
LECTURE 6: ABEL THEOREM

6.1. Harmonic differentials. We would like to prove the existence of 2nd and 3rd kind

differentials. Here we sketch the argument, the full construction is based on the decom-

position theorem of differentials on Riemann surface, is covered e.g. in [Jost,FarkasKra].

The Hodge ∗-operator is defined on the differential forms as follows

ω = ωz(z, z̄)dz + ωz̄(z, z̄)dz̄ → ∗ω = −iωz(z, z̄)dz + iωz̄(z, z̄)dz̄.

Clearly ∗2 = 1 and type (1, 0) (resp. (0, 1)) forms form eigenspaces of ∗ with eigenvalues

−i (resp. i).

Let X be a Riemann surface and consider the Hilbert space L2(X) of square-integrable

differentials with the scalar product

(ω1, ω2) =

∫
X

ω1 ∧ ∗ω̄2. (1)

We have: (ω1, ω2) = (ω2, ω1) and (∗ω1, ∗ω2) = (ω1, ω2)

The C1 (continuous first derivatives, i.e., smooth) 1-form ω is closed (resp., co-closed)

if dω = 0 (resp., d ∗ω = 0). The C1 (smooth) 1-form ω is exact (resp., co-exact) if ω = df

(resp., ω = ∗df).

Next we introduce subspaces B and B∗ of exact and co-exact differentials

B = {df |f ∈ C∞(X)},

B∗ = {∗df |f ∈ C∞(X)},

where C∞(X) are smooth functions on X and bar denotes closure in L2(X). If X is

non-compact then we shall take functions with compact support.

B and B∗ are orthogonal, because (df, ∗dg) =
∫
X
df ∧ dg = 0. Consider orthogonal

complements B⊥, B∗⊥ under the norm (1). We have

Lemma 6.1. Let α ∈ L2(X) be of class C1. Then α ∈ B∗⊥ ⇔ dα = 0 and α ∈ B⊥ ⇔
d ∗ α = 0

Proof. Lets do it for α ∈ B⊥,

(α, df) = (df, α) =

∫
X

df̄ ∧ ∗α = −
∫
X

f̄ ∧ d ∗ α = 0,

for any f ∈ C∞(X). Hence d ∗ α = 0. �

Definition 6.2 A differential α is harmonic if it is smooth and both closed and co-closed.
1
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It follows immediately from definition that locally, harmonic differentials have the form

α = fdz + ḡdz̄,

where f, g are holomorphic, and also α = dh, where where h is harmonic function (∂∂̄h =

0). The proof is straightforward and is left as an exercise. Then it follows that

α + i ∗ α (2)

is a holomorphic differential.

Consider now the space H = B⊥∩B∗⊥, which is intersection of orthogonal complements.

All harmonic differentials by definition are in H. The stronger statement is that H consists

only of harmonic differentials (for technical proof based on Weyl’s lemma we refer to Jost

[Theorem 5.2.1]).

Hence the statement is

Corollary 6.3. Every square-integrable differential ω on X is represented by an orthog-

onal sum

ω = df + ∗dg + α

of exact, co-exact and harmonic forms.

This discussion can be continued further to prove that dimH = 2g, dimH1(X,C) = 2g

and the dimension of space of holomorphic differentials is g, see [FarkasKra].

6.2. Existence and uniqueness of differentials of 2nd and 3rd kind.

Theorem 6.4. Given points P,Q on a compact Riemann surface X and a canonical basis

of cycles there exists unique normalized Abelian differentials η
(N)
P , N ∈ N of 2nd kind and

ηPQ of 3rd kind.

Proof. Uniqueness of 2nd and 3rd kind differentials follows from simple considerations:

the difference of two normalized differentials is a holomorphic differential with vanishing

a-cycles. Hence it vanishes identically due to Cor. 5.1 ??.

