Geometry and Large N limits in Laughlin states
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Classical and Quantum Hall effect

The classical Hall effect is the production of a voltage difference (the Hall
voltage) across an electrical conductor, transverse to an electric current
in the conductor and a magnetic field perpendicular to the current. It
was discovered by Edwin Hall in 1879.

Quantum Hall effect (QHE) is observed in certain two-dimensional
electron systems (GaAs heterostructures) subjected to low temperatures
and strong magnetic fields [von Kiitzig'80, Tsui-Stormer'83]. Most recently was
reported in graphene.



Magnetic Field (T)

On the plateaux Hall conductance is quantized o = 1/Rg, = v, where
v € Z for integer QHE (plateaux labelled 1,2,3,4..) and v = p/q for
fractional QHE (all other labels), to an extremely high precision (order
1079).



Laughlin state

On the plateaus QHE is described by collective multi-particle
wavefunction, called the Laughlin state
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B = 1: Integer QHE, non-interacting electrons.
B =3,5,7,..: Fractional QHE, interacting (via Coulomb forces) electron
system. Hall conductance oy = 1/8 (Ryy = ).
Other trial states were proposed for other plateaus.



Mathematically, the Laughlin state defines a sequence of probability
measures on the configuration space CV /Sy of N point-particles

N
UN = |\I’(2’1, .. .,ZN)|2 HdZZj
j=1

The total mass of this (unnormalized) measure is called the partition
function (this is L? norm of W)
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Central object in Log-gases (other names: Coulomb gas, Dyson gas,
Beta-ensemble of random complex/normal matrices).



Why Hall conductance is quantized? It was understood very soon that
Hall conductance is a Chern class (Thouless et.al. 1982). Laughlin state
is a section of a vector bundle over certain manifold V' — Y. What is Y
here? There are two major ways to think about this:

1) Bellissard et.al. (1994): QH states on the lattice, vector bundles over
the Brillouin zone, noncommutative geometry Chern classes.

2) Avron, Seiler, Simon, Zograf (1994-5): QH states on Riemann
surfaces, vector bundles on moduli spaces, Quillen metric.



Laughlin state on Riemann surfaces

We would like to consider Laughlin state on a compact Riemann surface

> of genus g

Problem: Define Laughlin state(s) ¥,. on a genus-g Riemann surface &
with arbitrary geometry: metric g, complex structure .J, inhomogeneous
magnetic field B, flat connections moduli. Determine the partition
function Z =% (V,,¥,)2, as a function of these geometric parameters

Z =1Zg,J,B,p,..]

in the limit of large number of particles.



Why: geometric adiabatic transport

Main idea is geometric adiabatic transport — [Thouless et.al.; Avron, Seiler, Simon,
Zograf, ..]. Laughlin states on a Riemann surface (X, g, J) form a vector
bundle over the parameter space Y (e.g. moduli space of flat connections
Y = Jac(X) or complex structure moduli Y = M,). Let dy be an
exterior derivative along the parameter space. Then adiabatic (Berry)
connection and curvature are

A= (V,dyV);2, R=dyA=—0y0ylogZ.

Transport coefficients:

o For Y = Jac(X), R = ouQaas (o is Hall conductance) [Thouless
et.al.1982, Avron-Seiler 1985, Avron-Seiler-Zograf 1994]

e For adiabatic transport on the moduli space of a torus Mj:
R =nuQp, "anomalous (Hall) viscosity” ngy = 1/4. IQHE:
[Avron-Seiler-Zograf 1995, Levay 1995], FQHE: [Tokatly-Vignale 2007, Read 2009]

e Transport on higher genus: R = (nuk + <&x(M))Qwp, new
transport coefficient, dubbed " Hall central charge” [Sk-Wiegmann 2015]



Lowest Landau level (LLL)

Consider compact connected Riemann surface (X, g, J) and positive
holomorphic line bundle (L*, h¥). The latter corresponds to the magnetic
field. The curvature (1,1) form of the hermitian metric h*(z, 2) is given
by F = —i00logh* and % fz F =k, so k is "total flux" of the
magnetic field. Notation: B = ¢g**F,;. On the plane and for constant
magnetic field B = k, this corresponds to Rk = e= 51217,

Shrédinger equation for the one-particle wave functions of lowest energy
in the strong magnetic field reduces to

5Lkw - 0
Solutions are holomorphic sections of L,
Vi =s54(2), i=1,...,Np =dim H°(M, L*)

These are wave functions on the lowest Landau level (LLL).
We will also consider tensoring L* ® K*, where K is canonical line
bundle and s is called the spin.



