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Classical Hall effect

Edwin Hall (John Hopkins U.): appearance of electric potential difference
(Vi) perpendicular to the direction of the current (I,;) in conductors
placed in magnetic filed (B,). Manifestation of the Lorenz force

F=u#xB

ne
where n is the density of electrons of charge e on the surface. Coefficient
between V' and I is called resistance, here Hall resistance: Ry = %

grows linear with magnetic field B.



Quantum Hall effect

Observed in two-dimensional electron systems (such as GaAs, recently
was observed in graphene) subjected to low temperatures and strong
magnetic fields. Involves many (N ~ 10°) electrons. The geometry of
experiment is a domain in the complex plane.




Hall resistance Ry undergoes a series of plateaux, where it is quantized
(in units of €2/h) oy = 1/Ry = I/Vy = v, where v is integer for
integer QHE, or a fraction for fractional QHE, to one part in billion.
Precision measurement of fine structure constant

a = e%/he = 1/137.0360030
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Laughlin state

On the plateaus QHE is described by collective multi-particle wave
function, called the Laughlin state
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[Laughlin’83]

B = 1: Integer QHE, non-interacting electrons.
B =3,5,7,..: Fractional QHE, interacting (via Coulomb forces) electron
system. Hall conductance oy = 1/8.
Other candidate states were proposed for other plateaus.



Mathematically, the Laughlin state defines a sequence of probability
measures on the configuration space CV /Sy of N point-particles

N
UN = |\I’(2’1, .. .,ZN)|2 HdZZj
j=1

The total mass of this (unnormalized) measure is called the partition
function (this is L? norm of W)
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Central object in Log-gases (other names: Coulomb gas, Dyson gas,
random matrix 3-ensemble).



Why Hall conductance is quantized? It was understood very soon that
Hall conductance is a Chern class (Thouless et.al. 1982). Laughlin state
is a section of a vector bundle over certain manifold V' — Y. What is Y
here? There are two major ways to think about this:

1) Bellissard et.al.: QH states on the lattice, vector bundles over the
Brillouin zone, noncommutative geometry Chern classes.

2) Avron, Seiler, Simon, Zograf: QH states on Riemann surfaces, vector
bundles on moduli space, Quillen metric.



Laughlin state on Riemann surfaces

We would like to consider Laughlin state on a compact Riemann surface

> of genus g

Problem: Define Laughlin state(s) ¥,. on a genus-g Riemann surface &
with arbitrary geometry: metric g, complex structure .J, inhomogeneous
magnetic field B, flat connections moduli. Determine the partition
function Z =% (V,,¥,)2, as a function of these geometric parameters

Z =1Zg,J,B,p,..]

in the limit of large number of particles.



Why: geometric adiabatic transport

Main idea is geometric adiabatic transport — [Thouless et.al.; Avron, Seiler, Simon,
Zograf, ..]. Laughlin states on a Riemann surface (X, g, J) form a vector
bundle over the parameter space Y (e.g. moduli space of flat connections
Y = Jac(X) or complex structure moduli Y = M,). Let dy be an
exterior derivative along the parameter space. Then adiabatic (Berry)
connection and curvature are

A= (V,dyV);2, R=dyA=—0y0ylogZ.

Transport coefficients:

o For Y = Jac(X), R = ouQaas (o is Hall conductance) [Thouless
et.al.1982, Avron-Seiler 1985, Avron-Seiler-Zograf 1994]

e For adiabatic transport on the moduli space of a torus Mj:
R =nuQp, "anomalous (Hall) viscosity” ngy = 1/4. IQHE:
[Avron-Seiler-Zograf 1995, Levay 1995], FQHE: [Tokatly-Vignale 2007, Read 2009]

e Transport on higher genus: R = (nuk + <&x(M))Qwp, new
transport coefficient, dubbed " Hall central charge” [Sk-Wiegmann 2015]



Lowest Landau level (LLL)

