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ABSTRACT OF THE DISSERTATION

Bergman kernel, balanced metrics and black holes

by Semyon Klevtsov

Dissertation Director: Professor Michael Douglas

In this thesis we explore the connections between the Kähler geometry and Landau

levels on compact manifolds. We rederive the expansion of the Bergman kernel on

Kähler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral

and perturbation theory. The physics interpretation of this result is as an expansion

of the projector of wavefunctions on the lowest Landau level, in the special case that

the magnetic field is proportional to the Kähler form. This is a geometric expansion,

somewhat similar to the DeWitt-Seeley-Gilkey short time expansion for the heat kernel,

but in this case describing the long time limit, without depending on supersymmetry. We

also generalize this expansion to supersymmetric quantum mechanics and more general

magnetic fields, and explore its applications. These include the quantum Hall effect in

curved space, the balanced metrics and Kähler gravity. In particular, we conjecture that

for a probe in a BPS black hole in type II strings compactified on Calabi-Yau manifolds,

the moduli space metric is the balanced metric.
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Chapter 1

Introduction

The quantum mechanics of particle on a curved space is a prototypical example of the

problem on the interface between geometry and physics. Since the pioneering work of

DeWitt [1], where its path integral formulation was developed, many important results

were obtained in this area. Among them the most well-known include the DeWitt-

Seeley-Gilkey short time expansion of the heat kernel on a Riemannian manifold [2, 3,

4], the derivation of the Atiyah-Singer index theorem from supersymmetric quantum

mechanics [5, 6], and relation to gravitational anomalies [7, 8].

In this thesis we explore the connection between the expansion of Bergman kernel

on a Kähler manifold developed by Tian, Yau, Zelditch, Lu and Catlin [9, 10, 11, 12]

and the quantum mechanics of a particle in a non-uniform magnetic field. This type

of connection is not very well known to physicists, but certainly fits into the category

above. We also discuss its possible applications.

Bergman kernel was introduced by S. Bergman in 1922 [13] in the context of con-

formal mapping problem of planar domains; similar kernel for functions on a disk was

also considered by G. Szegő in 1921. It is a linear functional ρ(x, y) on the space of

holomorphic functions, which has reproducing property, i.e. it acts on the holomorphic

function f by evaluating it at point, ρ : f → f(x). In higher dimensions and for compact

manifolds there are no global holomorphic functions. However, on a Kähler manifold M

the Bergman kernel can be introduced for sections s of holomorphic line bundle L (and

its k’th tensor power Lk), which locally look like holomorphic polynomials of degree

one (correspondingly, k). Following earlier work by Boutet de Monvel and Sjöstrand,
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and by Fefferman [14], it was shown by Zelditch [10] and Catlin [11], that for large k

the diagonal of the Bergman kernel ρ(z, z) admits an expansion in 1/k with coefficients

being local functions of Riemann tensor and its relatives.

Physically, this setup is very similar to the quantum mechanical problem of particle

in magnetic field. Recall, that on the plane and in constant perpendicular uniform mag-

netic field the spectrum for this problem factorizes into infinite tower of Landau levels.

Each level is highly degenerate, with total number of states controlled by the magnetic

flux. The wavefunctions on the lowest Landau level (LLL) are holomorphic polynomi-

als, up to an overall weight. The same problem can be considered on curved compact

manifolds of any dimension. It turns out that the rich LLL structure is preserved if

the magnetic field satisfies certain conditions of holomorphy and the manifold admits

a Kähler metric. The LLL wavefunctions correspond to the sections s of line bundle,

therefore the density matrix, projected on the lowest Landau level should be equal to

the Bergman kernel.

To prove this analogy we consider the LLL density matrix, which can be defined

in terms of the path integral. Rather than the standard short time expansion, the

restriction to LLL corresponds to the zero temperature, or long time limit. We carefully

define the path integral for a particle in magnetic field and compute the density matrix in

the T →∞ limit, as a large magnetic field expansion. The result turns out to coincide

with the Bergman kernel expansion, at least up to the second order in perturbation

theory. Thus we provide the “physical proof” of the Tian-Yau-Zelditch expansion [15].

Let us now discuss the significance of this type of expansion from mathematical and

physical perspective.

One of the most important applications regards the construction of Ricci-flat metrics

on Kähler manifolds. In 10d superstring theory, the standard way to obtain a realistic

4d models of particle physics is to compactify extra dimensions on a 6d compact Kähler
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manifold [16]. Equations of motion require that the manifold should satisfy Calabi-

Yau condition of zero first Chern class c1(M) = 0, and admit a Ricci-flat metric. The

exact Ricci-flat metric on Calabi-Yau manifold appears to be beyond the reach of the

present day mathematics. However, it is of considerable interest for phenomenological

applications of string theory to develop some approximation scheme to Ricci-flat and

constant Ricci curvature metrics. This problem turns out to be related to the Tian-

Yau-Zelditch expansion of the Bergman kernel in the following way.

It was proved by Yau in the case c1(M) = 0 and by Aubin and Yau for c1(M) < 0,

that Ricci-flat metric exists in any Kähler class. The case c1(M) > 0 turns out to be

more complicated and the question of existence is related to a certain notion of stability,

see e.g. [17] for a recent review. For c1(M) ≥ 0, it has been proposed by Yau [18] to

approximate the metrics in a given Kähler class on M by the Bergman metrics. These

metrics are constructed in the following way. A particular choice of the basis of sections

sα, α = 0, ..., Nk of the line bundle Lk defines an embedding of M into the complex

projective space CPNk (Kodaira embedding), by sending a point z ∈ M to the point

sα(z) in CPNk . The Bergman metric is a pull-back to M under the Kodaira embedding

of the Fubini-Study metric on CPNk . Consider now a Kähler metric ωg in the class

c1(L) defined by the curvature of the line bundle L, and the basis of sections which is

orthogonal under the standard L2 Hilbert space norm with respect to the Hermitian

metric on Lk. Then the corresponding Bergman metric is in the same class as ωg, and

moreover, the two differ by a total derivative of the logarithm of the Bergman kernel.

