LECTURE 12: THETA DIVISOR

12.1. Zeroes of the Riemann theta function. Obviously $\vartheta(e) \neq 0$ for $e \in \mathbb{C}^g$ because it is given by a Fourier expansion with non-zero coefficients.

Let now τ_{jl} be a period matrix of the Riemann surface X of genus g. The function theory on X can be studied using the Jacobean embedding, via theta function

$$f(P) = \vartheta \left(\int_{P_0}^{P} \omega_j - e_j, \tau \right)$$
(1)

as a function of a point $P \in X$, for an arbitrary vector $e_j \in \mathbb{C}^g$.

This function is locally single-valued, but globally multi-valued on X. It is invariant around *a*-cycles. Around *b*-cycles it transforms as

$$\vartheta \left(-e_j + \int_{P_0}^P \omega_j + \int_{b_k} \omega_j, \tau \right) = \vartheta \left(-e_j + \int_{P_0}^P \omega_j + \tau_{kj}, \tau \right)$$
$$= e^{-\pi i \tau_{kk} - 2\pi i (\int_{P_0}^P \omega_k - e_k)} \vartheta \left(-e_j + \int_{P_0}^P \omega_j, \tau \right). \quad (2)$$

It follows that its zeroes are well-defined on X.

The set of zeroes of theta function is called *theta divisor*. The goal of this lecture is to describe the theta divisor in terms of divisors on X.

THEOREM 12.1. (Riemann vanishing theorem).

- (1) Theta function either vanishes identically $f(P) \equiv 0$ on X or has g zeroes (counting multiplicities) $Q_1, ..., Q_g$.
- (2) In the latter case there exists a vector $\Delta_j \in \mathbb{C}^g$, such that

$$\sum_{l=1}^{g} \int_{P_0}^{Q_l} \omega_j = e_j - \Delta_j \mod \Lambda.$$
(3)

Proof. (1) Consider the canonical dissection X_0 and assume all zeroes are separate and $Q_i \in X_0, P_0 \in X_0$. Let δ_j be small disks around Q_j . Consider differential df/f and apply Stokes theorem

$$0 = \int_{X_0 - \bigcup \delta_j} d\frac{df}{f} = \int_{\partial(X_0 - \bigcup \delta_j)} \frac{df}{f} = -\sum_j \int_{\partial \delta_j} \frac{df}{f} + \sum_{l=1}^g \left(\int_{a_l^-} - \int_{a_l^+} + \int_{b_l^-} - \int_{b_l^+} \right) d\log f, \quad (4)$$

since df/f is holomorphic in $X_0 - \bigcup \delta_j$. Since f is invariant under *a*-cycles, *b*-integrals cancel out. Since b_l joins a_l^- and a_l^+ and around b_l -cycle we have Eq. (2) $d \log f|_{a_l^-} - d \log f|_{a_l^+} = 2\pi i \omega_l$. Hence

of zeroes of
$$f = \frac{1}{2\pi i} \sum_{j} \int_{\partial \delta_j} \frac{df}{f} = \sum_{l=1}^{g} \int_{a_l} \omega_l = g.$$
 (5)

(2) Here the goal is to derive the formula for the vector of Riemann constants Δ_j

$$\Delta_j = \frac{1}{2} + \frac{1}{2}\tau_{jj} - \sum_{l \neq j} \int_{a_l} \omega_l \int_{P_0}^P \omega_j \tag{6}$$

and the idea is to apply the previous argument to the one form $g_k df/f$, where $\omega_k = dg_k$ and $g_k(P_0) = 0$ on X_0 .

$$0 = \int_{X_0 - \cup \delta_j} d\left(g_k \frac{df}{f}\right) = \dots \tag{7}$$

One can check that Δ_j in Eq. (6) is independent of the integration path, but depends on the base point.

12.2. Theta divisor and X_{g-1} . In Lec. 7.5 we defined the set of positive divisors of degree n as $X_n = X \times ... \times X/Sym_n$.

