
LECTURE 13: PRIME FORM

13.1. Prime function. Eventually we would like to make meromorphic functions out of

ratios of theta functions f(P ), as we did in the case of the torus. For this we investigate

the function

Ee(x, y) = ϑ

(
e−

∫ y

x

ω

)
, (1)

where e ∈ Cg is fixed and satisfies ϑ(e) = 0.

Lemma 13.1. Let e ∈ Cg satisfy ϑ(e) = 0 and Ee(x, y) 6≡ 0. Then there are 2g− 2 points

(counting multiplicities) P1, ..., Pg−1, Q1, ..., Qg−1 ∈ X such that Ee(x, y) = 0 ⇐⇒ (x =

y), or x = Pj,∀y ∈ X or y = Qj,∀x ∈ X.

Proof. The proof is an immediate consequence of the previous results. Indeed, from

Ee(x, y) 6≡ 0 by Riemann vanishing there are exactly g zeroes Q1, .., Qg, where Ee(x,Qj) =

0, such that Ix(DQ) ≡ e −∆x. Since Ee(0, 0) = ϑ(e) = 0, one of these zeroes is Qg = x

and there exactly g − 1 left.

On the other hand, ϑ(e) = 0 → ϑ(−e) = 0 and Ee(x, y) = E−e(y, x). Applying the

same argument as above we obtain g zeroes P1, ..., Pg, such that Iy(DP ) ≡ −e −∆y and

one of those is Pg = y. �

13.2. Constructing meromorphic functions. This can be done with the help of the

function Ee(x, y). Consider the divisors of zeroes DQ and poles DP , both of degree d and

I(DQ) = I(DP ), (2)

by Abel theorem. Then choose e ∈ Cg, such that

ϑ(e) = 0, Ee(Pj, y) 6≡ 0, Ee(Qj, y) 6≡ 0.

Then the function

f(y) =

∏d
j=1Ee(Qj, y)∏d
j=1Ee(Pj, y)

(3)

will have required poles and zeroes. But one has to prove that its a function, i.e. single-

valued along a and b period transforms. There is a choice of contours in Eq. (3) which

achieves just that (see Mumford, p.159). Choose paths σj from P0 to Pj, resp., τj from

P0 to Pj, so that
d∑
j=1

∫
σj

ω =
d∑
j=1

∫
τj

ω. (4)

1
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By assumption Eq. (2) this is always true mod Λ, but one could tweak the contours such

that its true in Cg. Then in Eq. (3) choose the contours from Qj , resp., Pj, to y as −τj,
resp., −σj, followed by the same contour form P0 to y everywhere. Then along a-cycles

f(y) is invariant and along bk-cycle it pick up the factor∏d
j=1 exp

(
−πiτkk − 2πi(

∫ y
Qj
ωk + ek)

)
∏d

j=1 exp
(
−πiτkk − 2πi(

∫ y
Pj
ωk + ek)

) = 1,

due to the condition (4).

The function Ee(x, y) is called Prime function, it is a close analog of x − y and of

ϑ1(x − y) on a genus g > 1 Riemann surface. There exists even better object, called

”Prime form”, whose divisor of zeroes is just the diagonal E(x, y) = 0 ⇐⇒ x = y.

13.3. Vector of Riemann constants and canonical divisor.

Lemma 13.2. Vector of Riemann constants ∆ is related to canonical divisor as

2∆ = −I(K)

Proof. Consider a positive divisor D1 ∈ Xg−1, then ϑ function vanishes at

e = I(D1) + ∆.

Then ϑ(−e) = 0 also vanishes by evenness. Hence ∃D2 ∈ Xg−1, such that

−e = I(D2) + ∆.

Adding up, we obtain

2∆ = −I(D1 +D2),

for ∀D1 ∈ Xg. Now we need to show that D = D1 + D2 = (ω), where ω is an Abelian

differential. This means i(D) > 0, or, equivalently by Riemann-Roch, h0(D) − 2g + 2 +

g − 1 = i(D) > 0, hence h0(D) > g.