It follows then from the Tian-Yau-Zelditch theorem [9, 10], that an arbitrary metric in

a given Kähler class can be approximated by the Bergman metric for k →∞. One can

use this scheme to approximate Ricci-flat or constant Ricci curvature metric in a given

Kähler class.

Of particular importance is the Bergman metric, for which the diagonal of the

Bergman kernel is constant. This metric was introduced by Donaldson [19, 20] and
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is known as the balanced metric. It can be constructed numerically by solving a certain

integral equation [21] and, for instance, can be used to find an approximation to the

Ricci-flat metric on Calabi-Yau manifolds [22].

The physical meaning of the balanced metric is that it corresponds to a mixed state

on LLL with constant density matrix on the diagonal. Such a mixed state satisfies

what we call the “maximal entropy” property: the probability to find the system at a

particular point on the manifold is independent of the point. This physical interpretation

of the balanced metric has led us to consider its other possible applications, beyond the

problem of the approximation of Ricci-flat metrics.

One rather straightforward application of balanced metrics concerns the Quantum

Hall effect. It is well known, that Landau levels provide a theoretical framework for

the QHE [23], explaining the formation of incompressible droplets of electrons as they

fill Landau levels. The concept of QHE droplets has also been generalized to higher

dimensions [24, 25], in particular to complex projective spaces [26, 27]. The defining

property of the droplet is that it corresponds to a mixed state on LLL with constant

density matrix. Therefore the balanced metric corresponds to QHE droplets on compact

Kähler spaces, which have been considered in the literature.

Another physical system, where Landau levels on Kähler manifold play important

role, is the Calabi-Yau black hole. For this black hole solution the famous Bekenstein-

Hawking formula for the black hole entropy admits an explicit check by counting the

number of the underlying microstates. This was done by Strominger and Vafa [28],

who counted the microstates of a BPS bound state of Dirichlet branes with the same

charge as the black hole. Their derivation is possible due to the observation of the

attractor mechanism [29], which implies that entropies and numbers of microstates are

independent of the moduli of the background, and flow to some particular values on the

horizon. We propose, that not only the Kähler moduli of the black hole are fixed, but the

whole metric is universal. Our observation is based on the near-horizon description of
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the black hole microstates as a quantum-mechanical system of D0 branes on the lowest

Landau level on Calabi-Yau manifold [30]. Applying the maximal entropy principle

to this system, we arrive at a conjecture that the effective metric seen by a probe on

Calabi-Yau manifold is balanced metric [31].

We also consider another interesting application, which goes under the name “Kähler

quantum gravity”. According to the Tian-Yau-Zelditch theorem, for k →∞ the Bergman

metrics become dense in the space of all Kähler metrics. Therefore the latter can be

“replaced” by the space of Bergman metrics, which can be parameterized by large N

positive hermitian matrices. It has been proposed by Zelditch, that random matrix

measures on the Bergman metrics define a rather simple framework for construction of

the theory of random metrics in higher dimensions. For instance, this would generalize

the well-known two-dimensional Liouville gravity. Here we consider the simplest case of

Gaussian measure and provide the solution of the theory in this case.

Let us also mention the applications of the Bergman kernel to the problem of geo-

metric quantization. The basic idea, due to Berezin [32], is to consider M as a phase

space, and try to quantize it. As a phase space, M must have a structure which can

be used to define Poisson brackets; it is familiar [33] that this is a symplectic structure,

i.e. a nondegenerate closed two-form ω. The space of holomorphic sections is the stan-

dard ingredient of geometric quantization [34]. It leads to a finite dimensional Hilbert

space, whose dimension is roughly the phase space volume of M in units of 2π~. In

this interpretation, the parameter k plays the role of 1/~, and thus the large k limit is

semiclassical. The Bergman kernel in this framework is the “reproducing kernel” studied

e.g. in [35] from the viewpoint of Landau levels. It can be used to define the symbol of

an operator, the star product [36], and related constructions. We refer to [37, 38, 39]

for the recent work on applications of the Bergman kernel to quantization of Kähler

manifolds and related topics.
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1.1 Outline of the thesis

We start in Chapter 2 with a review of the relevant mathematical concepts, with the

emphasis on the connection to the quantum mechanics in a magnetic field. In §2.1 we

recall the standard 2d Landau levels in uniform magnetic field, and explain basic ideas

in this simple setup. In §2.2 we consider higher-dimensional generalization of this prob-

lem, and show that for compact Kähler manifolds and holomorphic magnetic field, i.e.

holomorphic line bundle, the high degeneracy of the lowest Landau level is preserved.

We also demonstrate, that the wavefunctions can be mathematically described as holo-

morphic sections of linear line bundle Lk, with the flux of magnetic field proportional

to k. In §2.3 we review the construction of holomorphic sections and explain that they

realize the Kodaira embedding of M into a projective space. This brings us to the sub-

ject of Bergman metrics, which are constructed by pulling back to M the Fubini-Study

metric from the projective space. It follows from the Tian-Yau-Zelditch expansion of

the density of states, that Bergman metrics approximate all Kähler metrics in a given

Kähler class, as explained in §2.4. Donaldson’s balanced metrics are introduced in §2.5.

