Complex Geometry - Homework 7

1. Problem

Let A^{\bullet} , B^{\bullet} and C^{\bullet} be three complexes of abelian groups. We denote all the differential maps by d. Let $\phi^n : A^n \to B^n$ and $\psi^n : B^n \to C^n$ be maps such that $\phi d = d\phi$, $\psi d = d\psi$ and the sequence $0 \to A^n \xrightarrow{\alpha^n} B^n \xrightarrow{\beta^n} C^n \to 0$ is exact. Recall that, in class, we "defined" a map $\delta : H^{n-1}(C^{\bullet}) \to H^n(A^{\bullet})$ as follows: Take $[z] \in H^{n-1}(C^{\bullet})$ and lift it to $z \in C^{n-1}$ with dz = 0. Find $y \in B^{n-1}$ such that $\psi y = z$. Then $\psi dy = 0$, so we can find $x \in A^n$ with $\phi(x) = dy$. Set $\delta[z] = [x]$, where [x] is the class of x in $H^n(A^{\bullet})$.

The point of this exercise is to check the many unchecked claims.

- 1. Show that dx = 0, so that we may speak of the class of x in $H^n(A^{\bullet})$.
- 2. Show that the choice of a lift z for [z], and the choice of a preimage y of z, do not effect the class [x] in $H^n(A)$.
- 3. Show that $H^n(A^{\bullet}) \xrightarrow{\phi \bullet} H^n(B^{\bullet}) \xrightarrow{\psi \bullet} H^n(C^{\bullet})$ is exact.
- 4. Show that $H^{n-1}(B^{\bullet}) \xrightarrow{\psi^{\bullet}} H^{n-1}(C^{\bullet}) \xrightarrow{\delta} H^n(A^{\bullet})$ is exact.
- 5. Show that $H^{n-1}(C^{\bullet}) \xrightarrow{\delta} H^n(A^{\bullet}) \xrightarrow{\phi^{\bullet}} H^n(B^{\bullet})$ is exact.

2. Problem

Suppose p_1, \ldots, p_n are distinct points of \mathbb{C} and let $X := \mathbb{C} \setminus \{p_1, \ldots, p_n\}$. Prove that $H^1(X, \mathbb{Z}) \cong \mathbb{Z}^n$.

Hint: Construct a covering $U = (U_1, U_2)$ of X such that U_1 and U_2 are connected and simply connected and $U_1 \cap U_2$ has n + 1 connected components.

3. Problem

(a) Let X be a manifold, $U \subset X$ open and $V \Subset U$. Show that V meets only a finite number of connected components of U.

(b) Let X be a compact manifold and $\mathcal{U} = (U_i)_{i \in I}$, $\mathcal{V} = (V_i)_{i \in I}$ be two finite open coverings of X such that $V_i \Subset U_i$ for every $i \in I$. Prove that

$$\operatorname{Im}\left(Z^{1}(\mathcal{U},\mathbb{C})\to Z^{1}(\mathcal{V},\mathbb{C})\right)$$

is a finite-dimensional vector space.

(c) Let X be a compact Riemann surface. Prove that $H^1(X, \mathbb{C})$ is a finite dimensional vector space.

Hint: Use finite coverings $\mathcal{U} = (U_i)_{i \in I}$, $\mathcal{V} = (V_i)_{i \in I}$ of X with $V_i \Subset U_i$, such that all the U_i and V_i are isomorphic to disks.

4. Problem

a) Let X be a compact Riemann surface. Prove that the map $H^1(X,\mathbb{Z}) \to H^1(X,\mathbb{C})$, induced by the inclusion $\mathbb{Z} \subset \mathbb{C}$, is injective.

(b) Let X be a compact Riemann surface. Show that $H^1(X, \mathbb{Z})$ is a finitely generated free \mathbb{Z} -module.

Hint: Show first, as in Prob. 3 c), that $H^1(X, \mathbb{Z})$ is finitely generated and then use a) to prove that $H^1(X, \mathbb{Z})$ is free.

5. Problem

(a) Show that $\mathcal{U} = (\mathbb{P}^1 \setminus \{\infty\}, \mathbb{P}^1 \setminus \{0\})$ is a Leray covering for the sheaf Ω of holomorphic 1-forms on \mathbb{P}^1 .

(b) Prove that $H^1(\mathbb{P}^1,\Omega)\cong H^1(\mathbb{P}^1,\mathcal{U})\cong \mathbb{C}$ and that the cohomology class of

$$\frac{dz}{z} \in \Omega(U_1 \cap U_2) \cong \mathbb{Z}(\mathcal{U}, \Omega)$$

is a basis of $H^1(\mathbb{P}^1, \Omega)$.

6. Problem

Let $U \subsetneq V$ be connected open subsets of \mathbb{C}^2 . Suppose that we have the following property: For any analytic function f on U, the function f has a holomorphic extension to V. The point of this problem is to show that, in this case $H^1(U, \mathcal{O}) \neq 0$.

Let z and w be coordinates on \mathbb{C}^2 , and let $(a, b) \in V \setminus U$. Define a complex of sheaves on U by

$$0 \to \mathcal{O} \xrightarrow{\begin{pmatrix} z-a \\ w-b \end{pmatrix}} \mathcal{O}^{\oplus 2} \xrightarrow{(-(w-b) z-a)} \mathcal{O} \to 0.$$

Here the first map means that we send f to ((x-a)f, (y-b)f) and the second map means that we send (g, h) to -(w-b)g + (z-a)h.

- 1. Check that this is a complex, meaning that the composite of the nontrivial maps is zero.
- 2. Show that this complex is exact, as a complex of sheaves on U.
- 3. Write down the corresponding long exact sequence, and show that $H^0(U, \mathcal{O}^{\oplus 2}) \rightarrow H^0(U, \mathcal{O})$ is *not* surjective. Deduce that $H^1(U, \mathcal{O}) \neq 0$.