Consider compact connected Riemann surface (X, g, J) and positive
holomorphic line bundle (L*, h¥). The latter corresponds to the magnetic
field. The curvature (1,1) form of the hermitian metric h*(z, 2) is given
by F = —i00logh* and % fz F =k, so k is "total flux" of the
magnetic field. Notation: B = ¢g**F,;. On the plane and for constant
magnetic field B = k, this corresponds to Rk = e= 51217,

Shrédinger equation for the one-particle wave functions of lowest energy
in the strong magnetic field reduces to

5Lkw - 0
Solutions are holomorphic sections of L,
Vi =s54(2), i=1,...,Np =dim H°(M, L*)

These are wave functions on the lowest Landau level (LLL).
We will also consider tensoring L* ® K*, where K is canonical line
bundle and s is called the spin.



Examples
1. Round sphere S?, constant magnetic field: h* = W Then

s; =271, j=1,.k+1is a complete basis of holomorphic sections
(LLL), with finite L? norm

d?z
5,(2)s;(2)hfF ——Z o0
/52 57,( ) z( )h (1—‘,—|Z|2)2 <

D i E=D? .
2. Flat torus T2, constant magnetic field h* = e Tk =" The basis of
sections:

s; :9%70(k2+g0,k7), i=1,...,k

Here ¢ = s + 17 is complex coordinate on Jac(T?): flat connection
moduli dA =0

(p_di— L'O_dz7 /Azapl, /A:gpz.
T—7 T—7 a b

3. On X of genus g the number of LLL wave functions is

A:

Ny =dim H(S, LF) =k +1—¢

for k large.



Definition of Laughlin state (integer QHE)

For integer QHE, 5 = 1. Consider N points on X: 21, 29,...,2N,. The
(holomorphic part F' of the) Laughlin state is completely antisymmetric
combination of one-particle wave functions on LLL (holomorphic
sections):

F(z1,...,2n,) = det[si(zj)]f-vj:l

Also called Slater determinant. For example, on the sphere S2. we had
55 = 27N 5 =1,..,k+1. We get

k+1
2 ] —
F (z1,...,2541) = det 2/ 7' = H(Zl - zj)
i<j

(Vandermonde determinant). Torus:

01 (ZZ — %5 T)

2
F™ (21, .., z1) = det 9%,0("’21' + o, k) =0(2c + ,T) H )

i<Jj

where z, = Zj zj is center-of-mass coordinate. Bosonization formula
(higher genus analog of Vandermonde determinant)



Definition of Laughlin state (fractional

QHE)

Consider now line bundle (L% hA*). But number of points is still
N;, = dim HO(X, L¥), i.e. only fraction of LLL states is occupied (thus
fractional QHE). The (holomorphic part F' of the) Laughlin state satisfies
o F(z1,...,2n,) is completely anti-symmetric
e Fix all z; except one, say z,,. Then F(-, ..., zm,...,-) is a
holomorphic section of L?F.
¢ Vanishing condition near diagonal z; ~ z; in local complex
coordinate system on X, F(z1, ..., 2x, ) ~ [[(2i — 2;)”.



Examples:
e Round sphere: F(21, ..., 2k4+1) = [[;; (2 — z;)P.
o Novel feature: for g > 0 Laughlin states are degenerate. Torus

L B
FT.(Zl, . Zk.) = 9%70(/820 + @757) H (W)
1<J

Center-of-mass: z. = Y z;.
e Higher genus: via Jacobean embedding ¥ — Jac(X): 2= f;ﬂ ~

ez, 2n,) = 0z 0 (8% + G+ &, 87) [T (B = 2,7)”,

i<j

where 7= (1,...,3)8, 7 is a basis of holomorphic 1-forms, Ais
vector of Riemann constants and E(z, 7) is prime-form. The number
of Laughlin states on X of genus g is ng = 3%: vector bundle of
rank ng over Y.