Since they play an important role in later discussion, we find it instructive to present

their explicit construction on two dimensional sphere and torus. In §2.6 we explain how

balanced metrics are related to QHE droplets. In §2.7 to consider the Gausian random

matrix measure on the space of Bergman metrics and find all n-point correlators in this

case.

In Chapter 3 we derive the Bergman kernel expansion from the path integral rep-

resentation for the density matrix, which is the main result of the thesis. There is a

huge body of work on the quantum mechanical path integral in curved space, mostly in

relation to the short-time expansion and supersymmetry. Some of the challenging tech-

nical issues, concerning the proper definition of the measure, have been recently settled

in Ref. [8]. For instance, there is a unique choice of hamiltonian, preserving Einstein

invariance of the measure, which leads to the counterterm in lagrangian formulation, as
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explained in §3.3. We compute the propagator in §3.4 and then adopt normal Kähler

coordinate frame to proceed to the standard perturbative expansion. We show that the

infinite time limit is well defined, and all potential divergences due to contact terms,

and linear and quadratic divergences in T , exactly cancel. We compute the first two

terms in the large magnetic field 1/k-expansion.

This result is generalized to N = 1 and N = 2 supersymmetric quantum mechanics

in §4.1 and §4.2. The perturbation theory expansion is T -independent due to super-

symmetry, and the trace of the density matrix is fixed by the index formulas. In §4.3

we consider the most general choice of the U(1) magnetic field, satisfying the condition

of holomorphy, and show that the Bergman kernel expansion generalizes to this case as

well. We calculate the first nontrivial term in the expansion.

In the concluding Chapter 5 we propose an application of balanced metrics to BPS

Calabi-Yau black hole solution in type II string theory. In §5.1 we start by explaining

the idea of the “effective metric”, which is the metric seen by an observer in a certain

quantum state. We then describe in §5.2 and §5.3 the black holes as system of probe

branes, with D4-brane being a source of magnetic field on the Calabi-Yau, as seen by a

D2 brane wrapped on the horizon. In §5.4 we propose that the D2 brane, which can be

also described as a system of particles on the LLL, is in a state of maximal entropy, with

the density matrix independent of a point on the manifold. This leads us to conjecture

in §5.5 that the effective metric on the Calabi-Yau manifold, seen by D2 brane, is the

balanced metric. We also discuss implications of this conjecture.
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1.2 Summary of main results

Main results of the thesis include

• derivation of the Bergman kernel expansion from path inegral (Chapter 3),

• generalization of the Bergman kernel expansion to supersymmetric quantum me-

chanics, and to the most general U(1) magnetic field (Chapter 4),

• proposal on the role of the balanced metric, as an effective metric for a D2 brane

in Calabi-Yau black hole solution (Chapter 5),

• solution of the random Bergman metric theory with Gaussian measure (§2.7).

These results are partly based on two papers in collaboration with M. Douglas [15, 31]

and on [40].
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Chapter 2

Landau levels and holomorphic sections

2.1 Landau levels in two dimensions

The main ideas explored in this dissertation can be illustrated for the problem of particle

on a plane subjected to an external magnetic field, considered by L. D. Landau in 1930

[41], and earlier by V. Fock in 1928 [42]. Here we recall the basic setup, contained e.g.

in the Landau and Lifshitz textbook [43].

Consider the quantum-mechanical particle of mass m and charge e in magnetic field

on a two dimensional plane (x, y). The Hamiltonian is

H =
1

2m

(
i~~∇+

e

c
~A
)2

where ~∇ = (∂/∂x, ∂/∂y). We ignored the spin term, since it is inessential for our

purposes. We will also work in units m = e = c = 1. It is instructive to rewrite it in

complex coordinates on the plane z = x+ iy, z̄ = x− iy

H = −2(~∂ − iA)(~∂̄ − iĀ) +
1
2

~B, (2.1)

where A and Ā are holomorphic and anti-holomorphic components of for the vector

potential, and B = 2i(∂̄A−∂Ā) is the field strength. In the simplest case of everywhere

constant and uniform the magnetic field one can easily solve the Shrödinger equation

Hψn = Enψn, (2.2)

and determine the spectrum. It consists of an infinite tower of the “Landau levels” with

the harmonic oscillator energies

En = ~B(n+
1
2
), n = 0, 1, ....
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and for each n there are many wavefunctions with the same energy. Note that the lowest

Landau level (LLL) at the energy E0 is special. In this case it is enough to solve a first

order equation only

(~∂̄ − iĀ)ψ = 0, (2.3)

then the full Shrödinger equation (2.2) holds automatically. In the symmetric gauge

A = 1
4iBz̄, Ā = − 1

4iBz the wavefunction on the lowest level E0 = ~B/2 are given by

ψα(z) = zα exp
(
−B

4~
|z|2
)
, α = 0, 1, ..., N − 1 (2.4)

As we will see in a moment, the number of states N on the LLL is controlled by

the total flux, and is infinite in the case at hand. Note also, that in this gauge the

wavefunctions are chosen to be the eigenfunctions of the angular momentum operator,

with the eigenvalue n, rather than of the px operator as in [43].

