
LECTURE 12: THETA DIVISOR

12.1. Zeroes of the Riemann theta function. Obviously ϑ(e) 6≡ 0 for e ∈ Cg because

it is given by a Fourier expansion with non-zero coefficients.

Let now τjl be a period matrix of the Riemann surface X of genus g. The function

theory on X can be studied using the Jacobean embedding, via theta function

f(P ) = ϑ

(∫ P

P0

ωj − ej, τ
)

(1)

as a function of a point P ∈ X, for an arbitrary vector ej ∈ Cg.

This function is locally single-valued, but globally multi-valued on X. It is invariant

around a-cycles. Around b-cycles it transforms as

ϑ

(
−ej +

∫ P

P0

ωj +

∫
bk

ωj, τ

)
= ϑ

(
−ej +

∫ P

P0

ωj + τkj, τ

)
= e

−πiτkk−2πi(
∫ P
P0
ωk−ek)ϑ

(
−ej +

∫ P

P0

ωj, τ

)
. (2)

It follows that its zeroes are well-defined on X.

The set of zeroes of theta function is called theta divisor. The goal of this lecture is to

describe the theta divisor in terms of divisors on X.

Theorem 12.1. (Riemann vanishing theorem).

(1) Theta function either vanishes identically f(P ) ≡ 0 on X or has g zeroes (counting

multiplicities) Q1, ..., Qg.

(2) In the latter case there exists a vector ∆j ∈ Cg, such that

g∑
l=1

∫ Ql

P0

ωj = ej −∆j mod Λ. (3)

Proof. (1) Consider the canonical dissection X0 and assume all zeroes are separate

and Qi ∈ X0, P0 ∈ X0. Let δj be small disks around Qj. Consider differential

df/f and apply Stokes theorem

0 =

∫
X0−∪δj

d
df

f
=

∫
∂(X0−∪δj)

df

f
= −

∑
j

∫
∂δj

df

f

+

g∑
l=1

(∫
a−l

−
∫
a+l

+

∫
b−l

−
∫
b+l

)
d log f, (4)
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since df/f is holomorphic in X0 − ∪δj. Since f is invariant under a-cycles, b-

integrals cancel out. Since bl joins a−l and a+l and around bl-cycle we have Eq. (2)

d log f |a−l − d log f |a+l = 2πiωl. Hence

# of zeroes of f =
1

2πi

∑
j

∫
∂δj

df

f
=

g∑
l=1

∫
al

ωl = g. (5)

(2) Here the goal is to derive the formula for the vector of Riemann constants ∆j

∆j =
1

2
+

1

2
τjj −

∑
l 6=j

∫
al

ωl

∫ P

P0

ωj (6)

and the idea is to apply the previous argument to the one form gkdf/f , where

ωk = dgk and gk(P0) = 0 on X0.

0 =

∫
X0−∪δj

d
(
gk
df

f

)
= ... (7)

One can check that ∆j in Eq. (6) is independent of the integration path, but

depends on the base point.

�

12.2. Theta divisor and Xg−1. In Lec. 7.5 we defined the set of positive divisors of

degree n as Xn = X × ...×X/Symn.

Lets denote the image of Xn under the Abel map as W n = I(Xn). Since Abel map does

not distinguish linearly equivalent divisors (Abel theorem Thm. 6.1), W n really acts the

set of equivalence classes of divisors Xn of degree n. From the Jacobi inversion theorem

(sec. 7.5) we also know that I(Xg) is surjective, i.e. W g is equal to the whole of Jac(X).

The following theorem establishes that the theta divisor is isomorphic to W g−1 and

thus to the set of equivalence classes of divisors Xg−1 of degree g − 1.

Theorem 12.2. For a vector ej ∈ Cg.

ϑ(e) = 0 ⇐⇒ e ∈ W g−1 + ∆,

i.e. ϑ(e) vanishes iff ∃D ∈ Xg−1, D > 0, s.t. e = I(D) + ∆.

Proof. First, we prove ⇐. Consider a non-special divisor of degree g, D ∈ Xg, i(D) = 0.

From the proof of Jacobi inversion theorem we know that in a neighborhood of D all

divisors D′ are also non-special. So we will prove the statement for the neighborhood and

extend to all space.

Let D = P1 + ... + Pg and set e = I(D) + ∆. Then consider the function Eq. (1). If

ϑ(I(P )− e) ≡ 0, then for 1 6 j 6 g,

0 = ϑ(I(Pj)− e) = ϑ(I(P1, ...P̂j..., Pg) + ∆)
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where D̂j is deletion of Dj. Thus the statement of the theorem follows.

On the other hand, if ϑ(I(P )− e) 6≡ 0, then by Riemann vanishing theorem, there is a

divisor DQ of g zeroes Ql, l = 1, ..., g, such that e = I(DQ) + ∆. Hence I(DQ) = I(D).

