Geometry and Large N limits in Laughlin states

Semyon Klevtsov

University of Cologne

S. K., JHEP (2013), arXiv:1309.7333,
F. Ferrari, S. K., JHEP (2014), arXiv:1410.6802,
S. K., P. Wiegmann, Phys. Rev. Lett. (2015), arXiv:1504.07198,
S. K., X. Ma, G. Marinescu, P. Wiegmann, to appear in CMP, arXiv:1510.06720
S. K., arXiv:1608.02928

Probabilistic Methods in Spectral Geometry and PDE, CRM, August 25, 2016

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Classical and Quantum Hall effect

The classical Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879.

Quantum Hall effect (QHE) is observed in certain two-dimensional electron systems (GaAs heterostructures) subjected to low temperatures and strong magnetic fields [von Klitzig'80, Tsui-Stormer'83]. Most recently was reported in graphene.

On the plateaux Hall conductance is quantized $\sigma_H = 1/R_{xy} = \nu$, where $\nu \in \mathbb{Z}$ for integer QHE (plateaux labelled 1, 2, 3, 4..) and $\nu = p/q$ for fractional QHE (all other labels), to an extremely high precision (order 10^{-9}).

Laughlin state

On the plateaus QHE is described by collective multi-particle wavefunction, called the Laughlin state

$$\Psi(z_1,\ldots,z_N) = \prod_{i< j}^N (z_i - z_j)^\beta e^{-\frac{B}{4}\sum_i |z_i|^2}, \quad \beta \in \mathbb{Z}_+$$

[Laughlin'83]

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

 $\beta = 1$: Integer QHE, non-interacting electrons. $\beta = 3, 5, 7, ...$ Fractional QHE, interacting (via Coulomb forces) electron system. Hall conductance $\sigma_H = 1/\beta$ ($R_{xy} = \beta$). Other trial states were proposed for other plateaus. Mathematically, the Laughlin state defines a sequence of probability measures on the configuration space \mathbb{C}^N/S_N of N point-particles

$$\mu_N = |\Psi(z_1, \dots, z_N)|^2 \prod_{j=1}^N d^2 z_j$$

The total mass of this (unnormalized) measure is called the partition function (this is L^2 norm of Ψ)

$$Z = \int_{\mathbb{C}^N} \prod_{i
$$= \int_{\mathbb{C}^N} e^{-\frac{B}{2}\sum_i |z_i|^2 + \beta \sum_{i\neq j} \log |z_i - z_j|} \prod_{j=1}^N d^2 z_j$$$$

Central object in Log-gases (other names: Coulomb gas, Dyson gas, Beta-ensemble of random complex/normal matrices).

Why Hall conductance is quantized? It was understood very soon that Hall conductance is a Chern class (Thouless et.al. 1982). Laughlin state is a section of a vector bundle over certain manifold $V \rightarrow Y$. What is Y here? There are two major ways to think about this: 1) Bellissard et.al. (1994): QH states on the lattice, vector bundles over the Brillouin zone, noncommutative geometry Chern classes. 2) Avron, Seiler, Simon, Zograf (1994-5): QH states on Riemann surfaces, vector bundles on moduli spaces, Quillen metric.

Laughlin state on Riemann surfaces

We would like to consider Laughlin state on a compact Riemann surface Σ of genus g

Problem: Define Laughlin state(s) Ψ_r on a genus-g Riemann surface Σ with arbitrary geometry: metric g, complex structure J, inhomogeneous magnetic field B, flat connections moduli. Determine the partition function $Z = \sum_r \langle \Psi_r, \Psi_r \rangle_{L^2}^2$ as a function of these geometric parameters

$$Z = Z[g, J, B, \varphi, \ldots]$$

in the limit of large number of particles.