The main object of interest will be the mixed state comprised of the LLL states. It

is described by the density matrix

ρ(z, z′) =
N−1∑
α=0

cαβΨα(z)Ψ∗
β(z′), (2.5)

for some complex numbers coefficients cαβ . Since the gap between E0 and E1 is pro-

portional to the magnetic field strength, the reduction to lowest level is justified in the

large field limit. We assume the normalization condition

Tr ρ =
∫
d2z

√
g ρ(z, z) = N, (2.6)

provided that the wavefunctions are properly normalized

Ψα(z) =

√
α!2α

(
~
B

)α+1

zα exp
(
−B

4~
|z|2
)

with respect to the standard L2 inner product

〈Ψα,Ψβ〉 =
∫
d2z

√
g Ψ∗

αΨβ . (2.7)

The question we would like to explore is what are the conditions on the density matrix

(2.5) such that the system is in the state of maximal entropy?. To define “maximal
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entropy” we demand that each microstate in the mixed state (2.5) is realized with the

same probability, or equivalently the matrix cαβ is identity

cαβ = δαβ . (2.8)

Another definition of the maximally entropic state, is to require that the probability

density 1
N ρ(z, z)

√
gd2z to find the system at some point z is independent of z

ρ(z, z) = const =
N

Vol
, (2.9)

i.e. the density matrix is constant on the diagonal. This can also be rephrased in the

following way. Note, that each individual state is localized roughly along the annulus of

radius ∼ n and area ~/B (2.4). Then the maximally entropic state is a non-local state,

that covers the space uniformly by a combination of individual localized states.

Generically, these two conditions do not have to be equivalent. In particular, it is

not always possible to construct a mixed state, satisfying the second (strong) maximal

entropy property. However, in the case under consideration the two definitions do

coincide. Indeed, plugging (2.8) into the density matrix (2.5) we get for the diagonal

ρ(z, z) =
N−1∑
α=0

Ψα(z)Ψ∗
α(z) = B/~.

Therefore we recover (2.9) and vice versa. Note that Trρ = Φ/~, where Φ = B ·Vol is the

total flux and Vol is the (regularized) volume of the space. This is exactly as expected

from (2.6), confirming that for finite volume the number of states is proportional to flux.

Technically, in this case both Vol and Φ are infinite, but we will avoid this problem in

future by considering only compact manifolds.

The interplay between the two definitions of maximal entropy state, although some-

what trivial in this simple example, turns out to lead to interesting results for a more

complicated setup of non-uniform magnetic field and non-flat backgrounds. This can be

illustrated by considering non-constant magnetic field. In two dimensions it can be pa-

rameterized by a single real-valued function ϕ. In the gauge A = i∂ϕ the field strength
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is given by

B = −4∂∂̄ϕ. (2.10)

We still expect the rich LLL structure of the spectrum, which should arise as before by

the reduction of the Shrödinger equation on the LLL to a first order equation. Naively

it does not happen, since the last term in the hamiltonian (2.1) is non-constant 1
2~B =

−2~∂∂̄ϕ. One way around this problem is to introduce the standard spin term −1
2~σ3B,

which cancels the previous term for spin-up configuration σ3| ↑〉 = +| ↑〉, see e.g. [44].

Another way, that we pursue here, is to consider the problem on a curved background,

i.e. on a two-plane with a nontrivial metric ds2 = gzz̄|dz|2. Then the hamiltonian reads

H = −2gzz̄(~∂ − iA)(~∂̄ − iĀ) +
1
2

~gzz̄B.

Now, if we adopt the condition

gzz̄B = const, (2.11)

the Shrödinger equation reduces on the LLL to the first order PDE (2.3) and the zero-

point energy is E0 = 1
2~gzz̄B. The explicit solution for the LLL wavefunctions is

ψα(z) = zα exp
(

1
~
ϕ(z, z̄)

)
, α = 0, 1, ..., N − 1. (2.12)

The degeneracy N of the LLL can now be determined, following the argument in Ref.

[45]. The function ϕ tends to − 1
2πΦ log z as z → ∞, where Φ =

∫ √
gd2ξB(ξ) is the

total flux, as follows from the solution of Poisson equation (2.10)

ϕ(z, z̄) = − 1
2π

∫
√
gd2ξ log |z − ξ|B(ξ).

In order for the wavefunctions (2.12) to be renormalizable, the maximal power N − 1

of the polynomial behavior at ∞ should be less than Φ/Φ0 − 1, where Φ0 = 2π~ is the

quantum of flux. Therefore the total degeneracy N of the lowest level is equal to the

integer number of flux units

N = [Φ/Φ0] .
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Let us now consider the mixed state (2.5) in the case at hand. For any choice of

the metric and the magnetic field one can build the maximally entropic state (2.8),

provided the orthogonality condition (2.7) for wavefunctions is satisfied. However, the

second definition (2.9) imposes a much stronger condition. It amounts to a nontrivial

equation on the metric gzz̄ and the magnetic field ϕ

ρ[[gzz̄(z), ϕ(z)](z) = const. (2.13)

One should also take into account the relation (2.11) between gzz̄ and ϕ. In general,

(2.13) is a highly nonlinear constraint on the geometry of the manifold. The dependence

of the density matrix on the metric and magnetic field comes from the exponential factor

in the LLL wavefunction (2.12) as well as from the normalization condition (2.7), which

in turn implicitly depends on the metric. The “maximally entropic” metric, satisfying

Eq. (2.13), is an example of a balanced metric, which will study in more detail in §2.5.