The existence can be verified by the following explicit construction. Consider nested

neighbourhoods P ∈ U0 ⊂ U1 ⊂ X and a C∞(X) interpolating function ρ : ρ = 1 on U0

and ρ = 0 on X\U1. Let z be a local coordinate on U1 centered at P and consider the

differential on X\{P}

ψ = d
(
− ρ

NzN

)
=

(
− ∂ρ

NzN
+

ρ

zN+1

)
dz −

(
∂̄ρ

NzN

)
dz̄.

The (0, 1) part of ψ is smooth on X and following Cor. 6.3 it can be decomposed as

ψ − i ∗ ψ = df + ∗dg + α (3)

into exact, co-exact and harmonic parts. Consider now differential γ = ψ − df .
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The key claim is that γ is harmonic on X\P and γ − dz
zN+1 is harmonic on U0. Indeed,

γ = d
(
− ρ

NzN
− f

)
,

so it is closed on X\P , and from Eq. (3) it follows that γ = i ∗ ψ + ∗dg + α, so it is

co-closed. Hence γ ∈ H(X\P ).

Next, observe that ψ − dz
zN+1 ≡ 0 on U0 by construction. Hence,

γ − dz

zN+1
= −df = ∗dg + α on U0,

so γ ∈ H(U0).

Then the direct corollary of (2) is that the differential η = 1
2
(γ + i ∗ γ) is holomorphic

on X\P and η − dz
zN+1 is holomorphic on U0. Hence η has exactly the pole of the order

N + 1 at P and holomorphic otherwise.

In order to prove the existence of the 3rd kind differential the above construction shall

be applied to

ψz1z2 = d

(
ρ log

z − z1

z − z2

)
,

for z1, z2 ∈ U0. For arbitrary two points P,Q we can do a telescopic sum of ψz1z2 . �

6.3. Divisors of meromorphic functions and Abelian differentials.

Definition 6.5 Divisors on a Riemann surfaces are given by formal finite sums of points

D =
N∑
k=1

nkPk, nk ∈ Z, Pk ∈ X,

and the sum

degD =
N∑
k=1

= nk

is called the degree of D.

Set of divisors Div(X) form an Abelian group with well-defined group operation (sum-

mation) and inverse element (D → −D).

Definition 6.6 Divisor is called positive, if all nk > 0.

Divisor (f) of meromorphic function f is a sum of its zeroes P1, .., PN and poles

Q1, ..., QM with multiplicities

(f) = n1P1 + ...+ nNPN − n′1Q1 − ...− n′MQM .

Recall that zeroes and poles of an Abelian is well defined



4 LECTURE 6: ABEL THEOREM

Definition 6.7 The divisor of Abelian differential ω is the sum of its zeroes and poles

(ω) =
∑
P∈X

ord(P )P.

Here ord(P ) = n0 is the order of zero or singularity in local Laurent expansion h(z) =∑∞
n=n0

hn(z − zP )n in local coordinate at the point P and locally ω = h(z)dz.

Definition 6.8 A divisor is called principal if it is a divisor of a meromorphic function.

Lemma 6.9. Divisor of a meromorphic function has degree zero deg(f) = 0.

Proof. Given a meromorphic function f , consider the Abelian differential df/f . Its

residues are equal to the multiplicities of the zeroes and poles of f . By Lemma 5.5.

??, the sum of residues is zero. �

6.4. Abel theorem. The Abel theorem describes what happens to the principal divisors

under the Abel map, defined in the previous lecture.

Theorem 6.1. The divisor is principal if and only if I(D) ≡ 0.

Proof. Let f be a meromorphic function. As we have already shown in Lemma 6.9,

deg(f) = 0. Hence we can write for its divisor

(f) = P1 + ...+ PN −Q1 − ...−QN ,

where some of the points could coincide. Consider the meromorphic differential

η = d log f

Since f is s scalar function, the periods of η can only be integer multiples of 2πi,∫
aj

η = 2πinj,

∫
bj

η = 2πimj, nj,mj ∈ Z.