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ● 白 ●

Why: geometric adiabatic transport

Main idea is geometric adiabatic transport [Thouless et.al.; Avron, Seiler, Simon, Zograf, ...]. Laughlin states on a Riemann surface (Σ, g, J) form a vector bundle over the parameter space Y (e.g. moduli space of flat connections $Y = Jac(\Sigma)$ or complex structure moduli $Y = \mathcal{M}_g$). Let d_Y be an exterior derivative along the parameter space. Then adiabatic (Berry) connection and curvature are

$$\mathcal{A} = \langle \Psi, d_Y \Psi \rangle_{L^2}, \quad \mathcal{R} = d_Y \mathcal{A} = -\partial_Y \bar{\partial}_Y \log Z.$$

Transport coefficients:

- For $Y = Jac(\Sigma)$, $\mathcal{R} = \sigma_H \Omega_{\text{flat}}$ (σ_H is Hall conductance) [Thouless et.al.1982, Avron-Seiler 1985, Avron-Seiler-Zograf 1994]
- For adiabatic transport on the moduli space of a torus M_1 : $\mathcal{R} = \eta_H \Omega_P$, "anomalous (Hall) viscosity" $\eta_H = 1/4$. IQHE: [Avron-Seiler-Zograf 1995, Levay 1995], FQHE: [Tokatly-Vignale 2007, Read 2009]
- Transport on higher genus: $\mathcal{R} = \left(\eta_H k + \frac{c_H}{12}\chi(M)\right)\Omega_{WP}$, new transport coefficient, dubbed "Hall central charge" [SK-Wiegmann 2015]

Lowest Landau level (LLL)

Consider compact connected Riemann surface (Σ, g, J) and positive holomorphic line bundle (L^k, h^k) . The latter corresponds to the magnetic field. The curvature (1, 1) form of the hermitian metric $h^k(z, \bar{z})$ is given by $F = -i\partial\bar{\partial}\log h^k$ and $\frac{1}{2\pi}\int_{\Sigma}F = k$, so k is "total flux" of the magnetic field. Notation: $B = g^{z\bar{z}}F_{z\bar{z}}$. On the plane and for constant magnetic field B = k, this corresponds to $h^k = e^{-\frac{B}{2}|z|^2}$. Shrödinger equation for the one-particle wave functions of lowest energy in the strong magnetic field reduces to

$$\bar{\partial}_{L^k}\psi = 0$$

Solutions are holomorphic sections of L^k ,

$$\psi_i = s_i(z), \quad i = 1, \dots, N_k = \dim H^0(M, L^k)$$

These are wave functions on the lowest Landau level (LLL). We will also consider tensoring $L^k \otimes K^s$, where K is canonical line bundle and s is called the spin.

Examples

1. Round sphere S^2 , constant magnetic field: $h^k = \frac{1}{(1+|z|^2)^k}$ Then $s_j = z^{j-1}, \ j = 1, ...k+1$ is a complete basis of holomorphic sections (LLL), with finite L^2 norm

$$\int_{S^2} \bar{s}_i(\bar{z}) s_i(z) h^k \frac{d^2 z}{(1+|z|^2)^2} < \infty$$

2. Flat torus T^2 , constant magnetic field $h^k=e^{-\pi ik\frac{(z-\bar{z})^2}{\tau-\bar{\tau}}}.$ The basis of sections:

$$s_j = \vartheta_{\frac{j}{k},0}(kz + \varphi, k\tau), \quad j = 1, \dots, k$$

Here $\varphi=\varphi_2+\varphi_1\tau$ is complex coordinate on $Jac(T^2):$ flat connection moduli dA=0

$$A = \frac{\varphi}{\tau - \bar{\tau}} d\bar{z} - \frac{\bar{\varphi}}{\tau - \bar{\tau}} dz, \quad \int_a A = \varphi_1, \quad \int_b A = \varphi_2.$$

3. On Σ of genus g the number of LLL wave functions is

$$N_k = \dim H^0(\Sigma, L^k) = k + 1 - g$$

for k large.