It is interesting to determine the behavior of the density matrix as a function of

metric. Due to general coordinate invariance, we may expect for it to be a function of

the Ricci scalar, which is the only metric invariant in two dimensions. Indeed, for large

magnetic fields, or equivalently large degeneracy of the LLL, one can find the following

behavour for the large magnetic flux

ρ ∼ N − 1 +
1
2
R+O(1/N)

where R is the Ricci scalar, and the information on the magnetic field enters only

through N . This expansion and its analog in higher dimensions correspond to the

Bergman kernel expansion, which we derive in the next chapter. It follows from the

previous equation, that the maximally entropic (in the strong sense) mixed state on

LLL, prefers flatter backgrounds (near-constant R). This in turn implies, that the

problem of finding Ricci-flat geometries can be translated into the problem of decribing

lowest Landau level wavefunctions (2.3). One of the main goals of our work is to explore

this interrelation.
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2.2 Landau levels in higher dimensions

For potential geometric applications it is interesting to generalize the Landau problem to

higher dimensional manifolds. Also one of the lessons of §2.1 is that due to large volume

infinities, the lowest Landau level is most naturally defined for compact manifolds.

We consider a particle of unit mass and charge on a d-dimensional manifold M , in

a general metric gij and magnetic field Fij . It is described by a wave function ψ(x; t)

which satisfies the Schrödinger equation,

Hψ ≡ 1
2
√
g
Di

√
ggij Djψ = i~

∂ψ

∂t
, (2.14)

where Di = i~∂i +Ai is the covariant derivative appropriate for a scalar wavefunction.

As usual for topologically nontrivial manifolds, we treat this equation separately in

each coordinate patch, and then sew the patches together by gauge and coordinate

transformations. We consider the time-independent Schrödinger equation with fixed

energy, and seek for the energy eigenstates

Hψi(x) = Eiψi.

The case of two-dimensional Euclidean space gij = δij with a constant magnetic field

Fij = Bεij was considered before. The main features of this case, that we would like

to preserve in higher dimensions, include the spectral gap between the lowest and first

excited level and the large number of localized states on the LLL. For flat backgrounds

and uniform magnetic fields these properties can be easily generalized to d = 2n dimen-

sions. One can choose the coordinates such that the magnetic field lies in the 12, 34

planes and so forth, and B12 > 0, B34 > 0 etc. Then, considering the lowest Landau

level we have

E0 =
~
2
(B12 + . . .+B2n−1,2n), (2.15)

with states localized as before within each two-plane and, as usual, the gap between the

zeroth and first excited levels is proportional to magnetic field.
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For a nontrivial metric and magnetic field, while one might not at first expect a high

degree of degeneracy, it still might be possible. When the magnetic field is much larger

than the curvature of the metric, the intuition that wavefunctions localize should still

be valid. Then, we might estimate the energy of a wavefunction in the lowest Landau

level localized around a point x as Eq. (2.15), where the components B12, B34 and so on

are evaluated in a local orthonormal frame. If the energy E0 in Eq. (2.15) is constant,

then all states in the LLL will be degenerate, at least in the limit of large field stength.

The reason for large degeneracy of states was the factorization property of the

Schrödinger equation (2.3). The same property occurs on complex manifolds, under

certain conditions. Consider 2n-dimensional manifold with local complex coordinates

za, z̄ā (a, ā = 1, ..., n). The proper generalization of the splitting of the components of B

Eq. (2.15) for nonconstant magnetic fieds, is that the magnetic should be a (1, 1)-form,

i.e. take nonzero values only for mixed components of the field strength Faā, with

Fab = Fāb̄ = 0, (2.16)

this magnetic field corresponds to holomorphic line bundle, which we explain in detail

in the next paragraph. The same condition should be imposed on the metric gaā as well,

with the corresponding metrics known as the Kähler metrics. Both Kähler metric and

holomorphic field strength can be written as total derivatives gaā = ∂a∂̄āK, Faā = ∂a∂̄āf

for some local functions K and f . Then the identity

[Di, Dj ] = i~Fij ,

can be used to rewrite the Hamiltonian as

H = gaāDaD̄ā +
1
2

~gaāFaā. (2.17)

Hence, if the following combination is constant

gaāFaā = const, (2.18)
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then any wave function satisfying

D̄āψ = 0 (2.19)

will be degenerate and belong to the LLL. This argument also holds away from the strict

large field limit.

The condition (2.18), with (2.11) being its special case, is known as Kähler-Yang-

Mills equation, and is equivalent to Maxwell equation for U(1) magnetic fields with

F 0,2 = 0. Indeed, for curved backgrounds the Maxwell equation is written as

DaF
a
b̄ = 0, DāFa

ā = 0,

which is equivalent to

∂(gaāFaā) = ∂̄(gaāFaā) = 0,

and (2.18) follows. One can immediately write down a simple solution to (2.18)

Faā = kgaā (2.20)

where the coefficient k is related to the total flux as Φ =
∫
Fn ∼ kn. This is the

simplest choice of the magnetic field that leads to a rich lowest Landau level on Kähler

manifolds. However, there is also a more general magnetic field configurations, with

similar property. For example in the case of a manifold with nontrivial cohomology

class b1,1(M) > 1, one can choose a more general holomorphic magnetic field

Faā = kgaā + uaā, (2.21)

where uaā is a (1, 1)-form, not in the same cohomology class with kgaā. It turns out,

that the choice of Eq. (2.20) leads to the Tian-Yau-Zelditch definition of the Bergman

kernel, and Eq. (2.21) leads to its generalization considered in [48, 49, 50]. We consider

the Bergman kernel for the first choice of the magnetic field in the next chapter, and

for the second choice in §4.3. It also should be mentioned, that in the path integral

formulation one can avoid the condition (2.18), and consider the field as in Eq. (2.21),

not restricted by Maxwell equations.
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2.3 Holomorphic sections and Kodaira embedding