We need to compute I(D). Following the definition I(D), in sec. 5.6??, we have

I((f)) =
N∑
k=1

∫ Pk

Qk

ωj.

In order to compute this we need a slightly different version of the Riemann bilinear

identity in a more general form. Consider again the setup of Thm. ??5.1.

Lemma 6.10. Let ω1, ω2 be two closed differentials, a, b is the canonical basis of 1-cycles

and X0 corresponding canonical dissection. Then∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2
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Proof. By definition, the boundary of X0 is ∂X0 =
∑g

j=1

(
−a+

j − b+
j + a−j + b−j

)
, hence

∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

(
−
∫
a+j

−
∫
b+j

+

∫
a−j

+

∫
b−j

)
ω2(P )

∫ P

P0

ω1

=

g∑
j=1

∫
aj

(
ω2(Pa−j

)

∫ P
a−
j

P0

ω1 − ω2(Pa+j
)

∫ P
a+
j

P0

ω1

)

+

g∑
j=1

∫
bj

(
ω2(Pb−j

)

∫ P
b−
j

P0

ω1 − ω2(Pb+j
)

∫ P
b+
j

P0

ω1

)
(4)

Let Pa−j
and Pa+j

be the points, resp., on a−j and a+
j which coincide on X, and Pb−j

and

Pb+j
are the points, resp., on b−j and b+

j which coincide on X.

First we note that

ω2(Pa−j
) = ω2(Pa+j

), ω2(Pb−j
) = ω2(Pb+j

).

Next, consulting Fig. 1. one can see that∫ P
a−
j

P0

ω1 −
∫ P

a+
j

P0

ω1 =

∫ P
a−
j

P
a+
j

ω1 = −
∫
bj

ω1

and ∫ P
b−
j

P0

ω1 −
∫ P

b+
j

P0

ω1 =

∫ P
b−
j

P
b+
j

ω1 =

∫
aj

ω1

Plugging this back to (4) we obtain the result∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2.

�

Now we return to the proof of Thm. 6.1. We need to apply Lemma 6.10 to ω1 = ωl,

where ωl is the canonical basis of holomorphic differentials, and to ω2 = η. Note that

η = d log f is closed. On the on hand we have

1

2πi

∫
∂X0

(
η(P )

∫ P

P0

ωl

)
=
∑
P∈X

Res η(P )

∫ P

P0

ωl =
N∑
k=1

∫ Pk

Qk

ωl

=
1

2πi

g∑
j=1

(2πimjδjl − 2πiτjlnj) = ml − τljnj ∈ Λ,

hence

I((f)) ≡ 0.
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In the opposite direction, consider a divisor D = P1 + ...+PN −Q1− ...−QN of degree

zero, such that

I(D) ≡ 0. (5)

The main idea is to construct the meromorphic function f with the divisor (f) = D.

Let us consider the normalized abelian differentials of the third kind ηPkQk
and let

η̃ =
N∑
k=1

ηPkQk
. (6)

Then a-periods of η vanish by definition. Consider b-periods of ηPkQk
and apply Lemma

6.10 for ω1 = ωl (canonical basis of holomorphic differentials) and ω2 = ηPkQk
. Then∫

bl

ηPkQk
=

∫
∂X0

(
ηPkQk

(P )

∫ P

P0

ωl

)
= 2πi

(∫ Pk

P0

ωl −
∫ Qk

P0

ωl

)
= 2πi

∫ Pk

Qk

ωl.

Hence, ∫
bl

η̃ =
N∑
k=1

∫
bl

ηPkQk
= 2πi

N∑
k=1

∫ Pk

Qk

ωl = 2πI(D) = 2πi(nl + τljmj) ∈ Λ,

for some nl,ml ∈ Z, according to the assumption (5). Then the function

f(P ) = exp

(∫ P

P0

η̃ − 2πi

g∑
j=1

mj

∫ P

P0

ωj

)
,

where η is given by Eq. (6) is single-valued on X and is a meromorphic function with the

divisor D.
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