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Quantum Hall effect

Observed in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields. Hall conductance is
quantized σH = I/VH = ν, where ν is integer for integer QHE, or a
fraction for fractional QHE. Involves many (N ∼ 106) electrons on
lowest Landau level, described by a collective (Laughlin) state.

Ψ({zi}) =
N∏

i<j

(zi − zj)
βe−

B
2
∑

i |zi |2 , β = 1/ν ∈ Z+
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Motivation

Quantum Hall effect happens in a planar sample. Here we will ask,
what happens when QHE is considered on a curved geometry.

Also, QHE can be defined on Kähler manifolds
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Motivation

In physics one can obtain important information about the system by putting it
on a manifold with a Riemannian metric

ds2 = g(z, z̄)dzdz̄

Prototypical example (Polyakov, 1981): CFT partition function on a compact
Riemann surface (M,g0) has the following behavior under the transformation
of the reference metric g0 to a new metric g = e2σg0

log
Z CFT (g)

Z CFT (g0)
=

c
12π

SL(g0, σ),

where c ∈ R is the central charge of the CFT, and the Liouville action is

SL(g0, σ) =

∫
M

(∂σ∂̄σ + R0σ)d2z,

and R0 = − 1√
g0
∂∂̄ log

√
g0 is the scalar curvature of g0.
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Landau levels

Charged particle on the plane in constant magnetic field B = ∂Ā− ∂̄A.
Hamiltonian

Ĥ =
1

2m
1
√

g
(
|i~∂ + eA|2 + eB

)
Infinite tower of energy levels, each level is highly degenerate. Structure:

Lowest level n = 0
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Landau levels

The lowest energy level is special, since the Hamilatonian factorizes
and wave functions satisfy first order equation[

∂

∂z̄
+ Ā

]
ψk (z) = 0

For example on the two-plane with constant magnetic field Ā = Bz, in
complex coordinates z = reiφ, the wave functions are

ψk (z, z̄) = zke−B|z|2 , k = 0,1...∞(or total flux
∫

B),

Quantum Hall effect and Kähler metrics Natal, October 28, 2014 7 / 25



Lowest Landau level on a curved manifold

What is the analog of this picture (rich LLL) in a more general setup,
e.g. for compact manifolds, inhomogeneous magnetic fields, any
space dimension?

Conditions:

Manifold admits complex coordinates za, z̄ ā (a, ā = 1, ...,n)
... and Kähler metric gaā = ∂a∂̄āK
Magnetic field is "holomorphic", i.e. only Faā components are
non-zero.

Then Hamiltonian (magnetic Schrödinger operator) factorizes:

H = gaāDaD̄ā + gaāFaā

provided gaāFaā = constant , which is equivalent to Maxwell equation
(∇F = 0).
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Lowest Landau level on a Riemann surface

Constant magnetic field: B0 = kg0. Shrödinger equation for the lowest
energy level reduces to

(∂̄ + Az̄)ψ = 0, where Az̄ = −k ∂̄ log h0

with many solutions ψ0
i (z, z̄) = si(z)hk

0(z, z̄). Mathematically, magnetic
field is described by the holomorphic line bundle Lk → M, si(z) is the
basis of holomorphic sections (i = 1, ..,Nk ) and constant magnetic
field F = kg0 means choice of "polarization", implying positivity: F > 0
since the metric shall be positive definite everywhere on M. Examples:

S2, si(z) = z i−1, i = 1, .., k + 1.
T 2, si(z) = θ i

k ,0
(kz, kτ), i = 1, .., k

on a surface of genus h there are Nk = k − h + 1 sections.
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Kähler metrics

In two dimensions we are used to parameterizing the metric in
conformal class.

g|dz|2 = e2σ(z,z̄)g0|dz|2

Landau levels prefer Kähler parameterization (Kähler class)

g|dz|2 = (g0 + ∂∂̄φ)|dz|2

where the scalar function φ(z, z̄) is called Kähler potential. QHE
droplet is incompressible – deformations have the same area, and all
metrics in the Kähler class have the same area.
If ψi(z, z̄) = si(z)hk

0(z, z̄) are LLL wave functions for the magnetic field
B0 = kg0, then wave functions for the magnetic field B = k(g0 + ∂∂̄φ)
are

ψi(z, z̄) = si(z)hk
0(z, z̄)e−kφ(z,z̄)
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Laughlin wave function on Riemann surface

The Laughlin wave function of Nk non-interacting fermions (integer
QHE) is given by Slater determinant

Ψ(z1, . . . , zNk ) =
1√
Nk !

detψi(zj)

=
1√
Nk !