Definition of Laughlin state (integer QHE)

For integer QHE, $\beta = 1$. Consider N_k points on Σ : $z_1, z_2, \ldots, z_{N_k}$. The (holomorphic part F of the) Laughlin state is completely antisymmetric combination of one-particle wave functions on LLL (holomorphic sections):

$$F(z_1,...,z_{N_k}) = \det[s_i(z_j)]_{i,j=1}^{N_k}$$

Also called Slater determinant. For example, on the sphere $S^2,$ we had $s_j=z^{j-1},\ j=1,..,k+1.$ We get

$$F^{S^2}(z_1, \dots, z_{k+1}) = \det z_i^{j-1} = \prod_{i < j}^{k+1} (z_i - z_j)$$

(Vandermonde determinant). Torus:

$$F^{T^{2}}(z_{1},..,z_{k}) = \det \vartheta_{\frac{j}{k},0}(kz_{i}+\varphi,k\tau) = \vartheta(z_{c}+\varphi,\tau)\prod_{i< j}\frac{\vartheta_{1}(z_{i}-z_{j},\tau)}{\eta(\tau)}$$

where $z_c = \sum_j z_j$ is center-of-mass coordinate. Bosonization formula (higher genus analog of Vandermonde determinant)

Definition of Laughlin state (fractional QHE)

Consider now line bundle $(L^{\beta k}, h^{\beta k})$. But number of points is still $N_k = \dim H^0(\Sigma, L^k)$, i.e. only fraction of LLL states is occupied (thus *fractional* QHE). The (holomorphic part F of the) Laughlin state satisfies

- $F(z_1,...,z_{N_k})$ is completely anti-symmetric
- Fix all z_j except one, say z_m . Then $F(\cdot,...,z_m,...,\cdot)$ is a holomorphic section of $L^{\beta k}$.
- Vanishing condition near diagonal z_i ~ z_j in local complex coordinate system on Σ, F(z₁,..., z_{N_k}) ~ Π(z_i z_j)^β.

Examples:

- Round sphere: $F(z_1, ..., z_{k+1}) = \prod_{i < j} (z_i z_j)^{\beta}$.
- Novel feature: for $\mathrm{g}>0$ Laughlin states are degenerate. Torus

$$F_r(z_1, .., z_k) = \vartheta_{\frac{r}{\beta}, 0}(\beta z_c + \varphi, \beta \tau) \prod_{i < j} \left(\frac{\vartheta_1(z_i - z_j, \tau)}{\eta(\tau)}\right)^{\beta}$$

Center-of-mass: $z_c = \sum z_i$.

• Higher genus: via Jacobean embedding $\Sigma \to Jac(\Sigma)$: $\vec{z} = \int_{z_0}^{z_i} \vec{\gamma}$

$$\Psi_{\vec{r}}(z_1,..,z_{N_k}) = \vartheta_{\frac{\vec{r}}{\beta},0}(\beta \vec{z_c} + \vec{\varphi} + \vec{\Delta},\beta\tau) \prod_{i < j} E(z_i - z_j,\tau),$$

where $\vec{r} = (1, ..., \beta)^{\text{g}}$, $\vec{\gamma}$ is a basis of holomorphic 1-forms, $\vec{\Delta}$ is vector of Riemann constants and $E(z, \tau)$ is prime-form. The number of Laughlin states on Σ of genus g is $n_{\beta} = \beta^{\text{g}}$: vector bundle of rank n_{β} over Y.

Arbitrary metric and inhomogeneous magnetic field

The advantage of the language of holomorphic line bundles is that it gives us a clear idea how to put the Laughlin state on Σ with arbitrary metric g and inhomogeneous magnetic field B. Consider some fixed (constant scalar curvature) metric g_0 , and constant magnetic field B_0 (and corresponding hermitian metric $h_0^k(z, \bar{z})$). Arbitrary metrics are parameterized by:

- Kähler potential $\phi(z, \bar{z})$: $g_{z\bar{z}} = g_{0\bar{z}z} + \partial_z \bar{\partial}_{\bar{z}} \phi$,
- "magnetic" potential $\psi(z, \bar{z})$: $F = F_0 + \partial \bar{\partial} \psi$, $B = g^{z\bar{z}} F_{z\bar{z}}$