Arbitrary metric and inhomogeneous
magnetic field

The advantage of the language of holomorphic line bundles is that it
gives us a clear idea how to put the Laughlin state on X with arbitrary
metric g and inhomogeneous magnetic field B. Consider some fixed
(constant scalar curvature) metric go, and constant magnetic field By
(and corresponding hermitian metric hf(z, z)). Arbitrary metrics are
parameterized by:

e Kihler potential ¢(2,2): g.z = goz. + 0,0z,
e "magnetic’ potential ¥(2,2): F = Fy + 00y, B = g**F,;



Partition function

For the integer QHE (8 = 1), the partition function on arbitrary X is

Ni
7= [ ety [ hes,2)e 050 i),
3 i=1

For the fractional QHE (8 =3,5,7,..)

Z = Z/ (215 -y ZN,, |2Hh (2j,2;) e *P¥E20) g(25)d? 2,

Adiabatic connection on Y = Jac(X) x M,

Ars - <Fr7 dYE9>L2



Partition function for IQHE

Terminology: we write for the magnetic field F' = dA, and use
components of gauge-connection one form A, = i, log h¥. We also
write Ric(g) = dw, where w, = i0log g.z is spin-connection.

Result [SK'13; SK, Ma, Marinescu, Wiegmann'15]:

1—2s

(Asws + Aseo,)+ (“‘25)2 ! ) wews)

1
log Z = — [ (A,A, -
& 27r/2( + 4 12

+F|[B, R]

where F[B, R] is a local functional of magnetic field B and scalar
curvature R, which admits large k£ asymptotic expansion, with first terms
given by

1

F=——
21 Js

1 2—-3 1
[53 log B + TsRlogB + 57 (108 B)A, (log B)} Vadiz + O(1/k).



Derivation of log Z in IQHE

For B = 1 the partition function satisfies determinantal formula:

Ny
zZ :/m | det si(zj)th’g(zj’gj)efkw(zj,zj)\/g(zj)dzzj
= det(s;, ;) 2
Denoting Gj; = <Sj, s1), we get
0logZ =46Tr log(sj, 1)
- / ( (Agdg) + k&/}) sjslhkf 542,

1

N (H(AQB'C(Z’Z)) 60+ kB(2,7) aw) Vi,
™ Jn 2

where By (z, Z) is the Bergman kernel on diagonal.



Bergman kernel

By is the Bergman kernel on the diagonal. For orthonormal basis of
sections {s;}:

ol 1-2s 1
Bi(z,2) =Y _|lsil[jx = B+ R+ Aglog B
=1
2 — 3s . 1 . )
o Ay(B R)+2—4Ag(B Aglog B) + O(1/k%).

[Boutet de Monvel-Sjéstrand, Tian, Zelditch, Catlin, ...]
We need 3 leading terms in the most general form at n = 1, due to
[Ma-Marinescu’'06 (Book), Ma-Marinescu’'12(Crelle)]
In QM, Bergman kernel is the density of states 1; on "completely filled”
LLL

N z(T)==z s )

Bi(2,2) = Y [9u(2)” = Jim e~ o AN Dy (1)
i=1

T—o0 :C(O)=Z

[Douglas, SK'09]



Constant magnetic field case

The case of B = k (Kahler potential is equal to magnetic potential
¢ = 1)) is of special interest

Splog Z :/ (—k 4+ Ay)By(2) d¢ \/gd*=
M

The answer is given by geometric functionals ([Donaldson'04] studied this as
7 = det Hilby, where Hilb, parameterizes inner-products on H°(M, L¥))

local densities

k2 k 1 1
_ Kk Kk 1 1 2
log Z = QWSAY(90,¢)+47TSM(90,¢)+ 127TSL(90,¢)+]€/R +..
[SK'13]

First three terms of the expansion are geometric functionals:
Aubin-Yau(-Futaki-Mabuchi), Mabuchi and Liouville. The remainder
terms are integrals of local densities of higher-order curvature invariants.