[det si(zj)] ·
Nk∏
j=1

hk
0(zj) · e−k

∑
j φ(zj )

where I plugged LLL wavefunctions on curved metric

ψi(z, z̄) = si(z)hk
0(z, z̄)e−kφ(z,z̄)

The Laughlin wave function for the fractional QHE is

Ψβ(z1, . . . , zNk ) =
1√
Nk !

(
detψi(zj)

)β
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Partition function for integer QHE

Partition function (generating functional)

Z QHE (g0,g) =

∫
M⊗Nk

|Ψ(z1, . . . , zNk )|2
Nk∏
i=1

√
g(zi)d2zi =

=
1

Nk !

∫
M⊗Nk

|det si(zj)|2e−k
∑

i φ(zi )
Nk∏
i=1

hk
0(zi)

√
g(zi)d2zi .

Varying Z QHE (g0,g) with respect to δφ(z) allows to define density
correlation functions ρ(z) = 1

k
∑

i δ(z − zi):

〈ρ(x)ρ(y) . . . ρ(z)〉.
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Partition function for integer QHE

On the two-sphere or on the plane, Wiegmann-Zabrodin (2006):

Z FQHE ,S2
(W ) =

1
N!

∫
C⊗N
|∆(z)|2βe−N

∑
i W (zi )

N∏
i=1

d2zi ,

For β = 1 this is partition function of the ensemble of random normal
matrices. For any beta this is called beta-ensemble.
Wiegmann-Zabrodin derived first three terms large k expansion, using
loop equation, for arbitrary W

log Z FQHE ,S2
(W ) = N2S0(W ) + NS1(W ) + S0(W ) +O(1/N)
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Derivation

The integer QHE partition function enjoys determinantal representation

Z QHE (g0,g) = det
ij

∫
M

s̄isjhk
0e−kφ√gd2z,

studied by Donaldson (2004). Variation of the free energy wrt δφ(z)

δ log Z QHE (g0,g) =

∫
M

(
−kρk + ∆ρk

)
δφ
√

gd2z.

is controlled by the density of states function

ρk (z) =

Nk∑
i=1

ψ̄i(z)ψi(z) =

Nk∑
i=1

|si(z)|2hk
0e−kφ.

In math this is known as the Bergman kernel on the diagonal.
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Bergman kernel

Density function (Bergman kernel) has a local expansion for large k

ρk (z) =

Nk∑
i=1

ψ̄i(z)ψi(z) =

Nk∑
i=1

|si(z)|2hk
0e−kφ

= kn
(

1 +
1

2k
R(z) +

1
3k2 ∆R + ...

)
known as Tian-Yau-Zelditch expansion (Tian’ 90, Zelditch’ 98). Total

number of states is Nk =
∫

M ρk (z)gd2z, in complex dimension n = 1
we get

Nk = k +
2− 2h

2
(Riemann-Roch)
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Bergman kernel from path integral

In physics the Bergman kernel expansion can be derived from the path
integral for a particle in the magnetic field F = dA = kg (Douglas, S.K.,
2008), taking large time limit of

ρk (z) = lim
T→∞

〈z|e−TH |z〉 =

= lim
T→∞

∫ z(T )=z

z(0)=z
e−

1
~
∫ T

0 dt (gaāża ˙̄z
ā
+Aaża)

∏
0<t<T

√
g(z(t))Dz(t)Dz̄(t) =

= kn
[
1 +

~
2k

R +
~2

k2

(
1
3

∆R +
1
24
|Riem|2 − 1

6
|Ric|2 +

1
8

R2
)

+ . . .

]
.
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Interlude: Balanced confuguration

The confuguration of particles on LLL with constant density function,
“’knows” about constant curvature:

ρk (z) = kn
(

1 +
1

2k
R(z) + . . .

)
= constant ≈ kn +

c
2

kn−1 + ...