Examples
1. Round sphere S?, constant magnetic field: h* = W Then

s; =271, j=1,.k+1is a complete basis of holomorphic sections
(LLL), with finite L? norm
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2. Flat torus T2, constant magnetic field h* = e~ ™*=="_ The basis of
sections:
s :19%_’0(]{2+<p,k7), j=1,...k

Here ¢ = o + 17 is complex coordinate on Jac(T?): flat connection
moduli dA =0

(p_di— L'O_dz7 /Azapl, /A:gpz.
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3. On X of genus g the number of LLL wave functions is

A:

Ny =dim H(S, LF) =k +1—¢

for k large.



Definition of Laughlin state (integer QHE)

For integer QHE, 5 = 1. Consider N points on X: 21, 29,...,2N,. The
(holomorphic part F' of the) Laughlin state is completely antisymmetric
combination of one-particle wave functions on LLL (holomorphic
sections):

F(z1,...,2n,) = det[si(zj)]f-vj:l

Also called Slater determinant. For example, on the sphere S2. we had
55 = 27N 5 =1,..,k+1. We get

k+1
2 ] —
F (z1,...,2541) = det 2/ 7' = H(Zl - zj)
i<j

(Vandermonde determinant). Torus:

191(27«' — %> T)

FT (21, .y 21) = det 19%70(14321' + o, k1) =z + 0, T) H )

i<j

where z, = Zj zj is center-of-mass coordinate. Bosonization formula
(higher genus analog of Vandermonde determinant)



Definition of Laughlin state (fractional

QHE)

Consider now line bundle (L% hA*). But number of points is still
N;, = dim HO(X, L¥), i.e. only fraction of LLL states is occupied (thus
fractional QHE). The (holomorphic part F' of the) Laughlin state satisfies
o F(z1,...,2n,) is completely anti-symmetric
e Fix all z; except one, say z,,. Then F(-, ..., zm,...,-) is a
holomorphic section of L?F.
¢ Vanishing condition near diagonal z; ~ z; in local complex
coordinate system on X, F(z1, ..., 2x, ) ~ [[(2i — 2;)”.



Examples:
e Round sphere: F(z1, ..., zk41) = [T, (2 — 2)°.

o Novel feature: for g > 0 Laughlin states are degenerate. Torus

AN
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Center-of-mass: z. = Y z;.
o Higher genus: via Jacobean embedding ¥ — Jac(X): 2= fZO ol

Vi1, 2m,) = 0z (B2 + G+ A, Br) [[ Bz — 25,7),
i<j

where 7= (1,...,3)8, 7 is a basis of holomorphic 1-forms, Ais
vector of Riemann constants and E(z, 7) is prime-form. The number
of Laughlin states on X of genus g is ng = 3%: vector bundle of
rank ng over Y.



Arbitrary metric and inhomogeneous
magnetic field

The advantage of the language of holomorphic line bundles is that it
gives us a clear idea how to put the Laughlin state on X with arbitrary
metric g and inhomogeneous magnetic field B. Consider some fixed
(constant scalar curvature) metric go, and constant magnetic field By
(and corresponding hermitian metric hf(z, z)). Arbitrary metrics are
parameterized by:

e Kihler potential ¢(2,2): g.z = goz. + 0,0z,
e "magnetic’ potential ¥(2,2): F = Fy + 00y, B = g**F,;



Partition function

For the integer QHE (8 = 1), the partition function on arbitrary X is

Ni
7= [ ety [ hes,2)e 050 i),
3 i=1

For the fractional QHE (8 =3,5,7,..)

