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@ Bergman kernel

@ Random geometry, induced by QHE
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Quantum Hall effect

Observed in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields. Hall conductance is
quantized oy = I/ Vy = v, where v is integer for integer QHE, or a
fraction for fractional QHE. Involves many (N ~ 10°) electrons on
lowest Landau level, described by a collective (Laughlin) state.

N
v(izh) =[] -z)%e 2" p=1pez.
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Quantum Hall effect happens in a planar sample. Here we will ask,
what happens when QHE is considered on a curved geometry.

(D) & ED

genus 0 genus | genus 2

Nl

———
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Quantum Hall effect happens in a planar sample. Here we will ask,
what happens when QHE is considered on a curved geometry.
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Also, QHE can be defined on Kéhler manifolds
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In physics one can obtain important information about the system by putting it
on a manifold with a Riemannian metric

ds® = g(z,z)dzdz
Prototypical example (Polyakov, 1981): CFT partition function on a compact
Riemann surface (M, go) has the following behavior under the transformation

of the reference metric go to a new metric g = €?“ g

ZCFT(g) c
log ZFT(g0) @SL(QOaO—)a

where ¢ € R is the central charge of the CFT, and the Liouville action is
Su(g0.0) = [ (90710 + Ron)oPz,
M

and Ry = ——=00log /o is the scalar curvature of go.
V9
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Landau levels

Charged particle on the plane in constant magnetic field B = A — 0A.
Hamiltonian

A~

21 n 75 (1ihd + Al + eB)

Infinite tower of energy levels, each level is highly degenerate. Structure:

Lowest level n =0
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Landau levels

The lowest energy level is special, since the Hamilatonian factorizes
and wave functions satisfy first order equation

[;2 + Z\] Yk(2) =0

For example on the two-plane with constant magnetic field A= Bz, in
complex coordinates z = re'?, the wave functions are

Ui(z,2) = Z¥e Bl17F | k= 0,1...00(or total qux/B),
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Lowest Landau level on a curved manifold

What is the analog of this picture (rich LLL) in a more general setup,

e.g. for compact manifolds, inhomogeneous magnetic fields, any
space dimension?

Quantum Hall effect and Kéhler metrics

Natal, October 28, 2014 8/25



Lowest Landau level on a curved manifold

What is the analog of this picture (rich LLL) in a more general setup,
e.g. for compact manifolds, inhomogeneous magnetic fields, any
space dimension? Conditions:

@ Manifold admits complex coordinates z2, z2 (a,a=1, ..., n)
@ ... and Kahler metric gz = 020zK

@ Magnetic field is "holomorphic", i.e. only F,z components are
non-zero.

Then Hamiltonian (magnetic Schrédinger operator) factorizes:
H = g% DaDz + 9*Fza

provided g2@F,z = constant, which is equivalent to Maxwell equation
(VF =0).
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Lowest Landau level on a Riemann surface

Constant magnetic field: By = kgy. Shrédinger equation for the lowest
energy level reduces to

(04 A3)Y =0, where Az = —kdlog hg

with many solutions ?(z, z) = s;(z)hf(z, z). Mathematically, magnetic
field is described by the holomorphic line bundle LX — M, s;(z) is the
basis of holomorphic sections (i = 1, .., Nx) and constant magnetic
field F = kgo means choice of "polarization”, implying positivity: F > 0
since the metric shall be positive definite everywhere on M. Examples:

@ &2, s5i(2)=2""i=1,.. k+1.
@ T2 si(2) = 0, o(kz,kr), i=1, ..k
@ on a surface of genus hthere are Ny = k — h+ 1 sections.
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Kahler metrics

In two dimensions we are used to parameterizing the metric in
conformal class. )
gldz® = €272 gy|dz|?

Landau levels prefer Kéhler parameterization (Kahler class)
9ldz|? = (go + 099)|dz|?

where the scalar function ¢(z, ) is called K&hler potential. QHE
droplet is incompressible — deformations have the same area, and all
metrics in the Kahler class have the same area.
If vi(z, Z) = si(z)hE(z, Z) are LLL wave functions for the magnetic field
By = kgo, then wave functions for the magnetic field B = k(gp + 00¢)
are

wi(z7 2) = s,-(z)hg(z, Z)eikd)(z’z)
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Laughlin wave function on Riemann surface

The Laughlin wave function of Ny non-interacting fermions (integer
QHE) is given by Slater determinant

VNi!