The standard trick to simplify the equations Eq. (2.19), is to do a “gauge transformation”

with a complex parameter θ(z, z̄). While at first this might seem to violate physical

requirements such as unitarity of the Hamiltonian, in fact it is perfectly sensible as

long as we generalize another ingredient in the standard definitions, namely the inner

product on wave functions. Explicitly, we define the wave function in terms of another

function s(z), as

ψ(z) = eiθ(z,z̄)s(z), D̄āψ(x) = eiθ(z,z̄) (i∂̄ā + Āā − ∂̄āθ)s(z). (2.22)

This would be a standard U(1) gauge transformation if θ(z, z̄) were real. By allowing

complex θ(z, z̄), and assuming (2.16), we can find a transformation which trivializes all

the antiholomorphic derivatives,

D̄ā → ∂̄ā. (2.23)

In this “gauge,” wave functions in the LLL can be expressed locally in terms of holo-

morphic functions. The only price we pay is that the usual inner product (2.7) turns

into an inner product which depends on an auxiliary real function,

h(z, z̄) ≡ e−2Imθ(z,z̄), (2.24)

as

(s, s′) =
∫

M

√
g h(z, z̄) s̄(z̄) s′(z).

Taking into account the gauge transformations between coordinate patches, one would

say that s(z) is holomorphic sections of a holomorphic line bundle L evaluated in a

specific frame, or Lk for the magnetic field proportional to k as in (2.20), while the

quantity h(z, z̄) defines a hermitian metric on the line bundle L. This setup appears

in many mathematical applications, the most well known is probably the problem of

“geometric quantization” [33]. Of special importance for us here is the relation to the

problem of existence of Kähler-Einstein metrics, which by definition have Ricci tensor
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proportional to the metric itself, on Kähler manifolds. This relation is known as the Yau-

Tian-Donaldson program [46, 9, 47], and is based on the concept of Bergman metric.

Here and in the next paragraph we provide an introduction to this subject from the

physics point of view, see also a nice review [17].

Following Tian [9], consider a compact Kähler manifold M of complex dimension

n, and a line bundle L, called the “polarization” on M , with its k-th tensor power Lk.

Consider some basis s0(z), ..., sNk
(z) on the space H0(M,Lk) of all global holomorphic

sections of Lk. Since sα’s are defined up to multiplication by a complex number, for

k large enough this basis defines a Kodaira embedding of M into the projective space

CPNk of sections, by sending a point z on M to a point [s0(z), ..., sNk
(z)] ∈ CPNk .

For the hermitian metric h on L the Ricci curvature of the line bundle is a (1, 1)-form

Ric(h) = −i∂∂̄ log h

in the Chern class c1(L). Recall that the Kähler form ωg is a positive (1, 1)-form1,

related to the metric gaā as ωg = igaādz
a ∧ dz̄ā in local complex coordinates. The key

idea is to consider L to be a positive line bundle, that is a holomorphic line bundle with

a positive curvature (1, 1)-form. Therefore we can consider Kähler metrics in the class

c1(L). For instance, one can simply choose ωg to be equal to the Ricci curvature of L,

given by the expression above. The corresponding Kähler metric is said to be polarized

with respect to L.

For the line bundle Lk the hermitian metric is just the k’th power hk of the hermitian

metric on L. Therefore the relation between the Ricci curvature of Lk and the polarized

Kähler metric

kgaā = −∂a∂̄ā log hk (2.25)

is exactly as in Eq. (2.20), taking into account that Faā = −iRic(hk). Thus, in the

physics language, the polarized Kähler metric is equivalent to the choice of magnetic

1A (1, 1)-form µ is positive definite if the matrix of coefficients −iµaā is positive definite everywhere
on the manifold.
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field (2.20), and the LLL wavefunctions correspond to the sections of L. To complete

the analogy between the LLL and Kähler metrics, we still have to explain the role of

the density matrix (2.5) and the maximal entropy condition (2.9).

2.4 Bergman metrics and Bergman kernel

The most obvious way to define a metric on a manifold is to consider its embedding

into a larger space equipped with some metric, which then can be pulled back to the

manifold. This induced metric will depend on details of embedding. For instance, one

can always embed a real the manifold into Rn and pullback the usual euclidean metric.

In the case of complex manifold the Kodaira embedding can be used for the same

purpose. Since any basis of sections [s0(z), ..., sNk
(z)] defines a holomorphic embedding

of M into CPNk , the standard Fubini-Study metric

gFS =
1
k
∂∂̄ log

Nk∑
α=0

|sα|2

on the projective space induces the Bergman metric gFS |M on M

gFS |M = g +
1
k
∂∂̄ log

(
hk

Nk∑
α=0

sαs̄α

)
, (2.26)

where g is the polarized Kähler metric (2.25). This form of the Bergman metric implies

that the corresponding Kähler form ωFS |M is in the same cohomology class as ωg, since

the expression inside the logarithm in the second term is a globally defined function. To

prove the positivity of the Bergman metric one can compute the derivatives in (2.26)

gFS |M =
1
k

(
(∂s, ∂̄s̄)
(s, s̄)

− (∂s, s̄)(s, ∂̄s̄)
(s, s̄)2

)
and apply Cauchy-Bunyakovskii inequality for complete system.

Note, that the basis of sections used in the definition of the Bergman metric is

not necessarily a normalized basis. In fact, a rotation of the basis sα by any non-

degenerate (Nk +1)× (Nk +1)-matrix corresponds to a different embedding of M since

GL(Nk +1) = Aut(CPNk) is the automorphism group of the projective space. Therefore
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the space Kk of Bergman metrics on the level k, in the Kähler class defined by ωg, is

the symmetric space

Kk = GL(Nk + 1)/U(Nk + 1), (2.27)

since (2.26) is obviously invariant under U(Nk + 1) rotation.