Z = Z/ (215 -y ZN,, |2Hh (2j,2;) e *P¥E20) g(25)d? 2,

Adiabatic connection on Y = Jac(X) x M,

Ars - <Fr7 dYE9>L2



Partition function for Integer QHE

Terminology: we write for the magnetic field FF = dA, and use
components of gauge-connection one form A, = i, log h*. We also
write Ric(g) = dw, where w, = i0log g.> is spin-connection.

Result [SK'13; SK, Ma, Marinescu, Wiegmann'15]:

1 1-2s (1-25)2 1

+F[B, R]

where F[B, R] is a local functional of magnetic field B and scalar
curvature R, which admits large k£ asymptotic expansion, with first terms
given by

1 1
F=—— Blog B
o [2 0B+

—3s RlogBJrf(logB)A (logB)i| Vgd’z + O(1/k).

Derivation relies on asymptotic expansion of the Bergman kernel
developed by Tian, Zelditch, Catlin.



Derivation of log Z in Integer QHE

For B = 1 the partition function satisfies determinantal formula:

Ny
zZ :/m | det si(zj)th’g(zj’gj)efkw(zj,zj)\/g(zj)dzzj
= det(s;, ;) 2
Denoting Gj; = <Sj, s1), we get
0logZ =46Tr log(sj, 1)
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where By (z, Z) is the Bergman kernel on diagonal.



Bergman kernel

By, is the Bergman kernel on the diagonal. For orthonormal basis of
sections {s;}:

Ny

1-2 1
Bi(2,2) =Y _ llsillis = B+ — SR—i—ZAglogB
=1
2 —3s . 1 . )

[Tian, Zelditch, Catlin, ..]
We need 3 leading terms in the most general form at n = 1 [Ma-Marinescu'06]
In QM, Bergman kernel is the density of states 1; on "completely filled”
LLL

N z(T)=z I
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[Douglas, SK'09]



Constant magnetic field case

The case of B = k (Kahler potential is equal to magnetic potential
¢ = 1)) is of special interest

dlog Z = / (—k + Ay)By(2) d¢ \/gd*z
M

The answer is given by geometric functionals ([Donaldson'04] studied this as
7 = det Hilby, where Hilb, parameterizes inner-products on H°(M, L¥))

local densities
—_—~~
1082 =~ 541 (90 0) + ~-Sar(g0, 8) + ——S1 (90 8)++ [ B2+
0gZ = —— — — -
g on DAY 9o, M 9o, Ton L 9o, %
[SK'13]

First three terms of the expansion are geometric functionals: Aubin-Yau,

Mabuchi and Liouville. The remainder terms are integrals of local

densities of higher-order curvature invariants.



Geometric functionals

Aubin-Yau(-Futaki-Mabuchi): 654y = [ ¢ /gd*z
1 _
Savle.6) = | 30006+ 6ymd’s,
M

Mabuchi: 6Sy = [ Ré¢\/gd*z

_ \/5) 2
S = — VI
wlon,6) = [ (~oRov + valog v I
Liouville: 65, = [(AR) ¢ \/gd*z
1 _
SL(go,O') = /]VI (280'80' +(TRUg())

in conformal gauge €7 /go = \/go + 00¢.



Liouville action is a hallmark of gravitational (conformal) anomaly. For
two metrics the conformal class g = €27 gy, there is Polyakov formula

det’ Ay

1
@SL(go,g)f Qv A,

(regularized zeta-determinant: logdet’ A, = —¢’(0), where {(z) is
spectral zeta-function). More generally, CFT partition function
transforms

ZCFT(g) c
log —mot = ——— =& Lwsd?
i ZCFT (gg) 127 S /w wz@ =

where c¢ is central charge. Our result is the mixed
electromagnetic-gravitational anomaly
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Geometric adiabatic transport

The integer QHE wavefunction F(z1, .., zn, ) = det s;(z;) is a section S
of the determinant line bundle £ over the parameter space

Y = Jac(X) x Mg, £ =det H*(X, L* ® K*). For the basis {s;} of
HO(%, LF ® K*), the Quillen metric of S of L is given by

IS|I% = det(s;, s1) _ Z
det/ ALk®KS det/ ALk®KS

)

here Aprgxe = 0*0 is Dolbeaux laplacian. Then adiabatic curvature is
related to the curvature QF of the Quillen metric as

R = —dyczy 10gZ = Q’C — dyJY log detlALk,@Ks

where the last term is vanishhing as k — oo (Avron-Seiler-Zograf
argument).