\U(Z1,...,ZNk): det¢i(zj)

Ny
1 —k>2;6()
= ——[detsi(z)] - [ h§(z) - e "=
Vil 1
where | plugged LLL wavefunctions on curved metric
Vi(z,2) = si(2)hl(z,2)e K*(Z2)

The Laughlin wave function for the fractional QHE is

N (detvi(z))”

WB(Z1,...,ZNk) =
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Partition function for integer QHE

Partition function (generating functional)

Nk
2% (G 0) = [ | Wz an)P ] Va@)o’ -
i=1

Ny
1 — . .

— Nk|/M®Nk |detS,-(zj)|Ze kz'd)(z')th(Zi)\/@dzz,-.

. i=1

Varying Z9E gy, g) with respect to d¢(z) allows to define density
correlation functions p(z) = + >°;6(z — z):

(p(X)p(y) - - p(2))-
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Partition function for integer QHE

On the two-sphere or on the plane, Wiegmann-Zabrodin (2006):

N

1 NS Wiz

=1 L [a@ e T ez,
1=

ZFOHE,SZ( W)

For g = 1 this is partition function of the ensemble of random normal
matrices. For any beta this is called beta-ensembile.
Wiegmann-Zabrodin derived first three terms large k expansion, using
loop equation, for arbitrary W

log ZFAHES* (W) = N2Sy(W) + NS; (W) + So(W) + O(1/N)
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Derivation

The integer QHE partition function enjoys determinantal representation
20 (go,g) = det | Sishe * /gd%z,
i Jm
studied by Donaldson (2004). Variation of the free energy wrt §¢(z)

5log Z (g0, 9) = /M (—Kpk + Dpi) ¢ /gdPz.

is controlled by the density of states function

In math this is known as the Bergman kernel on the diagonal.
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Bergman kernel

Density function (Bergman kernel) has a local expansion for large k

Zw, )i(z) = Z |si(2) P

1
3k2
known as Tian-Yau-Zelditch expansion (Tian’ 90, Zelditch’ 98). Total

= K" (1+R(z)+ —AR+.. )

number of states is Ny = fM pk(z)gdzz, in complex dimension n = 1
we get
2—-2h

Nk:k+

(Riemann-Roch)
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Bergman kernel from path integral

In physics the Bergman kernel expansion can be derived from the path
integral for a particle in the magnetic field F = dA = kg (Douglas, S.K.,
2008), taking large time limit of

ok(2) = lim (z]e"TH|2) =
T—o0

z(T)=z
— lim / fo dt(gaazaz +Aa2%) H /77)2(1' ,DZ
z

T=00 J2(0)=2 0<t<T

= K" 1+Eﬂ+h2 1AR+—\Rlem|2 |Ric\2+1R2 +
- 2k ' k2 \3 8
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Interlude: Balanced confuguration

The confuguration of particles on LLL with constant density function,
“knows” about constant curvature:

pk(z2) = K" (1 + —Fx’(z) +. > = constant ~ K" + gk’H +

Therefore
R(2) ~ ¢+ O(1/k)

Such configuration is called “balanced”. In a certain sense, it is the
configuration with maximal entropy. When k — oo, balanced metric
becomes exact constant scalar curvature metric (that’s why this setup
is central in complex geometry).

