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Motivation

We will study large N behavior of the integral of the following type∫
C⊗N
|∆(z)|2βe−N

∑
i W (zi )

N∏
i=1

d2zi

W = |z|2 , β = 1 (Ginibre)
W = V (|z|2) +

∑
k tkzk + t̄k z̄k , β = 1 (Chau, Yu, Zaboronsky)

W is arbitrary real (Wiegmann-Zabrodin)
This integral appears in the quantum Hall effect.
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Quantum Hall effect

Observed in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields. Hall conductance is
quantized σH = I/VH = ν, where ν is integer for integer QHE, or a
fraction for fractional QHE. Involves many (N ∼ 106) electrons on
lowest Landau level, described by a collective (Laughlin) state.

Ψ({zi}) =
N∏

i<j

(zi − zj)
βe−

B
2
∑

i |zi |2 , β = 1/ν ∈ Z+
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Motivation

Quantum Hall effect happens in a planar sample. Here we will ask, what
happens when QHE (Laughlin states) is considered on a curved geometry
instead of a perfectly flat plane. So far our methods allow us to study what
happens in the “bulk”, neglecting effects of the boundary. The main question
is to calculate the response of the system to the curvature of the sample.

R(z) = 2
∫

potato
R(z)d2z = 2

The information about how curved is the sample is encoded by a
single function, called “scalar curvature” R(z). We ask: how does the
density profile of electrons depend on R(z)?
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Motivation

Same question for higher-genus surfaces. At β = 1 (integer quantum
Hall) we also can find large N scaling limit on any Riemann surface
with any metric

QHE can be defined on higher-dimensional Kähler manifolds
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Motivation

In physics one can obtain important information about the system by putting it
on a manifold with a Riemannian metric

ds2 = g(z, z̄)dzdz̄

Prototypical example (Polyakov, 1981): CFT partition function on a compact
Riemann surface (M,g0) has the following behavior under the transformation
of the reference metric g0 to a new metric g = e2σg0

log
Z CFT (g)

Z CFT (g0)
=

c
12π

SL(g0, σ),

where c ∈ R is the central charge of the CFT, and the Liouville action is

SL(g0, σ) =

∫
M

(∂σ∂̄σ + R0σ)d2z,

and R0 = − 1√
g0
∂∂̄ log

√
g0 is the scalar curvature of g0.
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Lowest Landau level on a Riemann surface

The lowest Landau level wave functions on the plane in constant magnetic
field B are given by

ψk (z, z̄) = zk e−B|z|2 , k = 0,1...∞ (or total flux
∫

B),

Constant magnetic field on a Riemann surface M with the metric g0:
B0 = dA = kg0. Shrödinger equation for the lowest energy level reduces to

(∂̄ + Az̄)ψ = 0, where Az̄ = −k ∂̄ log h0

with many solutions ψ0
i (z, z̄) = si (z)hk

0(z, z̄). Mathematically, magnetic field is
described by the holomorphic line bundle Lk → M, si (z) is the basis of
holomorphic sections (i = 1, ..,Nk ). Examples:

S2, si (z) = z i−1, i = 1, .., k + 1.

T 2, si (z) = θ i
k ,0

(kz, kτ), i = 1, .., k

on a surface of genus h there are Nk = k − h + 1 sections.
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Kähler parameterization of the metric

In two dimensions we are used to parameterizing the metric in
conformal class.

g|dz|2 = e2σ(z,z̄)g0|dz|2

Landau levels prefer Kähler parameterization (Kähler class)

g|dz|2 = (g0 + ∂∂̄φ)|dz|2

where the scalar function φ(z, z̄) is called Kähler potential. QHE
droplet is incompressible – deformations have the same area, and all
metrics in the Kähler class have the same area.
If ψi(z, z̄) = si(z)hk

0(z, z̄) are normalized LLL wave functions for the
magnetic field B0 = kg0, then (non-normalized) wave functions for the
magnetic field B = k(g0 + ∂∂̄φ) are

ψi(z, z̄) = si(z)hk
0(z, z̄)e−kφ(z,z̄)
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Laughlin wave function on Riemann surface

The Laughlin wave function of Nk non-interacting fermions (integer
QHE) is given by Slater determinant

Ψ(z1, . . . , zNk ) =
1√
Nk !

detψi(zj)

=
1√
Nk !

[det si(zj)] ·
Nk∏
j=1

hk
0(zj , z̄j) · e−k

∑
j φ(zj ,z̄j )

where I plugged LLL wavefunctions on curved metric

ψi(z, z̄) = si(z)hk
0(z, z̄)e−kφ(z,z̄)

The Laughlin wave function for the fractional QHE is

Ψβ(z1, . . . , zNk ) =
1√
Nk !

(
detψi(zj)

)β
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Partition function for integer QHE

Partition function (generating functional)

Z QHE (g0,g) =

∫
M⊗Nk

|Ψ(z1, . . . , zNk )|2
Nk∏
i=1

√
gd2zi =

=
1

Nk !

∫
M⊗Nk

|det si(zj)|2e−k
∑

i φ(zi ,z̄i )
Nk∏
i=1

hk
0(zi , z̄i)

√
gd2zi .

Varying Z QHE (g0,g) with respect to δφ(z) allows to define density
correlation functions ρ(z) = 1

k
∑

i δ(z − zi). On the complex plane,
Wiegmann-Zabrodin (2006):

Z FQHE ,S2
(W ) =

1
N!

∫
C⊗N
|∆(z)|2βe−N

∑
i W (zi )

N∏
i=1

d2zi ,
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Derivation

The integer QHE partition function enjoys determinantal representation

Z QHE (g0,g) = det
ij

∫
M

s̄isjhk
0e−kφ√gd2z,

studied by Donaldson (2004). Variation of the free energy wrt δφ(z)

δ log Z QHE (g0,g) =

∫
M

(
−kρk + ∆ρk

)
δφ
√

gd2z.

is controlled by the density of states function

ρk (z) =

Nk∑
i=1

ψ̄i(z)ψi(z) =

Nk∑
i=1

|si(z)|2hk
0e−kφ.

