Geometrically, current subalgebras are associated with distributions (i.e. smooth subbundles) of the tangent bundle TX.

U acts on $X \equiv X_{r, r|2r}$, hence on TX.
To gauge the WZW model without ruining the U-symmetry, one needs a U-invariant distribution in TX.

Fact. Such distributions do exist.

Hint. View the WZW target space as an associated bundle over the nonlinear sigma model target space:

$X_{r, r|2r} = U \times_K (X^+_r \times X^-_r) \hookrightarrow U/K$,

$M = u \begin{pmatrix} M^+ & 0 \\ 0 & M^- \end{pmatrix} u^{-1} = uh^{-1}(h^+M^+h^+ \cdot h^-M^-h^-)h u^{-1}, \quad h \in K$.

 superseding Pruiken's $u \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Gauge by K!
Gauged WZW action functional:

\[
S_{k}^{\text{WZW}}[M; A = A^{10} + A^{01}] = \frac{i k}{4 \pi} \int_{\Sigma} \left(\text{Str} \, M^{-1} \partial M \wedge M^{-1} \bar{\partial} M + \frac{1}{3} d^{-1} \text{Str} (M^{-1} d M)^{\wedge 3} \right) \\
+ \frac{i k}{2 \pi} \int_{\Sigma} \text{Str} \left(\partial M \cdot M^{-1} \wedge A^{01} - A^{10} \wedge M^{-1} \bar{\partial} M - A^{10} \wedge M^{-1} A^{01} M + A^{10} \wedge A^{01} \right).
\]

Let there be two copies of \(M \) for retarded sector \((M_+^+)\) and advanced sector \((M_-)_-\).

Proposed fixed-point action = \(S_{k=4}^{\text{WZW}}[M_+; A_+] + S_{k=4}^{\text{WZW}}[M_-; A_-] \)

\[
+ \frac{i k}{2 \pi} \int_{\Sigma} \text{Str} \left((u^{-1} \partial u)_{+-} \wedge (u^{-1} \bar{\partial} u)_{-+} - (u^{-1} \partial u)_{++} \wedge M_{-}^{-1} (u^{-1} \bar{\partial} u)_{-+} M_{+} \\
+ (u^{-1} \partial u)_{-+} \wedge (u^{-1} \bar{\partial} u)_{++} - (u^{-1} \partial u)_{++} \wedge M_{+}^{-1} (u^{-1} \bar{\partial} u)_{-+} M_{-} \right).
\]

Invariance under gauge transformations

\[
M_{s} \mapsto h_{s} M_{s} h_{s}^{-1}, \quad A_{s} \mapsto h_{s} A_{s} h_{s}^{-1} - d h_{s} \cdot h_{s}^{-1}, \quad u \mapsto u \text{ diag}(h_{+}, h_{-})^{-1}
\]

Interpretation: nonlinear sigma model coupled to maximally gauged WZW models
Network Model

(Chalker & Coddington)
Hilbert space = $\mathbb{C}^{\#\text{links}}$

discrete time evolution $\psi_{t+1} = U \psi_t$

$U = U_r U_s$

U_r diagonal in link basis:
$U_r |l\rangle = |l\rangle e^{i\phi(l)}$

$\phi(l)$ uncorrelated random phases, uniformly distributed

U_s deterministic scattering at nodes:
$U_s |l\rangle = |l_+\rangle a_+ + |l_-\rangle a_-$

$a_\pm = e^{i\pi/4}/\sqrt{2}$
(at criticality)
Gaussian Free Field
Statistics of wave intensities.

\[\Psi_c = U \Psi_c \] stationary "scattering" state (quasi-energy zero) for incoming wave boundary conditions \[\Psi_c(c) = 1. \]

\(\rho \) Observable: \[|\Psi_c(r)|^2 \] for large distances \(|r - c| \)

Prediction from Abelian OPE, crossing symmetry of 4-point fn:

\[\mathbb{E}(|\Psi_c(r)|^{2q}) \sim |r - c|^{-2\Delta_q}, \quad \Delta_q = X q (1-q). \]

Interpretation: \(\log |\Psi_c(r)|^2 \equiv \phi(r) \)

GTT with background charge \(Q = 1 \), stiffness \(X \).

Numerical simulations give \(X \approx 0.26 (\ldots 0.28) \) \(\sim \) Hypothesis \(X = 1/r \) (level \(k = 4 \))
SUSY Vertex Model
CC network model \rightarrow SUSY vertex model

A variant (due to N. Read) of the Wegner-Efetov supersymmetry method trades the task of taking disorder averages for a statistical mechanics problem of new (collective) variables that admit a continuum limit (at the critical point).

Uses second quantization on a Fock space for bosons and fermions.

Retarded sector: $U = e^X$, $\text{Re} X < 0$.