For proof we refer to Farkas-Kra, p.298.

�

13.4. Odd theta characteristics. Consider half-periods of Λ

δ = δ′ + δ′′τ, δ′, δ′′ ∈ {0, 1

2
}g,

These are called half-integer characteristics or theta characteristics. Their number is 4g.

Recall the definition of theta function with characteristics (lecture 9, Eq. 15),

ϑ
[

δ′

δ′′

]
(z) = eπiδ

′τδ′+2πiδ′(z+δ′′)ϑ(z + δ′′ + δ′τ). (5)

Then we have

ϑ
[

δ′

δ′′

]
(z) = e−4πi(δ

′,δ′′)ϑ
[

δ′

δ′′

]
(−z),
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where (δ′, δ′′) =
∑

j δ
′
jδ
′′
j . Depending on parity of 4(δ′, δ′′) the theta characteristic is called

odd or even. It follows that ϑ
[

δ′

δ′′

]
(0) vanishes, or equivalently ϑ(δ) = 0 for odd theta

characteristics.

Proposition 13.3. There is a divisor Dδ ∈ Xg−1 corresponding to each odd theta char-

acteristic

δ = I(Dδ) + ∆, (6)

such that 2Dδ ≡ K.

Proof. From Thm. 12.2 (lecture 12), from ϑ(δ) = 0 it follows that δ = I(Dδ) + ∆, Dδ ∈
Xg−1. Then

δ = I(Dδ) + ∆⇒ 2δ = I(2Dδ) + 2∆⇒ I(2Dδ) = −2∆ = I(K)

Since 2δ ∈ Λ and by Lemma 13.2. Then by Abel Thm., 2Dδ ≡ K. �

It follows that there exists holomorphic differential ωδ such that (ωδ) = 2Dδ. Let us

now construct it in terms of theta functions.

Theta characteristic δ is called non-singular, if there exists non-vanishing partial deriva-

tive of ϑ at δ, ∂ϑ
∂zj

(δ) 6= 0, at least for some j’s. Existence of non-singular odd theta charac-

teristic follows from Lefschetz embedding theorem (lecture 9, and Mumford p. 128). A ver-

sion of this theorem states that z ∈ Cg/Λ→ (..., ϑ[δ′, δ′′](z), ...) ∈ P 2g−1, δ′, δ′′ ∈ 1
2
Zg/Zg

is an embedding. Hence dϑ[δ′, δ′′](z) 6≡ 0 partial derivatives do not vanish simultaneously

at any point. Let us look at ϑ[δ′, δ′′](0). If δ is even, then ϑ[δ](0) is even, so dϑ(0) ≡ 0

for all even characteristics. But there should be some dϑ(0) 6= 0, and by necessity it

corresponds to some odd δ.

Lemma 13.4. Let δ be non-singular odd theta characteristic, Dδ ∈ Xg−1 is the corre-

sponding divisor Prop. 13.3, Then the holomorphic differential ωδ, s.t. (ωδ) = 2Dδ is

given by

ωδ =

g∑
j=1

∂ϑ

∂zj
(δ)ωj,

where ωj is the canonical basis of holomorphic differentials.

Proof. For any positive divisor D = P1 + ... + Pg−1 ∈ Xg we have ϑ(I(D) + ∆) ≡ 0.

Differentiating this with respect to Pj we get

ωD =
∑
j

∂ϑ

∂zj
(I(D) + ∆)ωj(Pk) = 0,

for all Pk. Specifying this for non-singular odd theta characteristic, ωδ =
∑g

j=1
∂ϑ
∂zj

(δ)ωj
vanishes at all Pk ∈ Dδ, hence (ωδ) > Dδ.
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Let us now demonstrate that Dδ is uniquely determined by Eq. (6), i.e. i(Dδ) = 1.