In math this is known as the Bergman kernel on the diagonal.
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Bergman kernel

Density function (Bergman kernel) has a local expansion for large k

ρk (z) =

Nk∑
i=1

ψ̄i(z)ψi(z) =

Nk∑
i=1

|si(z)|2hk
0e−kφ

= kn
(

1 +
1

2k
R(z) +

1
3k2 ∆R + ...

)
known as Tian-Yau-Zelditch expansion (Zelditch’ 98). Total number of

states is Nk =
∫

M ρk (z)gd2z, in complex dimension n = 1 we get

Nk = k +
2− 2h

2

(Riemann-Roch)
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Bergman kernel from path integral

In physics the Bergman kernel expansion can be derived from the path
integral for a particle in the magnetic field B = dA = kg (Douglas, S.K.,
2008), taking large time limit of

ρk (z) = lim
T→∞

〈z|e−TH |z〉 =

= lim
T→∞

∫ z(T )=z

z(0)=z
e−

1
~
∫ T

0 dt (gaāża ˙̄z
ā
+Aaża)

∏
0<t<T

√
g(z(t))Dz(t)Dz̄(t) =

= kn
[
1 +

~
2k

R +
~2

k2

(
1
3

∆R +
1
24
|Riem|2 − 1

6
|Ric|2 +

1
8

R2
)

+ . . .

]
.
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Derivation, cont’d

Using the expansion of ρk we can integrate out the free energy order
by order in k (in principle to all orders)

δ log Z QHE (g0,g) =

∫
M

(
−kρk + ∆ρk

)
δφgd2z

log Z QHE (g0,g) = −2πk2SAY (g0, φ)+
k
2

SM(g0, φ)+
1

12π
SL(g0, φ)+O(1/k)

where the following functionals appear

SAY (g0, φ) =

∫
M

(1
2
φ∂∂̄φ+ φg0

)
d2z Aubin− Yau

SM(g0, φ) =

∫
M

(
−φR0 + g log

g
g0

)
d2z Mabuchi

SL(g0, σ) =

∫
M

(∂σ∂̄σ + R0σ)d2z, Liouville
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Derivation, cont’d

All these functionals satisfy one-cocycle condition on the space of metrics:
S(g0,g2) = S(g0,g1) + S(g1,g2). Starting from order 1/k this becomes easy,
since S(g0,g) = S(g)− S(g0) (exact one-cocycle):

log Z QHE (g0,g) = −2πk2SAY (g0, φ) +
k
2

SM(g0, φ) +
1

12π
SL(g0, φ)

− 5
96πk

(∫
M

R2gd2z −
∫

M
R2

0g0d2z
)

+ ...

Conjecture: all remainder terms (starting order 1/k and lower) are exact
one-cocycles.
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1

2880πk2
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M
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∫

M
(29R3

0 − 66R0∆0R0) g0d2z
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Fractional QHE (any β)

The large N expansion was derived by Can, Laskin, Wiegmann (2014),
who generalized WZ loop equation method to the sphere (more in the
next talk by Tankut Can)
We rederive this expansion by a different method, based on free field
representation (check arxiv on Monday). We also propose a new path
integral parametrix of the remainder series

log Z FQHE (g0,g) = −β2πk2SAY (g0, φ) + β
k
2

SM(g0, φ) +
3β − 1

24π
SL(g0, φ)+

+ log
∫ (∫

M
ei
√
βσ(z)√gd2z

)Nk

e−
1

4π S(g,σ)Dgσ−

− log
∫ (∫

M
ei
√
βσ(z)√g0d2z

)Nk

e−
1

4π S(g0,σ)Dg0σ
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QHE and random geometry

When Polyakov derived his formula for the conformal field theory
Z CFT (g) = e

c
12π SL(g0,σ)Z CFT (g0), he immediately realized that it can be used to

define the probability measure on two dimensional metrics

dµL
g = e

c
12π SL(g0,σ)Dg,

thus defining “random geometry”, induced by free fields. This gave rise to a
beautiful subject of Liouville theory and non-critical string theory.
Following the same logic, the QHE effect induces its own “random geometry”:

dµQHE
g = Z QHE (g,g0)Dg

where Dg is an appropriate measure on metrics.

Random normal matrices and Kähler metrics October 27, 2014 18 / 20



Random Kähler metrics

With F.Ferrari and S.Zelditch we develop an approach to random metrics,
based on Kähler geometry. Consider Bergman metrics

gB =
1
k
∂∂̄ log

Nk∑
i,j

s̄i (z̄)Hijsj (z), where H† = H, and positive− def.

As Nk →∞, the space of Bergman metrics (space of positive-definite
hermitian matrices) approximates the space of all Kähler metrics. The
(regularized) sum over the metrics is given by the large N scaling limit

dµ(H) = e−γS(H)(det H)−Nk [dH], [dH] =
∏
i,j

dRe Hijd Im Hij

where S(H) is regularized action, given by one of the functionals (Aubin-Yau,
Mabuchi, Liouville). This partition function is not eigenvalue-type
[dH] = [dλ][dU]. Measure dµ(H) is probability measure for γ > γcrit.
Convergence of these integrals is related to stability in Kähler geometry (SK,
Zelditch 1404.0659)
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Thank you
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