Partition function

For the integer QHE ($\beta=1)$, the partition function on arbitrary Σ is

$$Z = \int_{\Sigma^{N_k}} |\det s_i(z_j)|^2 \prod_{j=1}^{N_k} h_0^k(z_j, \bar{z}_j) e^{-k\psi(z_j, \bar{z}_j)} \sqrt{g}(z_j) d^2 z_j$$

For the fractional QHE ($\beta = 3, 5, 7, ..$)

$$Z = \sum_{r=1}^{n_{\beta}} \int_{\Sigma^{N_k}} |F_r(z_1, .., z_{N_k})|^2 \prod_{j=1}^{N_k} h_0^{\beta k}(z_j, \bar{z}_j) e^{-k\beta \psi(z_j, \bar{z}_j)} \sqrt{g}(z_j) d^2 z_j.$$

Adiabatic connection on $Y = Jac(\Sigma) \times \mathcal{M}_g$

$$\mathcal{A}_{rs} = \langle F_r, d_Y F_s \rangle_{L^2}$$

Partition function for Integer QHE

Terminology: we write for the magnetic field F = dA, and use components of gauge-connection one form $A_z = i\partial_z \log h^k$. We also write $Ric(g) = d\omega$, where $\omega_z = i\partial \log g_{z\bar{z}}$ is spin-connection. Result [SK'13; SK, Ma, Marinescu, Wiegmann'15]:

$$\log Z = \frac{1}{2\pi} \int_{\Sigma} (A_z A_{\bar{z}} + \frac{1-2s}{2} (A_z \omega_{\bar{z}} + A_{\bar{z}} \omega_z) + \left(\frac{(1-2s)^2}{4} - \frac{1}{12}\right) \omega_z \omega_{\bar{z}})$$

 $+\mathcal{F}[B,R]$

where $\mathcal{F}[B,R]$ is a local functional of magnetic field B and scalar curvature R, which admits large k asymptotic expansion, with first terms given by

$$\mathcal{F} = -\frac{1}{2\pi} \int_{\Sigma} \left[\frac{1}{2} B \log B + \frac{2-3s}{12} R \log B + \frac{1}{24} (\log B) \Delta_g(\log B) \right] \sqrt{g} d^2 z + \mathcal{O}(1/k).$$

Derivation relies on asymptotic expansion of the Bergman kernel developed by Tian, Zelditch, Catlin.

Derivation of $\log Z$ in Integer QHE

For $\beta=1$ the partition function satisfies determinantal formula:

$$Z = \int_{\Sigma^{N_k}} |\det s_i(z_j)|^2 \prod_{j=1}^{N_k} h_0^k(z_j, \bar{z}_j) e^{-k\psi(z_j, \bar{z}_j)} \sqrt{g}(z_j) d^2 z_j$$
$$= \det \langle s_i, s_j \rangle_{L^2}$$

Denoting $G_{jl} = \langle s_j, s_l \rangle$, we get

$$\begin{split} \delta \log Z &= \delta \operatorname{Tr} \, \log \langle s_j, s_l \rangle = \\ &= -\frac{1}{2\pi} \sum_{j,l} G_{lj}^{-1} \int_{\Sigma} \left(\frac{s-1}{2} (\Delta_g \delta \phi) + k \delta \psi \right) \bar{s}_j s_l h^k \sqrt{g}^{1-s} d^2 z \\ &= -\frac{1}{2\pi} \int_{\Sigma} \left(\frac{s-1}{2} (\Delta_g B_k(z,\bar{z})) \, \delta \phi + k B_k(z,\bar{z}) \, \delta \psi \right) \sqrt{g}^{1-s} d^2 z, \end{split}$$

where $B_k(z, \bar{z})$ is the Bergman kernel on diagonal.