Lets denote the image of X_n under the Abel map as $W^n = I(X_n)$. Since Abel map does not distinguish linearly equivalent divisors (Abel theorem Thm. 6.1), W^n really acts the set of equivalence classes of divisors X_n of degree n. From the Jacobi inversion theorem (sec. 7.5) we also know that $I(X_g)$ is surjective, i.e. W^g is equal to the whole of Jac(X).

The following theorem establishes that the theta divisor is isomorphic to W^{g-1} and thus to the set of equivalence classes of divisors X_{g-1} of degree g-1.

THEOREM 12.2. For a vector $e_i \in \mathbb{C}^g$.

$$\vartheta(e) = 0 \iff e \in W^{g-1} + \Delta,$$

i.e. $\vartheta(e)$ vanishes iff $\exists D \in X_{g-1}, D > 0$, s.t. $e = I(D) + \Delta$.

Proof. First, we prove \Leftarrow . Consider a non-special divisor of degree $g, D \in X^g, i(D) = 0$. From the proof of Jacobi inversion theorem we know that in a neighborhood of D all divisors D' are also non-special. So we will prove the statement for the neighborhood and extend to all space.

Let $D = P_1 + ... + P_g$ and set $e = I(D) + \Delta$. Then consider the function Eq. (1). If $\vartheta(I(P) - e) \equiv 0$, then for $1 \leq j \leq g$,

$$0 = \vartheta(I(P_j) - e) = \vartheta(I(P_1, \dots P_j, \dots, P_g) + \Delta)$$

where \hat{D}_j is deletion of D_j . Thus the statement of the theorem follows.

On the other hand, if $\vartheta(I(P) - e) \neq 0$, then by Riemann vanishing theorem, there is a divisor D_Q of g zeroes Q_l , l = 1, ..., g, such that $e = I(D_Q) + \Delta$. Hence $I(D_Q) = I(D)$. Hence $D_Q = D + (f)$, where f is meromorphic. But by assumption i(D) = 0, hence $i(D_Q) = 0$, because $i(\cdot)$ depends only on divisor class (see sec. 7.2). If $f \neq const$, then $\exists f \neq const$, such that $(f) + D = D_Q > 0$, and (f) > -D, hence i(D) > 0. But i(D) = 0 by assumption $\Rightarrow f = const, \Rightarrow D = D_Q$ and $e = I(D) + \Delta$. Then it follows again that

$$0 = \vartheta(I(P_j) - I(D_Q) - \Delta) = \vartheta(I(P) - I(D) - \Delta) = \vartheta(I(P_1, \dots \hat{P}_j, \dots, P_g) + \Delta)$$

So we proved that $\vartheta(I(P_1, ..., P_{g-1}) + \Delta)$ vanishes identically on a full neighborhood D^{g-1} , hence identically zero on D^{g-1} .

Next, let us prove \Rightarrow , i.e. that $W^{g-1} + \Delta$ is the complete set of zeroes of ϑ in Jac(X). Suppose $\vartheta(e) = 0$. There exists $s \leq g$ such that

$$\vartheta(I(D_1) - I(D_2) - e) \not\equiv 0 \quad \text{for } D_1, D_2 \in X_s$$

while

$$\vartheta(I(D'_1) - I(D'_2) - e) = 0$$
 for all $D'_1, D'_2 \in X_r, \ 0 \le r < s.$

Indeed, by Jacobi inversion we know that $I(X_g)$ is all of Jac(X) and $\theta(z) \neq 0$ for all $z \in Jac(X)$. Hence the bound $s \leq g$.