Consider next an orthonormal basis s0(z), . . . , sNk
(z) on the space H0(M,Lk) with

respect to the standard L2 norm

(sα, sβ) =
∫

M

√
ghksαs̄β = δαβ . (2.28)

Note, that the integration measure here depends on the original metric g. In this case

g and the corresponding Bergman metric gFS |M differ by ∂∂̄ of the logarithm of the

“density of states” function

ρk(z) = hk
Nk∑
α=0

sα(z)s̄α(z̄). (2.29)

Obviously, ρk(z) is independent of the choice of orthonormal basis, since all such bases

are related by a unitary rotation. This function is the diagonal of the Bergman kernel. It

is also a special case of a more general concept of reproducing kernel K(x, y) on Hilbert

spaces, which posses the property (K(x, ·),K(·, y)) = K(x, y).

It is interesting to look at the structure of the function (2.29) for large k. Zelditch [10]

and Catlin [11] proved that it admits an asymptotic expansion in 1/k with coefficients,

which can be expressed in terms of local invariants of the metric g, such as the Riemann

tensor and its contractions. Several terms in this expansion were computed by Lu [12]

with the following result up to the second order in 1/k

ρk(z) = kn+
1
2
kn−1R+kn−2

(
1
3
∆R+

1
24
|Riem|2 − 1

6
|Ric|2 +

1
8
R2

)
+O(kn−3). (2.30)

The original computation is based on Tian’s global peak section method [9], which is a

technique to approximate sections of line bundle for large values of k. In Chapter 3 we

reproduce this expansion from the path integral. Other methods to derive this result

are the heat kernel approach of [49, 50] and the reproducing kernel approach of [51].
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From this expansion it follows that any polarized Kähler metric g can be approx-

imated by Bergman metrics as k → ∞. Indeed, as follows from Eq. (2.30) and the

definition (2.26), the difference between g and the corresponding Bergman metric

g − 1
k
gFS |M = O(1/k2)

vanishes in the large k limit. This result has also been obtained earlier by Tian [9] in

C2 topology and generalized by Ruan [52] to C∞ topology. This statement together

with the expansion Eq. (2.30) is usually refered to as the Tian-Yau-Zelditch theorem.

Essentially it states that the spaceK of Kähler metrics, or equivalently, Kähler potentials

in a cohomology class represented by ωg

K ∼= {φ : ωg + i∂∂̄φ > 0}

can be densely covered by the space of Bergman metrics

K = lim
k→∞

Kk,

where the potentials φ are of the form as in Eq. (2.26). One of the most utilized

consequences of this statement is that one can “replace” K by Kk, in order to proof

existence ot the constant Ricci curvature Kähler metrics, as well as to construct their

approximations.

2.5 Balanced metric

Based on the results of [9, 10, 11, 12] Donaldson proposed to consider the metrics with

constant density function

ρk(z) = const =
dimH0(M,Lk)

VolM
, (2.31)

where the integration constant is fixed as before in (2.9) and we use the notation

dimH0(M,Lk) = Nk + 1. The previous equation can be solved for hk in terms of

sα’s

hk =
dimH0(M,Lk)
VolM ·

∑
α |sα|2

. (2.32)
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as follows from (2.29). Plugging the solution back to the orthonormality condition

Eq. (2.28) we get the integral equation for the sections

dimH0(M,Lk)
VolM

∫
M

√
g

sαs̄β∑
γ sγ s̄γ

= δαβ . (2.33)

Note, that here both the volume form and the basis of sections depend on hk, which

makes this condition highly nontrivial.

The meaning of the previous equation is that for a particular choice of basis the Ko-

daira embedding has diagonal ’moments-of-inertia’ matrix 〈 sαs̄β

|s|2 〉. Such an embedding

M → CPNk is called balanced [53] and the corresponding Bergman metric

g = −∂∂̄ log h =
1
k
∂∂̄ log

∑
α

|sα|2

is known as the balanced metric (this concept probably appeared already in [54]). Using

the expansion Eq. (2.30) and assuming existence of constant scalar curvature metric in

the given Kähler class, Donaldson was able to prove [19, 20] that a unique balanced

metric exists and, as k → ∞, it tends to the metric of constant scalar curvature. The

latter follows from the fact that R appears as a coefficient in the first nontrivial term in

Eq. (2.30).

In general, the defining relation (2.33) is hard to solve. A more useful definition

of the balanced metric was proposed in [21]. Consider two basic constructions. For a

metric hk on Lk, there is a Hermitian metric Hilb(hk) on the vector space H0(M,Lk)

defined as

||s||2Hilb(hk) =
dimH0(M,Lk)

VolM

∫
M

√
g|s|2hk .

Also, given a hermitian metric G on the vector space H0(M,Lk) one can define a metric

FS(G) on Lk such that ∑
α

|sα|2FS(G) = 1

for the orthonormal with respect to G basis of sections. The balanced condition is

satisfied at a fixed point G∗ of the T-map

T (G) = Hilb(FS(G)),
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or, equivalently, when

Hilb(hk∗) = G∗, FS(G∗) = hk∗. (2.34)

Using the definitions above one can rewrite the T-map as an integral operator and the

fixed point condition becomes an integral equation on (Nk + 1)× (Nk + 1) elements of

the hermitian matrix Gαβ

T (G)αβ =
dimH0(M,Lk)

VolM

∫
M

√
g

sαs̄β

(G−1)γδsγ s̄δ
= Gαβ .

