Complex Geometry - Homework 8

1. Problem

Let $f:X\to Y$ be a non-constant holomorphic map between two Riemann surfaces.

- (a) The set of *ramification points* of f is defined as $R := \{x \in X : \nu(f, x) > 1\}$. Show that the set of ramification points is closed and discrete.
- (b) Show that f is injective when restricted to a small neighbourhood of $x \Leftrightarrow \nu(f,x) = 1 \Leftrightarrow f$ gives a biholomorphic map between a neighbourhood of $x \in X$ and a neighbourhood of $f(x) \in Y$.

2. Problem

Recall that a map $f: S \to T$ between two locally compact topological spaces S, T is called *proper* if for any compact set $K \subset T$ the preimage $f^{-1}(K)$ is also compact. Note that if S itself is compact then any map f is proper, since $f^{-1}(K)$ is a closed subset of S, hence compact.

- (a) Show that if $f: S \to T$ is proper then for any $t \in T$ the pre-image $f^{-1}(t)$ is a finite subset of S.
- (b) Show that if $f: X \to Y$ is a proper holomorphic map between Riemann surfaces then the image B = f(R) is discrete in Y. The set B is called the set of *critical values* of f.

3. Problem

- (a) Let $P \in \mathbb{C}[z]$ be a non-constant polynomial. Calculate the multiplicity $\nu(P,\infty)$ at the point at infinity. What is the set of ramification points of P?
- (b) The same question as in (a) for a non-constant rational function.
- (c) Show that if f is meromorphic function on a Riemann surface and x is a pole of f, then the order of the pole x equals $\nu(f,x)$.

4. Problem

Suppose that $f:X\to Y$ is a proper, non-constant holomorphic map between Riemann surfaces. For each $y\in Y$ we define an integer d(y) by

$$d(y) = \sum_{x \in f^{-1}(y)} \nu(f, x) .$$

- (a) Show that for $y \notin B$ we have $d(y) = |f^{-1}(y)|$.
- (b) Show that the integer d(y) does not depend on $y \in Y$, called the *degree* of the map f.

(c) What is the degree of a non-constant polynomial or rational function (as maps $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$)?

5. Problem

Let X be a compact Riemann surface. Prove that if there is a meromorphic function on X having exactly one pole, and that pole has order 1, then X is biholomorphic to the Riemann sphere.

6. Problem

Let $P \in \mathbb{C}[z, w]$ be an irreducible polynomial

$$P(z,w) = w^{n} + p_{n-1}(z)w^{n-1} + \ldots + p_{1}(z)w + p_{0}(z),$$

such that $(\partial P/\partial z, \partial P/\partial w) \neq (0, 0)$.

Consider the Riemann surface $X = \{P(z, w) = 0\}$. Show that the projection π of X to the z-plane is a proper map and calculate its degree.