Geometric functionals

Aubin-Yau(-Futaki-Mabuchi): 654y = [ ¢ /gd*z
1 _
Savle.6) = | 30006+ 6ymd’s,
M

Mabuchi: 6Sy = [ Ré¢\/gd*z

_ \/5) 2
S = — VI
wlon,6) = [ (~oRov + valog v I
Liouville: 65, = [(AR) ¢ \/gd*z
1 _
SL(go,O') = /]VI (280'80' +(TRUg())

in conformal gauge €7 /go = \/go + 00¢.



Liouville action is a hallmark of gravitational (conformal) anomaly. For
two metrics the conformal class g = €29 gy, there is Polyakov formula

det A

SL(QOag) - d t A
g0

More generally, CFT partition function transforms
ZCFT(g) c c
log —++5=-—9 = — Lwzd?
8 ZCFT(g0) ~ T2n M%) = Gr /E“’ v

where c is central charge. Our result is the mixed
electromagnetic-gravitational anomaly

1-—2s

1
IOgZ = — / |:AZAZ + (AZ(UE =+ WZA2)+
21 »

(1-2s)° 1 | g2
—|—( 1 13 ) Wwew= d“z+ F|[B, R].



Geometric adiabatic transport

The integer QHE wavefunction F'(z1, .., zn, ) = det s;(z;) is a section S
of the determinant line bundle £ over the parameter space

Y = Jac(¥) x M, £ =det H'(X, L* ® K*). For the basis {s;} of
HO(%, LF ® K*), the Quillen metric of S of L is given by

182 = det(s;, 1) _ Z
det/ ALk®Ks det/ ALk®KS ’

Then adiabatic curvature is related to the curvature Q€ of the Quillen
metric as

R = —dydy log Z = Q — dydy logdet' A prg

where the last term is vanishhing as £ — oo.



Relation to Chern-Simons theory

Consider geometric adiabatic

transport of IQHE wave

function along a contour C

in the moduli space

Y = Jac(X) x Mg <

Define adiabatic connection: v

Ay = (U, dy V)2, CD

. 6
and adiabatic phase: @
et Je Ay

L
([SK—Ma—Marinescu-Wiegmann'lS])Z
1 1
/Ay = — |:O’HAdA + 2ng Adw — cdew]
I 47 Sy xC 12

(proof relies on Quillen-Bismut et al theory)



Bismut-Gillet-Soulé curvature formula

X is "universal curve” (union of all Riemann surfaces 3, over V'), and E
is line bundle over X, which is the "union” of all line bundles
(LF @ K°), — 3.

QF = —2m'/X|Y[Ch(E)Td(TX|Y)}(4).

Here the integrand is a form of mixed degree on X. The subscript 4
means that only 4-form component of the full expression is retained, so
that the result of the integration is a 2-from. The notation X|Y" means
that the integration goes over the fibers, i.e., over the spaces ¥, at y
fixed. Explicitly:

c i (1-28)2% 1
of =~ iy FAF+(1—-28)FARrx)y + 1 — 15 ) Rrxiy ARrxpy
1 1—2s (1 — 2s)2 1
/,4:* ANdA+ —"(ANdw+dAAW)+ | —— — — |wAdw.
c ar Jo-1(c) 2 4 12

o : X — Y is projection. Chern-Simons effective theory of QHE
[Frohlich-Studer'92;Wen-Zee'92,Abanov-Gromov-Fradkin'15].



Partition function of Laughlin state
For the FQHE Laughlin state we have the following results:

1
log Z = —/ [crA. Az + 2ng(Aws +w, Az)+
27'(' )

1
—ucszwz} d*z + F[B, R].

where

1 2 —
F— ,%/2 {Q‘f{BlogB] VId®z + O(1/k).

Hall conductance oy = %

"Hall viscosity” ng = (1 — %S)

[Avron-Seiler-Zograf 1995]
p— 3 2
"Hall central charge” cy =1 — 3%.