Bergman kernel

 B_k is the Bergman kernel on the diagonal. For orthonormal basis of sections $\{s_j\}$:

$$B_k(z,\bar{z}) = \sum_{i=1}^{N_k} ||s_i||_{h^k}^2 = B + \frac{1-2s}{4}R + \frac{1}{4}\Delta_g \log B + \frac{2-3s}{24}\Delta_g(B^{-1}R) + \frac{1}{24}\Delta_g(B^{-1}\Delta_g \log B) + \mathcal{O}(1/k^2).$$

[Tian, Zelditch, Catlin, ...]

We need 3 leading terms in the most general form at n=1 [Ma-Marinescu'06] In QM, Bergman kernel is the density of states ψ_i on "completely filled" LLL

$$B_k(z,\bar{z}) = \sum_{i=1}^{N_k} |\psi_i(z)|^2 = \lim_{T \to \infty} \int_{x(0)=z}^{x(T)=z} e^{-\int_0^T (\dot{x}^2 + A\dot{x})dt} \mathcal{D}x(t)$$

[Douglas, SK'09]

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Constant magnetic field case

The case of B = k (Kähler potential is equal to magnetic potential $\phi = \psi$) is of special interest

$$\delta \log Z = \int_M (-k + \Delta_\phi) B_k(z) \,\delta\phi \sqrt{g} d^2 z$$

The answer is given by geometric functionals ([Donaldson'04] studied this as $Z = \det Hilb_k$, where $Hilb_k$ parameterizes inner-products on $H^0(M, L^k)$)

$$\log Z = -\frac{k^2}{2\pi} S_{AY}(g_0, \phi) + \frac{k}{4\pi} S_M(g_0, \phi) + \frac{1}{12\pi} S_L(g_0, \phi) + \underbrace{\frac{1}{k} \int R^2 + \dots}_{k=1}$$

[SK'13]

First three terms of the expansion are geometric functionals: Aubin-Yau, Mabuchi and Liouville. The remainder terms are integrals of local densities of higher-order curvature invariants.

Geometric functionals

Aubin-Yau(-Futaki-Mabuchi): $\delta S_{AY} = \int \delta \phi \sqrt{g} d^2 z$

$$S_{AY}(g,\phi) = \int_{M} \frac{1}{2} \phi \partial \bar{\partial} \phi + \phi \sqrt{g_0} d^2 z,$$

Mabuchi: $\delta S_M = \int R \, \delta \phi \, \sqrt{g} d^2 z$

$$S_M(g_0,\phi) = \int_M \left(-\phi R_0 \sqrt{g_0} + \sqrt{g} \log \frac{\sqrt{g}}{\sqrt{g_0}} \right) d^2 z$$

Liouville: $\delta S_L = \int (\Delta R) \, \delta \phi \sqrt{g} d^2 z$

$$S_L(g_0,\sigma) = \int_M \left(\frac{1}{2}\partial\sigma\bar{\partial}\sigma + \sigma R_0 g_0\right)$$

in conformal gauge $e^{\sigma}\sqrt{g_0} = \sqrt{g_0} + \partial \bar{\partial} \phi$.

Liouville action is a hallmark of gravitational (conformal) anomaly. For two metrics the conformal class $g = e^{2\sigma}g_0$, there is Polyakov formula

$$\frac{1}{6\pi}S_L(g_0,g) = \log\frac{\det'\Delta_g}{\det'\Delta_{g_0}}$$

(regularized zeta-determinant: $\log \det' \Delta_g = -\zeta'(0)$, where $\zeta(x)$ is spectral zeta-function). More generally, CFT partition function transforms

$$\log \frac{Z^{CFT}(g)}{Z^{CFT}(g_0)} = -\frac{c}{12\pi} S_L(\sigma) = -\frac{c}{6\pi} \int_{\Sigma} \omega_z \omega_{\bar{z}} d^2 z$$

where c is central charge. Our result is the mixed electromagnetic-gravitational anomaly

$$\log Z = \frac{1}{2\pi} \int_{\Sigma} \left[A_z A_{\bar{z}} + \frac{1-2s}{2} (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \left(\frac{(1-2s)^2}{4} - \frac{1}{12} \right) \omega_z \omega_{\bar{z}} \right] d^2 z + \mathcal{F}[B,R]$$