Bosons: $\text{Det}^{-1}_{\mathbb{C}^n}(1-U) = \text{Tr}_{S(\mathbb{C}^n)} \phi_b(U)$ where $\phi_b(e^X) = e^{b^t X b}$

Fermions: $\text{Det}(1-U) = \text{Str} \phi_f(U)$ where $\phi_f(e^X) = e^{f^t X f}$

Advanced sector: $U = e^X$, $\text{Re} X > 0$. $b^t \rightarrow -b$, $b \rightarrow b^t$, $f^t \rightarrow +f$, $f \rightarrow f^t$.
Random phase average projects Fock space to subspace of $U(1)$ singlets

\[\mathcal{H} = \bigotimes_{\text{links}} V(l) \]
state space of SUSY vertex model

where \[V = \bigoplus \left(S^{n_0^+}(C) \otimes \Lambda^{n_i^+}(C) \otimes S^{n_i^-}(C^*) \otimes \Lambda^{n_i^-}(C^*) \right) \]

\[n_0^+ + n_i^+ = n_0^- + n_i^- \]

is irreducible highest-weight representation for $U = U(1,1|2)$. r replicas: $U = U(r,r|2r)$

Unit cell

interpretation \sim Feynman paths

\[E\left(|\psi_c^*(r) |^2\right) = \left< \pi_{\text{vac}}(c) \left(B^i B^i \right)^q(r) \right>_{\text{v.h.}} \]

\[\left< A \right>_{\text{v.h.}} = \text{STr} A \rho(U_s) \]

Global symmetry $U = U(r,r|2r)$
Continuum Limit from
Dirac Approximation
Pure network model \((U = U_s)\) at long wave lengths

\[1 - U_s \approx iD\] (Dirac operator \& discrete holomorphic derivative)

Treat the network model with random phase disorder as a perturbation ...

\(\lambda \) (SUSY) Dirac theory with random gauge potential

and random scalar potential

\(\mathbb{Z}_4\) spectral symmetry

\(\lambda \) 4 Dirac points (at 4th roots of unity)

\[e^{im\pi/2} \cdot 1 - U_s = iD_m \quad (m = 0,1,2,3)\]
Preparatory step:

Assume A with values in $SU(k) \subset U(k)$ ($k = 4$).

Bosonize.

CFT describing continuum limit of disordered critical point is (Bernard & LeClair 2002; Tsvelik et al. 2001):

"$GL(2r|2r)$" WZW model of level $k = 4$.

Target space = supermanifold over Riemannian symmetric space of type A1A

\[
\left(\frac{GL(2r)/U(2r)}{\text{noncompact}} \right) \times U(2r) \quad \text{compact}
\]

What happens when the $U(1)$ gauge field and the random scalar potential are turned on?
Gauged WZW action functional:

\[
S_{k}^{WZW}[M; A=A^{10}+A^{01}] = \frac{ik}{4\pi} \int_{\Sigma} \left(\text{Str} \; M^{-1} \partial M \wedge M^{-1} \bar{\partial} M + \frac{1}{3} e^{-1} \text{Str} \; (M^{-1} e M)^{3} \right) + \frac{ik}{2\pi} \int_{\Sigma} \text{Str} \left(e \partial M \wedge A^{01} - A^{10} \wedge M^{-1} \bar{\partial} M - A^{10} \wedge M^{-1} A^{01} M + A^{10} \wedge A^{01} \right).
\]

Let there be two copies of \(M \) for retarded sector \((M_{+}) \) and advanced sector \((M_{-}) \).

Proposed fixed-point action = \(S_{k=+}^{WZW}[M_{+}; A_{+}] + S_{k=+}^{WZW}[M_{-}; A_{-}] \)

\[
+ \frac{ik}{2\pi} \int_{\Sigma} \text{Str} \left((u^{-1} \partial u)_{++} \wedge (u^{-1} \bar{\partial} u)_{++} - (u^{-1} \partial u)_{+-} \wedge M_{-}^{-1} (u^{-1} \bar{\partial} u)_{-+} M_{+} \\
+ (u^{-1} \partial u)_{--} \wedge (u^{-1} \bar{\partial} u)_{--} - (u^{-1} \partial u)_{-+} \wedge M_{+}^{-1} (u^{-1} \bar{\partial} u)_{+-} M_{-} \right).
\]

Invariance under gauge transformations

\[
M_{s} \rightarrow h_{s} M_{s} h_{s}^{-1}, \; A_{s} \rightarrow h_{s} A_{s} h_{s}^{-1} - dh_{s} \cdot h_{s}^{-1}, \; u \rightarrow u \; \text{diag}(h_{+}, h_{-})^{-1}
\]

Remark: predicts multifractal scaling exponents \(\Delta_{q} = \frac{1}{k} q (1-q) \).
Thank you!