Suppose i(Dδ) > 1, i.e. ∃f ∈ H0(Dδ), f 6≡ const. The divisor of f(P ) − f(P0) for an

arbitrary P0 is P0 +DP0 −Dδ with some DP0 ∈ Xg−2, DP0 > 0. Then

ωδ =

g∑
j=1

∂ϑ

∂zj
(δ)ωj

vanishes at Dδ and also at P0 + DP0 , because
∑g

j=1
∂ϑ
∂zj

(δ)ωj =
∑g

j=1
∂ϑ
∂zj

(I(D) + ∆)ωj =∑g
j=1

∂ϑ
∂zj

(I(D+ (f)) + ∆)ωj =
∑g

j=1
∂ϑ
∂zj

(I(P0 +DP0) + ∆)ωj. Thus ωδ(P0) = 0, but P0 is

arbitrary. Hence ωδ(P0) ≡ 0, but this is impossible by the assumption of non-singularity

of δ. Thus Dδ is unique and i(Dδ) = 1. We have shown that (ωδ) > Dδ and proved that

the space of holomorphic differentials ω vanishing at Dδ is one dimensional, hence ωδ is

given by the formula above, up to multiplication by a constant. �

In particular, all zeroes of ωδ are double zeroes.

13.5. Prime form. We would like to construct a holomorphic function E(x, y) vanishing

to first order on the diagonal, and otherwise non-vanishing, i.e. improve the function

Ee(x, y) of sec. 13.1. On the sphere there is x− y, but it is not a function, as it blows up

at infinity. Mumford (p.3.207) suggests to consider instead a (−1
2
,−1

2
)-differential

E(x, y) =
x− y√
dx
√
dy
, (7)

where
√
dx is a formally defined half-differential, or ”spinor”, which transforms as x′ =

1/x,
√
dx′ =

√
−1
x
dx. Then

E(x′, y′) =
x′ − y′√
dx′
√
dy′

=
1/x− 1/y

−
√
dx/x ·

√
dy/y

= E(x, y),

so its well-defined on P1 × P1.

On a general Riemann surface the generalization of (7) is called the Prime form. In the

numerator we can put the Prime function Eq. (1). It vanishes on the diagonal as required,

but it has extra zeroes. To compensate for that we divide by something to cancel out

those zeroes.

If holomorphic differential has only even zeroes, as e.g. ωδ, then its square-root
√
ωδ is

the half-differential (spinor). Consider

E(x, y) =
ϑ
[

δ′

δ′′

]( ∫ y
x
ω
)

√
ωδ(x)

√
ωδ(y)

(8)

This function has the following properties
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• It is antisymmetric

E(x, y) = −E(y, x).

This follows from the property of odd theta characteristic.

• It vanishes only on the diagonal to first order. Indeed

ϑ
[

δ′

δ′′

]( ∫ y

x

ω
)
∼ ϑ

(
δ −

∫ y

x

ω
)

and the zeroes of the latter are characterized by Lemma 13.1, taking into account

Eq. (6), δ = I(Dδ) + ∆: its either (y = x), or y = Pk ∈ Dδ and the same for x:

(x = y), x = Pk ∈ Dδ.

Now,
√
ωδ(x) has zeroes on Dδ, so the extra unwanted zeroes cancel out between

numerator and denominator.

For the near-diagonal behavior one can write

E(x, y) =
x− y√
dx
√
dy

(1 +O((x− y)2)))

• Prime form is independent of the choice of the odd non-singular characteristic.

This follows from the fact, that the periodicity properties of the Prime form

along a, b-cycles are independent of δ. Indeed, it is invariant under a-cycles and

for b-cycle it transforms as

E(x+ bk, y) = e−πiτkk−2πi(
∫ x
y ωk)E(x, y). (9)

• If D =
∑
njPj is a divisor of meromorphic function, then f ∼

∏
j E(x, Pj)

nj .

The spinor, or half-differential can be described in terms of line bundles as assignment

of holomorphic functions fα for open covering Uα, such that

1. fα
√
dzα = fβ

√
dzβ 2. cocycle condition for triple intersections.

In other words, it is a section of line bundle S, such that S2 = K. Degree of S is g− 1.

There exists 4g non-isomorphic spin bundles on X of genus g.
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