Therefore
R(z) ≈ c +O(1/k)

Such configuration is called “balanced”. In a certain sense, it is the
configuration with maximal entropy. When k →∞, balanced metric
becomes exact constant scalar curvature metric (that’s why this setup
is central in complex geometry).
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Derivation, cont’d

Using the expansion of ρk we can integrate out the free energy order
by order in k (in principle to all orders)

δ log Z QHE (g0,g) =

∫
M

(
−kρk + ∆ρk

)
δφgd2z

log Z QHE (g0,g) =
k2

2π
SAY (g0, φ) +

k
4π

SM(g0, φ) +
1

6π
SL(g0, φ) +O(1/k)

where the following functionals appear

SAY (g0, φ) =

∫
M

(1
2
φ∂∂̄φ+ φg0

)
d2z Aubin− Yau

SM(g0, φ) =

∫
M

(
−φR0 + g log

g
g0

)
d2z Mabuchi

SL(g0, σ) =

∫
M

(∂σ∂̄σ + R0σ)d2z, Liouville
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Derivation, cont’d

All these functionals satisfy one-cocycle condition on the space of metrics:
S(g0,g2) = S(g0,g1) + S(g1,g2). Starting from order 1/k this becomes easy,
since S(g0,g) = S(g)− S(g0) (exact one-cocycle):

log Z QHE (g0,g) = − k2

2π
SAY (g0, φ) +

k
4π

SM(g0, φ) +
1

6π
SL(g0, φ)

− 5
96πk

(∫
M

R2gd2z −
∫

M
R2

0g0d2z
)

+ ...

Conjecture: all remainder terms (starting order 1/k and lower) are exact
one-cocycles.
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1

2880πk2
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M
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Physical interpretation

There is a long-term effort to understand the effective theory of QHE
systems. One interpretation is that electrons in QHE form an incompressible
"QHE liquid" (Girvin-MacDonald-Platzman 1986, see also recent papers by
Son, Hoyos, Wiegmann, Abanov etc)

FFQHE = −β k2

2π
SAY (g0, φ) + β

k
4π

SM(g0, φ) +
(1

3
+
β − 1

2
) 1

2π
SL(g0, φ) + ...

Can-Laskin-Wiegmann (2014). The first coefficient is inverse Hall
conductance. The response to the curvature is interpreted as an anomalous
Hall viscosity

η =
δρk

δR
where (δSM = R δSL = ∆R)

The Liouville term is related to heat transport (Cardy)

(more details in P. Wiegmann’s talk)
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Beta-deformed Bergman kernel

Begman kernel is ubiquitous in Kähler geometry. Analogs of Z QHE

have been studied by Donaldson (2004) and R. Berman (2008-) on
Kähler M - derived leading order term in the large k expansion of
Z QHE . Darboux-Cristoffel formula for the Bergman kernel

ρk (z1) =

∫
MNk−1

|det si(zj)|2e−k
∑

i φ(zi )
Nk∏
i=2

hk
0(zi)gn(zi)d2nzi

Define "β-deformed" Bergman kernel

ρβk (z1) =

∫
MNk−1

|det si(zj)|2βe−βk
∑

i φ(zi )
Nk∏
i=2

hβk
0 (zi)gn(zi)d2nzi

This is a new object in Kähler geometry.
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FQHE and off-diagonal Bergman kernel

Statement: β-deformed Bergman kernel has large k local asymptotic
expansion (no rigorous proof available at the moment).
Conjecture: there exists asymptotic expansion

ρβk = β

∞∑
s=0

(βk)n−sPs(β)(Rs + ...),

where Ps(β) is a polynomial in β of degree s, and Rs schematically
denotes curvature invariants of degree s.
Another representation for the FQHE partition function Zβ(g)

Zβ(g) =
1

Nk !

∫
MNk

(det Bk (zi , zj))2β
Nk∏
i=1

gn(zi)d2nzi

Where Bk (zi , zj) =
∑

i ψ̄(zi)ψ(zj) - off-diagonal Bergman kernel.

Bk (zi , zj) = e−k |zi−zj |2(kn + ...)
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QHE and random geometry

When Polyakov derived his formula Z CFT (g) = e
c

12π SL(g0,σ)Z CFT (g0), he
immediately realized that it can be used to define the probability measure on
two dimensional metrics

dµL
g = e

c
12π SL(g0,σ)Dg,

thus defining “random geometry”, induced by free fields. This gave rise to a
beautiful subject of Liouville theory and non-critical string theory. Following
the same logic, the QHE effect induces its own “random geometry”:

dµQHE
g = Z QHE (g,g0)Dg = e

κ
12π SM (g0,σ)Dg,

dµL
g =

Z FQHE(g,g0)

(Z QHE (g,g0))β
Dg = e

β−1
12π SL(g0,σ)Dg, β = 3,5,7...

with the appropriate choice of the measure. This type of measures can be
studied in the framework of “random Bergman metric”, for more details see:
F. Ferrari, S.K., S. Zelditch (2012-2014)
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Thank you
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