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We use path integral representation for the density matrix, projected on the lowest Landau level, to generalize

the expansion of the Bergman kernel on Kähler manifold to the case of arbitrary magnetic field.

1. Setup

Quantum mechanics in curved space is a much
studied subject since the pioneering work of De-
Witt [1]. One the main results in this area on
the interface of geometry and physics is the short
time expansion of the heat kernel on a Rieman-
nian manifold using path integral technics (see
[2] for a comprehensive review). A less known re-
cent example of a similar geometric expansion, is
the expansion of the Bergman kernel on a Kähler
manifold, developed by Tian, Yau, Zelditch, Lu
and Caitlin [3] and reproduced in [4] from the
path integral. Although this result is yet to find
more applications in physics, it has a simple in-
terpretation in terms of quantum mechanics of a
particle in a magnetic field on the lowest Landau
level.

Consider a particle on a compact Kähler man-
ifold with complex coordinates za, z̄ā (a, ā =
1, . . . , n) in a magnetic field. If the field strength
has only mixed components Faā nonzero, with
Fab = Fāb̄ = 0, meaning that the underlying line
bundle is holomorphic, then the hamiltonian can
be rewritten as

H = gaāFaā + gaāDaD̄ā. (1)

Hence it follows that if the first term here is con-
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stant, then every wavefunction, satisfying D̄āψ =
0, will be degenerate and lie in the lowest Landau
level. For simplicity here we will assume, that
the zero-point energy is subtracted. Therefore
the condition of holomorphy of the magnetic field
guarantees the degeneracy of the lowest energy
level. Equation gaāFaā = const is known as the
hermitian Yang-Mills equation, and in the holo-
morphic case is equivalent to ordinary Maxwell
equation. It has the following generic solution

Faā = kgaā + uaā, (2)

where k is some constant and uaā is traceless (it
can be nonzero, if the manifold has b1,1 > 1). In
[4] we considered the case u = 0, and derived the
strong field 1/k-expansion of the density matrix
projected on the lowest level for large but finite k.
The purpose of this note is to generalize previous
result for nonzero u.

2. TYZ expansion

Consider first the case of field strength, propor-
tional to the Kähler form

Faā = kgaā = k∂a∂̄āK, (3)

where K is the Kähler potential. We are inter-
ested in the large time limit of the diagonal of
the density matrix, which can be written as the

Nuclear Physics B (Proc. Suppl.) 192–193 (2009) 154–155

0920-5632/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevierphysics.com

doi:10.1016/j.nuclphysbps.2009.07.063



following quantum-mechanical path integral

ρ(z) =

∫ z(T )=z

z(0)=z

DzDz̄DbDc e−
1

h̄
S , (4)

with the standard action

S =

∫ 0

−1

dτ

[
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gaāża ˙̄z

ā
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ā
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h̄2

4
TR

]

The anticommuting ghost fields b, c are intro-
duced to make the integration measure covariant
under general coordinate transformations and the
time is rescaled as usual [2], so that τ is a dimen-
sionless. The last term here is a famous Weyl-
ordering counterterm, discovered in [1]. In gen-
eral the large time limit of the heat kernel is not
very well-defined and is usually nonlocal. In the
case under consideration it turns out to be well
defined, due to the large degeneracy of the lowest
level. Making use of the normal coordinate frame
around the point z, adopted to the Kähler case,
we can expand the Kähler potential as

K = gaāz
az̄ā +

1

4
Rabāb̄z

az̄āzbz̄b̄ + . . . , (5)

and from this all other geometric quantities.
Then, using the free theory propagator Δ, sat-
isfying[
−

1

T

d2

dτ2
+ k

d

dτ

]
Δ(τ, σ) = δ(τ − σ), (6)

and Dirichlet boundary conditions, we can pro-
ceed with perturbation theory expansion. One of
the nontrivial checks of the procedure is the fact,
that all T -divergent terms cancel, provided the
Weyl-ordering counterterm is taken into account.
In the infinite time T limit we find

ρ = kn

(
1 +

h̄

2k
R +

h̄2

3k2
ΔR + . . .)

)
, (7)

see [4] for the full answer in order 1/k2. In math-
ematical literature this expansion is known as
Tian-Yau-Zelditch expansion of the Bergman ker-
nel, and has many interesting applications [3].

3. Generic magnetic field

For the general magnetic field (2) one can still
use the Kähler normal coordinates, with only ex-
ception that the magnetic vector potential has a

more general expansion

Āā = Faāza +
1

2
Faābb̄z

azbz̄b̄ + . . .

As a consequence, instead of (6) the free the-
ory propagator satisfies now a more complicated
matrix-valued differential equation

[
−gab̄

1

T

d2

dτ2
+ Fab̄

d

dτ

]
Δbb̄(τ, σ) = δb

aδ(τ − σ),

which complete solution can be found in [5]. The
calculation then becomes more complicated, since
each Feynman integral in parturbation theory be-
comes a matrix-valued integral. Proceeding along
the same lines as before, we computed the expan-
sion up to the first order in h̄

ρ(z) = detF (1 + h̄Raā(F−1)aā + h̄Faābb̄· (8)

·(F−1 ⊗ F−1 − [F ⊗ F + F 2 ⊗ g]−1)aābb̄ + . . .)

Here (F−1)aā is the matrix, inverse to Faā, with
indices raised by gaā, and ⊗ is the usual ten-
sor product of matrices. One can easily check,
that for u = 0 this answer coincides with (7) up
to h̄ term. In the large k limit this expansion
was obtained by Wang [6] using different meth-
ods. The main difference of [6] with the path in-
tegral method is that the connection doesn’t have
to satisfy the hermitian Yang-Mills equation.
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