Let us write $D_1 = P_1 + D'_1$ and $D_2 = P_2 + D'_2$ where P_1, P_2 are two points in D_1 and D_2 and $D'_1, D'_2 \in X_{s-1}$. Consider theta function

$$f(P) = \vartheta \left(\int_{P_2}^P \omega + I(D_1') - I(D_2') - e \right), \quad P \in X.$$

It vanishes on D_2 , hence $(f) \ge D_2$ and by assumption it does not vanish identically. Hence, by Riemann vanishing the zero divisor $D_3 := (f)$ has degree g and satisfies

$$I_{P_2}(D_3) = e - I_{P_2}(D'_1) + I_{P_2}(D'_2) - \Delta_{P_2}$$

where subscript P_2 indicates that we take the base point P_2 . We can write $D_3 = D_2 + \tilde{D}$, where deg $\tilde{D} = g - s$. Then from equation above we get

$$e = I_{P_2}(D_2 + \tilde{D}) + I_{P_2}(D'_1) - I_{P_2}(D'_2) + \Delta_{P_2} = I_{P_2}(\tilde{D} + D'_1) + \Delta_{P_2}.$$
(8)

Finally, we note that $\deg(\tilde{D} + D'_1) = g - s + s - 1 = g - 1$.

One might wonder why in Eq. (8) the base point is P_2 and not P_0 . However,

PROPOSITION 12.1. For any $D \in X_{g-1}$, $I_{P_0}(D) + \Delta_{P_0} \in Jac(X)$ is independent of P_0 .

We have $I_{P_0}(D) = I_{P_1}(D) + (g-1)I_{P_0}(P_1)$. From Eq. (8) it follows immediately, that $\Delta_{P_0} = \Delta_{P_1} - (g-1)I_{P_0}(P_1)$.

COROLLARY 12.2. $\vartheta(W^r + \Delta) = 0$ for $0 \leq r \leq g - 1$. In particular $\vartheta(\Delta) = 0$.

Proof. Apply the Thm. 12.2 to the divisor $D = \underbrace{P_0 + \ldots + P_0}_{r \text{ times}} + P_{r+1} + \ldots + P_{g-1} \in X_{g-1}$. \Box

12.3. Zeroes of f(P) and special divisors.

Let us return to the theta function $f(P) = \vartheta(I(P) - e)$ on Riemann surface $P \in X$ in Eq. (1) and determine the vanishing conditions in terms of speciality of divisors.

PROPOSITION 12.3. Let a positive divisor of degree $g \ D \in X_g$ be a Jacobi inversion of $e - \Delta$,

$$I(D) = e - \Delta.$$

Then

(1) $f(P) \equiv 0$ iff D is special, i.e. i(D) > 0,

(2) $f(P) \neq 0$ iff D is non-special, i.e. i(D) = 0. Then D is zero divisor of f.

Proof. For (1):

by Thm. 12.2, $\vartheta(I(P) - e) \equiv 0 \Rightarrow \exists D_P \in X_{q-1}$, such that

$$-I(P) + e = I(D_P) + \Delta$$

Using $I(D) = e - \Delta$ we get $-I(P) + I(D) + \Delta = I(D_P) + \Delta$. Hence $I(D) = I(D_P + P)$. By Abel theorem $D \equiv D_P + P$ are linearly equivalent, i.e. \exists meromorphic f, vanishing at an arbitrary point $P \in X$. Hence l(-D) > 1, or equivalently i(D) > 0.

On the other hand, if $i(D) > 0 \Rightarrow \exists f$ meromorphic, $f \not\equiv const$, vanishing at an arbitrary point on X, e.g., for example at $P \in X$ and having pole at some of the points in D. Then $-I(P) + e = -I(P) + I(D) + \Delta = I(D-P) + \Delta = I(D+(f)-P) + \Delta$ and D+(f)-P > 0and of degree g. Hence by Thm. 12.2, $\vartheta(I(P) - e) = 0$.

Next, for (2), suppose D is non-special. Then $\vartheta(e - I(P)) = \vartheta(I(D) - I(P) + \Delta) \neq 0$ as it is not of the form as in Thm. 12.2. But Riemann vanishing immediately implies for the divisor (f(P)) of zeroes of f(P): $I((f(P))) = e - \Delta = I(D)$. Since D is non-special, this yields D = (f(P)).

4