Beta-deformed Bergman kernel

Darboux-Cristoffel formula for Bergman kernel

Ny,
Bi(z1) = /ZN [ det s;(2)]* [ 16 (5, 2)e ¥ %) /g(25)d?2
k=1 j=2

(integrate all z;'s but 2;). Up to overall combinatorial constant.
Beta-deformed Bergman "kernel” (no longer a kernel): density of
electrons in Laughlin state

Bi(z) = /ZN ) | det s;(z;)[* thk(zj,z Je PRV(iZ) | f5(25)d? 2,
k— J=2
Also admits large k expansion:
Bu(z) = Y cn(BE
m=0

where ¢,,,(3) are invariants of B, R with coefficients depending on £.



Adiabatic curvature for Laughlin states

Adiabatic connection and curvature for Laughlin states on Y is actually
abelian (this is still a conjecture for g > 1).

ATS = <\Ij'f‘?dY\IlS> = A6T57 Rrs - R(Srs.

The adiabatic phase for the transport along the smooth closed contour
CeYis

/A:i/ o’HA/\dA+2nH(A/\dw+dA/\w)ficHw/\dw.

c 47, 071((:) 12

o : X — Y is projection. Correspondingly, there should be a
[-deformation of the BGS curvature formula, for the adiabatic curvature
of Laughlin states (conjecture).



Free field representation

The proof is based on the free field representation of Laughlin states
ng
Z ‘\I/T|2 = /eiﬁx(zl) L eVBX(eny) o= 37 5(9,X)

[Moore-Read’'91]
where sum goes over all degenerate Laughlin states on Riemann surface
and the free field action is

S = / (0XX +iy/BRX + —=A A dX)
M VB
[Ferrari-SK'14]
Moore-Read famously proposed this representation on the plane (R = 0).
The novel feature of Ferrari-SK'14 is the background charge term
iv/BRX and magnetic field coupling ﬁA A dX. We then develop large
k techniques to tackle the path integral above.



New transport coefficient

Consider complex structure deformations gzz|dz\ — goz|dz + pdz|?,
where Beltrami differential is = g Zig 1 Mk0Yx and 7, are a basis of
holomorphic quadratic differentials.

Berry curvature, associated with these deformations is

R =idd log Z = (771{]?3 + EX( ))QWP;

where Quwp = z'fM dp A dfi g.zd?z is the Weil-Petersson form on the

moduli space. Here cy =1 — 3% is a new quantized transport
coefficient, it can only be seen on higher genus surfaces, since on torus
x(M) =0.
[SK-Wiegmann'15]
[Bradlyn-Read’15]



Singular surfaces

Riemann surfaces with conic singularities or cusps.

e Curvature in the experimental sample arises in graphene

100

-100

100

Fig. 6. A smooth curved bump in the graphene sheet

M.A.H. Vozmediano et al., Physics Reports 496 (2010)

o Recently a QHE-like system was experimentaly realised on a spatial
CONe Schine et al., Arxiv:1511.07381

e There are proposals to experimentally realize QHE on a higher-genus
Riemann surface as multi-layer system with n defects (branched
covering of complex plane with n singular points). Barkeshli, Qi 2013.



The gravitational term (Liouville action) becomes most important in
presence of singularities. The large k expansion of log Z breaks down at
O(log k). Instead we encounter zeta function for the scalar laplacian on
the cone (Cheeger, Briining, Lesch, Melrose, Miiller, Vertman, ...). This
is what replaces the smooth-case expansion (conjecture)

k2 k
log Z = —%SAY(QO,@ =+ ESM(QONW + (€(0, Acone) — €(0,Ag) log k

1 o det Acone

2 S det AO
Working examples: flat cone over S!, Troyanov spindle (sphere with
antipodal singularities).

+O(1/k)




1
-5 log det Acone ~ ¢5(0,a, 1, ),

where (5 is Barnes double zeta function. (There are few explicit formulas,
somewhat unreliable literature. See Spreafico 2004,2009)

What is the answer for FQHE (Laughlin state)?

Conjecture: quantum Liouville theory. (but this is long story)