Quantum Hall effect and Kéhler metrics Natal, October 28, 2014 17/25



Derivation, cont'd

Using the expansion of px we can integrate out the free energy order
by order in k (in principle to all orders)

§log Z%* (g, 9) :/ (—kpk + Dpk)d¢ gd?z
M

K2 k 1
log Z%E (go, g) = 5 Say(00, ) + 5 —Su(00, @) + 5 S1(90, ¢) + O(1/k)
where the following functionals appear
1
Sav (90, ¢) = / (§¢58¢ + ¢go)d22 Aubin — Yau
M
Sm(90; 9) =/ (—¢Ro + glog g)dzz Mabuchi
M 90
Si(90,0) = / (00do + Ryo)d?z, Liouville
M
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Derivation, cont'd

All these functionals satisfy one-cocycle condition on the space of metrics:
S(90, 92) = S(90,91) + S(g1, 92). Starting from order 1/k this becomes easy,
since S(go, 9) = S(9) — S(go) (exact one-cocycle):

K2 k 1
log Z%" (g0, 9) = —5-Sar(9o @) + 7 Sm(go, @) + 5-Si(00, )

. S 2 2 _/ 2 2
%6k (/MR gd-z MFi’ogodZ + ..
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All these functionals satisfy one-cocycle condition on the space of metrics:
S(90, 92) = S(90,91) + S(g1, 92). Starting from order 1/k this becomes easy,
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. S 2 2 _/ 2 2
%6k (/MR gd-z MFi’ogodZ + ..

Conjecture: all remainder terms (starting order 1/k and lower) are exact
one-cocycles.
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S 2 2 _/ 2 2
967Tk</MRgdz MF?Ogodz +

1 3 2

—/(29/?8 - 66R0A0Fi’o)god22> +0(1/K%)
M
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Physical interpretation

There is a long-term effort to understand the effective theory of QHE
systems. One interpretation is that electrons in QHE form an incompressible
"QHE liquid" (Girvin-MacDonald-Platzman 1986, see also recent papers by
Son, Hoyos, Wiegmann, Abanov etc)

JFFQHE — /3 SAY(QOM?)"‘/} —Su(o, ®) + (f

2 SL(QOa ¢)

e
Can-Laskin-Wiegmann (2014). The first coefficient is inverse Hall
conductance. The response to the curvature is interpreted as an anomalous
Hall viscosity
_ Ok
oR
The Liouville term is related to heat transport (Cardy)

where (6Sy=R 6S.=AR)

(more details in P. Wiegmann’s talk)
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Beta-deformed Bergman kernel

Begman kernel is ubiquitous in K&hler geometry. Analogs of Z@HE
have been studied by Donaldson (2004) and R. Berman (2008-) on
Kéhler M - derived leading order term in the large k expansion of
Z9ME Darboux-Cristoffel formula for the Bergman kernel

Ny
p(z)= [ |dets(z)Pe T ] Hi(z)g"()o"z
MY i—2
Define "3-deformed" Bergman kernel A
Nic
p(21) = / | det si(z)[? e~ [ ] hy"(21)g"(21)0™"z;
MNk71

i=2
This is a new object in Kéhler geometry.
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FQHE and off-diagonal Bergman kernel

Statement: g-deformed Bergman kernel has large k local asymptotic
expansion (no rigorous proof available at the moment).
Conjecture: there exists asymptotic expansion

P =B (BK)"SPs(B)(R® + ...),

s=0

where Ps(/3) is a polynomial in 5 of degree s, and R® schematically
denotes curvature invariants of degree s.
Another representation for the FQHE partition function 2°(g)

1 N

_ ﬁ 2n
i=

ZP(g) =

Where By(z;, z;) = >, ¥(2i)y(z)) - off-diagonal Bergman kernel.

Bi(zi, z)) = e M=l (k" + )
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QHE and random geometry

When Polyakov derived his formula Z¢F7 (g) = e=5(9:9) ZCFT (g4), he

immediately realized that it can be used to define the probability measure on
two dimensional metrics

dﬂé — eﬁSL(QOaU)Dg’
thus defining “random geometry”, induced by free fields. This gave rise to a

beautiful subject of Liouville theory and non-critical string theory. Following
the same logic, the QHE effect induces its own “random geometry”:

dMS?HE = ZUE(g, go)Dg = e=Su(@:2)pg,
ZFQHE(9,90)

dut = = Dg=ewSarpg B=357.
ho =z (g Y g 7
with the appropriate choice of the measure. This type of measures can be

studied in the framework of “random Bergman metric”, for more details see:
F. Ferrari, S.K., S. Zelditch (2012-2014)
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Thank you
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