Hence DQ = D + (f), where f is meromorphic. But by assumption i(D) = 0, hence

i(DQ) = 0, because i(·) depends only on divisor class (see sec. 7.2). If f 6≡ const, then

∃f 6≡ const, such that (f) +D = DQ > 0, and (f) > −D, hence i(D) > 0. But i(D) = 0

by assumption ⇒ f = const,⇒ D = DQ and e = I(D) + ∆. Then it follows again that

0 = ϑ(I(Pj)− I(DQ)−∆) = ϑ(I(P )− I(D)−∆) = ϑ(I(P1, ...P̂j..., Pg) + ∆)

.

So we proved that ϑ(I(P1, ..., Pg−1) + ∆) vanishes identically on a full neighborhood

Dg−1, hence identically zero on Dg−1.

Next, let us prove ⇒, i.e. that W g−1 + ∆ is the complete set of zeroes of ϑ in Jac(X).

Suppose ϑ(e) = 0. There exists s 6 g such that

ϑ(I(D1)− I(D2)− e) 6≡ 0 for D1, D2 ∈ Xs

while

ϑ(I(D′1)− I(D′2)− e) = 0 for all D′1, D
′
2 ∈ Xr, 0 6 r < s.

Indeed, by Jacobi inversion we know that I(Xg) is all of Jac(X) and θ(z) 6≡ 0 for all

z ∈ Jac(X). Hence the bound s 6 g.

Let us write D1 = P1 + D′1 and D2 = P2 + D′2 where P1, P2 are two points in D1 and

D2 and D′1, D
′
2 ∈ Xs−1. Consider theta function

f(P ) = ϑ

(∫ P

P2

ω + I(D′1)− I(D′2)− e
)
, P ∈ X.

It vanishes on D2, hence (f) > D2 and by assumption it does not vanish identically.

Hence, by Riemann vanishing the zero divisor D3 := (f) has degree g and satisfies

IP2(D3) = e− IP2(D
′
1) + IP2(D

′
2)−∆P2

where subscript P2 indicates that we take the base point P2. We can write D3 = D2 + D̃,

where deg D̃ = g − s. Then from equation above we get

e = IP2(D2 + D̃) + IP2(D
′
1)− IP2(D

′
2) + ∆P2 = IP2(D̃ +D′1) + ∆P2 . (8)

Finally, we note that deg(D̃ +D′1) = g − s+ s− 1 = g − 1. �

One might wonder why in Eq. (8) the base point is P2 and not P0. However,

Proposition 12.1. For any D ∈ Xg−1, IP0(D) + ∆P0 ∈ Jac(X) is independent of P0.



4 LECTURE 12: THETA DIVISOR

We have IP0(D) = IP1(D) + (g − 1)IP0(P1). From Eq. (8) it follows immediately, that

∆P0 = ∆P1 − (g − 1)IP0(P1).

Corollary 12.2. ϑ(W r + ∆) = 0 for 0 6 r 6 g − 1. In particular ϑ(∆) = 0.

Proof. Apply the Thm. 12.2 to the divisor D = P0 + ...+ P0︸ ︷︷ ︸
r times

+Pr+1+...+Pg−1 ∈ Xg−1. �

12.3. Zeroes of f(P ) and special divisors. .

Let us return to the theta function f(P ) = ϑ(I(P )− e) on Riemann surface P ∈ X in

Eq. (1) and determine the vanishing conditions in terms of speciality of divisors.

Proposition 12.3. Let a positive divisor of degree g D ∈ Xg be a Jacobi inversion of

e−∆,

I(D) = e−∆.

Then

(1) f(P ) ≡ 0 iff D is special, i.e. i(D) > 0,

(2) f(P ) 6≡ 0 iff D is non-special, i.e. i(D) = 0. Then D is zero divisor of f .

Proof. For (1):

by Thm. 12.2, ϑ(I(P )− e) ≡ 0⇒ ∃DP ∈ Xg−1, such that

−I(P ) + e = I(DP ) + ∆

Using I(D) = e−∆ we get −I(P ) + I(D) + ∆ = I(DP ) + ∆. Hence I(D) = I(DP + P ).

By Abel theorem D ≡ DP + P are linearly equivalent, i.e. ∃ meromorphic f , vanishing

at an arbitrary point P ∈ X. Hence l(−D) > 1, or equivalently i(D) > 0.

On the other hand, if i(D) > 0⇒ ∃f meromorphic, f 6≡ const, vanishing at an arbitrary

point on X, e.g., for example at P ∈ X and having pole at some of the points in D. Then

−I(P )+e = −I(P )+I(D)+∆ = I(D−P )+∆ = I(D+(f)−P )+∆ and D+(f)−P > 0

and of degree g. Hence by Thm. 12.2, ϑ(I(P )− e) = 0.

Next, for (2), suppose D is non-special. Then ϑ(e− I(P )) = ϑ(I(D)− I(P ) + ∆) 6≡ 0

as it is not of the form as in Thm. 12.2. But Riemann vanishing immediately implies for

the divisor (f(P )) of zeroes of f(P ): I((f(P ))) = e−∆ = I(D). Since D is non-special,

this yields D = (f(P )). �
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