Relation to Chern-Simons theory

Consider geometric adiabatic

transport of IQHE wave

function along a contour C

in the moduli space

Y = Jac(X) x Mg <

Define adiabatic connection: v

Ay = (U, dy V)2, CD

. 6
and adiabatic phase: @
et Je Ay

L
([SK—Ma—Marinescu-Wiegmann'lS])Z
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(proof relies on Bismut-Gillet-Soulé curvature formula for Quillen metric)



Partition function of Laughlin state
For the FQHE Laughlin state we have the following results:

1
log Z = —/ [crA. Az + 2ng(Aws +w, Az)+
27'(' )

1
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where

1 2 —
F— ,%/2 {Q‘f{BlogB] VId®z + O(1/k).

Hall conductance oy = %

"Hall ViSCOSity” N = %(1 — 2‘%), [Avron-Seiler-Zograf 1995]
2
"Hall central charge” cy =1 — 3%

, [SK-Ferrari, Can-Laskin-Wiegmann, 2014]



Remainder of the asymptotic expansion is controlled by the path integral

F = L /00 dlff us—l /e—ﬁS(g,X)—MIM ei\/EX(Z)\/@FZDX’
I'(s) Jo

where the action is

— ) 7
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[Ferrari-SK'14]
This is Liouville theory-like (analytically continued).



Adiabatic curvature for Laughlin states

Adiabatic connection and curvature for Laughlin states on Y is actually
abelian (this is still a conjecture for g > 1).

Ars = <‘IJ7“3 dY\I/s> = -A(SrSa Rrs = R(Srs-

The adiabatic phase for the transport along the smooth closed contour
CeYis

1 1
/.A:— caANdA+2ng(ANdw + dAANW) — —cpw A dw.
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New transport coefficient

Consider complex structure deformations gzz|dz\ — goz|dz + pdz|?,
where Beltrami differential is = g Zig 1 Mk0Yx and 7, are a basis of
holomorphic quadratic differentials.

Berry curvature, associated with these deformations is

R =idd log Z = (771{]?3 + EX( ))QWP;

where Quwp = z'fM dp A dfi g.zd?z is the Weil-Petersson form on the

moduli space. Here cy =1 — 3% is a new quantized transport
coefficient, it can only be seen on higher genus surfaces, since on torus
x(M) =0.
[SK-Wiegmann'15]
[Bradlyn-Read’15]



Singular surfaces

Riemann surfaces with conic singularities or cusps.

e Curvature in the experimental sample arises in graphene

100

-100
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Fig. 6. A smooth curved bump in the graphene sheet

M.A.H. Vozmediano et al., Physics Reports 496 (2010)

o Recently a QHE-like system was experimentaly realised on a spatial
CONe Schine et al., Arxiv:1511.07381

e There are proposals to experimentally realize QHE on a higher-genus
Riemann surface as multi-layer system with n defects (branched
covering of complex plane with n singular points). Barkeshli, Qi 2013.



The gravitational term (Liouville action) becomes most important in
presence of singularities. The large k expansion of log Z breaks down at
O(log k). Instead we encounter zeta function for the scalar laplacian on
the cone (Cheeger'1979). This is what replaces the smooth-case
expansion (proposal)

log Z = —cok? + c1k + (C(0, Acone) — €(0, Ag) log k

_1 o det Acone
2 & det A()

Working examples: flat cone over S, spindle (sphere with antipodal
singularities).

+ O(1/k)




1
-3 log det Acone ~ ¢5(0,1,1, ),

where (s, is Barnes double zeta function

Ca(s:a,bx) = Z (am +bn +x)~°

m,n=0

What is the answer for log Z for Laughlin state on a cone?

Conjecture: quantum Liouville theory.