Geometric adiabatic transport

The integer QHE wavefunction $F(z_1, ..., z_{N_k}) = \det s_i(z_j)$ is a section Sof the determinant line bundle \mathcal{L} over the parameter space $Y = Jac(\Sigma) \times \mathcal{M}_g$, $\mathcal{L} = \det H^0(\Sigma, L^k \otimes K^s)$. For the basis $\{s_j\}$ of $H^0(\Sigma, L^k \otimes K^s)$, the Quillen metric of S of \mathcal{L} is given by

$$\|\mathcal{S}\|^2 = \frac{\det\langle s_j, s_l\rangle}{\det' \Delta_{L^k \otimes K^s}} = \frac{Z}{\det' \Delta_{L^k \otimes K^s}},$$

here $\Delta_{L^k\otimes K^s} = \bar{\partial}^* \bar{\partial}$ is Dolbeaux laplacian. Then adiabatic curvature is related to the curvature $\Omega^{\mathcal{L}}$ of the Quillen metric as

$$\mathcal{R} = -d_Y \bar{d}_Y \log Z = \Omega^{\mathcal{L}} - d_Y \bar{d}_Y \log \det' \Delta_{L^k \otimes K^s}$$

where the last term is vanishing as $k \to \infty$ (Avron-Seiler-Zograf argument).

・ロト ・ 西 ト ・ 田 ト ・ 日 ・ うへの

Relation to Chern-Simons theory

Consider geometric adiabatic transport of IQHE wave function along a contour C in the moduli space $Y = Jac(\Sigma) \times M_g$ Define adiabatic connection:

 $\mathcal{A}_Y = \langle \Psi, d_Y \Psi
angle_{L^2}$,

and adiabatic phase:

 $e^{i\int_{\mathcal{C}}\mathcal{A}_{Y}}.$

([SK-Ma-Marinescu-Wiegmann'15]):

$$\int_{\mathcal{C}} \mathcal{A}_Y = \frac{1}{4\pi} \int_{\Sigma_Y \times \mathcal{C}} \left[\sigma_H A dA + 2\eta_H A d\omega - \frac{1}{12} c_H \omega d\omega \right]$$

(proof relies on Bismut-Gillet-Soulé curvature formula for Quillen metric) $\sim \sim \sim \sim$

Partition function of Laughlin state

For the FQHE Laughlin state we have the following results:

$$\begin{split} \log Z &= \frac{1}{2\pi} \int_{\Sigma} \left[\sigma_H A_z A_{\bar{z}} + 2\eta_H (A_z \omega_{\bar{z}} + \omega_z A_{\bar{z}}) + \right. \\ &\left. - \frac{1}{12} c_H \omega_z \omega_{\bar{z}} \right] d^2 z + \mathcal{F}[B,R]. \end{split}$$

where

$$\mathcal{F} = -\frac{1}{2\pi} \int_{\Sigma} \left[\frac{2-\beta}{2\beta} B \log B \right] \sqrt{g} d^2 z + \mathcal{O}(1/k).$$

 $\begin{array}{l} \mbox{Hall conductance } \sigma_{H} = \frac{1}{\beta}, \\ \mbox{"Hall viscosity" } \eta_{H} = \frac{1}{4}(1-\frac{2s}{\beta}), \\ \mbox{"Hall central charge" } c_{H} = 1-3\frac{(\beta-2s)^{2}}{\beta}, \\ \end{array}$

Remainder of the asymptotic expansion is controlled by the path integral

$$\mathcal{F} = \frac{1}{\Gamma(s)} \int_0^\infty d\mu \, \mu^{s-1} \, \int e^{-\frac{1}{4\pi} S(g,X) - \mu \int_M e^{i\sqrt{\beta}X(z)} \sqrt{g} d^2 z} \mathcal{D}X \,,$$

where the action is

$$S = \int_{M} \left(\partial X \bar{\partial} X + i \sqrt{\beta} R X + \frac{i}{\sqrt{\beta}} A \wedge dX \right)$$

[Ferrari-SK'14]

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

This is Liouville theory-like (analytically continued).

Adiabatic curvature for Laughlin states

Adiabatic connection and curvature for Laughlin states on Y is actually abelian (this is still a conjecture for g > 1).

$$\mathcal{A}_{rs} = \langle \Psi_r, d_Y \Psi_s \rangle = \mathcal{A} \delta_{rs}, \quad \mathcal{R}_{rs} = \mathcal{R} \delta_{rs}.$$

The adiabatic phase for the transport along the smooth closed contour $\mathcal{C} \in Y$ is

$$\int_{\mathcal{C}} \mathcal{A} = \frac{1}{4\pi} \int_{\Sigma \times \mathcal{C}} \sigma_H A \wedge dA + 2\eta_H (A \wedge d\omega + dA \wedge \omega) - \frac{1}{12} c_H \omega \wedge d\omega \,.$$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

New transport coefficient

Consider complex structure deformations $g_{z\bar{z}}|dz|^2 \rightarrow g_{z\bar{z}}|dz + \mu d\bar{z}|^2$, where Beltrami differential is $\mu = g_{z\bar{z}}^{-1} \sum_{\kappa=1}^{3g-3} \eta_{\kappa} \delta y_{\kappa}$ and η_{κ} are a basis of holomorphic quadratic differentials.

Berry curvature, associated with these deformations is

$$\mathcal{R} = i\mathbf{d}\bar{\mathbf{d}}\log Z = \left(\eta_H k + \frac{c_H}{12}\chi(M)\right)\Omega_{WP},$$

where $\Omega_{WP} = i \int_M \mathbf{d}\mu \wedge \bar{\mathbf{d}}\bar{\mu} \ g_{z\bar{z}} d^2 z$ is the Weil-Petersson form on the moduli space. Here $c_H = 1 - 3 \frac{(\beta - 2s)^2}{\beta}$ is a new quantized transport coefficient, it can only be seen on higher genus surfaces, since on torus $\chi(M) = 0$.

[SK-Wiegmann'15] [Bradlvn-Read'15]

Singular surfaces

Riemann surfaces with conic singularities or cusps.

• Curvature in the experimental sample arises in graphene

Fig. 6. A smooth curved bump in the graphene sheet.

M.A.H. Vozmediano et al., Physics Reports 496 (2010)

- Recently a QHE-like system was experimentaly realised on a spatial cone Schine et al., Arxiv:1511.07381
- There are proposals to experimentally realize QHE on a higher-genus Riemann surface as multi-layer system with *n* defects (branched covering of complex plane with *n* singular points). Barkeshli, Qi 2013.

The gravitational term (Liouville action) becomes most important in presence of singularities. The large k expansion of $\log Z$ breaks down at $\mathcal{O}(\log k)$. Instead we encounter zeta function for the scalar laplacian on the cone (Cheeger'1979). This is what replaces the smooth-case expansion (proposal)

$$\log Z = -c_2 k^2 + c_1 k + (\zeta(0, \Delta_{\text{cone}}) - \zeta(0, \Delta_0) \log k)$$
$$-\frac{1}{2} \log \frac{\det \Delta_{\text{cone}}}{\det \Delta_0} + \mathcal{O}(1/k)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Working examples: flat cone over S^1 , spindle (sphere with antipodal singularities).

$$-\frac{1}{2}\log\det\Delta_{\rm cone}\sim\zeta_2'(0,1,1,\alpha),$$

where ζ_2 is Barnes double zeta function

$$\zeta_2(s:a,b,x) = \sum_{m,n=0} (am + bn + x)^{-s}$$

What is the answer for $\log Z$ for Laughlin state on a cone?

Conjecture: quantum Liouville theory.