Here again one has to keep in mind the dependence of the integration measure on Gαβ

due to Eq. (2.34). It was shown in [19, 21] that for any initial choice of the matrix G,

the iterative procedure for T converges to the balanced embedding.

Physically, the balanced condition means that one can adjust both the metric and the

magnetic field by choosing hk and appropriate basis of sections, such that the density

matrix is constant. Let us consider some simple examples, where the balanced metric

can be found explicitly, namely a two dimensional sphere and a torus.

2.5.1 Balanced metric on CP1

Consider M to be a two-sphere CP1, after [21]. In homogeneous coordinates (z0, z1)

the sections of Lk are all homogeneous polynomials of the form zi
0z

k−i
1 of degree k.

Introducing the projective coordinate z = z1/z0 we can write a basis of H0(M,Lk) as

zα, α = 0, ..., k. The total number of sections is Nk = k + 1. The balanced metric is

equal to the standard round metric on sphere for all k

hk =
k + 1

VolCP1

1
(1 + |z|2)k

,

g = −∂∂̄ log
1

(1 + |z|2)
=

1
(1 + |z|2)2

,

where VolCP1 = π in the round metric. Indeed, consider the basis of sections with the

following normalizations

sα =
√
Cα

k z
α,
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where Cα
k is a binomial coefficient. Using the identity∫

C

dzdz̄

(1 + |z|2)2
zαz̄β

(1 + |z|2)k
= δαβ

π

k + 1
[Cα

k ]−1

one can see that the balanced condition (2.33) holds for the basis sα. Therefore for all

values of k the balanced metric is the same and it is equal to the metric of constant

scalar curvature (round metric on sphere).

2.5.2 Balanced metric on T 2

The balanced metric on the abelian varieties in any dimension was constucted in [55].

Following this work, consider two dimensional torus T 2 with modular parameter τ , and

a periodic complex coordinate z ∼ z+1 ∼ z+τ . The only nontrivial global holomorphic

section of L is the theta-function

θ(z, τ) =
∑
n∈Z

exp (πin2τ + 2πinz)

which has the following transformation properties under the action of modular group

θ(z + sτ + t, τ) = exp (−πis2τ − 2πisz)θ(z, τ), s, t ∈ Z.

The standard flat metric on torus corresponds to the Kähler potential h = exp π
2

(z−z̄)2

Imτ .

This form of h can be uniquely fixed by the requirement that h|θ|2 is invariant under

modular transformations.

Following [56], introduce the Heisenberg group Γ acting on the holomorphic function

f(z) by two operations

(Sbf)(z) = f(z + b), (Taf)(z) = exp (πia2τ + 2πiaz)f(z + aτ).

for real numbers a, b. The theta functions with rational characteristics a, b ∈ Z[1/l]/Z

are defined as

θa,b(z, τ) = SbTaθ =
∑
n∈Z

exp (πi(n+ a)2τ + 2πi(n+ a)(z + b)).
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It is easy to see that θa,b(lz) form the basis ofH0(T 2, Ll2−1). The corresponding Kodaira

embedding is defined as

z ∈ T 2 → (θ0,0(lz), . . . θ1−1/l,1−1/l(lz)) ∈ CPl2−1.

Let us show that this map defines a balanced embedding. To see this, note that θa,b(z)

is the basis of the space Vl of entire functions invariant under lΓ. There is a more

convenient basis

sc(z, τ) =
∑

n∈c+lZ
exp (πin2τ + 2πinz), c ∈ Z[1/l]/lZ,

of eigenvectors of the shift operator for a, b ∈ Z[1/l]/Z

Sbsc = exp (abcπi)sc, Tasc = sc+a.

Since the transformation between the bases is unitary

θa,b(z, τ) =
∑

p∈Z/lZ

exp (2πib(p+ a))sp+a,

then it is enough to check the balanced condition for sc. Introduce the Fubini-Study

metric on Vl by

||f(lz)||FS =
∫

T 2

|f(lz)|2∑
c |sc(lz)|2

ωFS , (2.35)

where ωFS is a pullback to the torus of the Fubini-Study metric on CPl2−1 under the

Kodaira embedding, defined above. It is not hard to see that Sb, Ta preserve this norm.

Since the operators Sb are mutually commuting, their eigenvectors sc form an orthonor-

mal basis. Then the formula (2.35) is equivalent to the balanced condition (2.33).

Therefore the balanced metric on T 2 is given by

gbal =
1
l2
∂∂̄ log

∑
a,b∈Z[1/l]/Z

|θa,b(lz)|2.

This metric is not flat, although it actually converges to the flat metric as l→∞.

It is interesting to compare the lowest Landau level density matrix in the balanced

metric and in the flat metric. The former is obviously constant everywhere on the man-

ifold. The latter has been considered in [57], where sc’s were chosen as an orthonormal
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basis of solutions of Shrödinger equation on the LLL, for constant magnetic field with

flux ∼ N = l2. There it was found that the density matrix

ρflat
N =

∑
c

hl2 |sc(lz)|2

is non-constant, as one might expect from naive translation symmetry arguments. In-

stead it exhibits a pattern of evenly spaced bumps at the locations {n1+n2τ}/l2, n1, n2 =

0, ..., l2 on the torus. Mathematically, this is a consequence of a theorem about the ze-

roes of theta functions, see e.g. §4 in [56]. Therefore for the flat metric and constant

magnetic field the translational symmetry is broken down to ZN × ZN . It is restored

only if one introduces the balanced metric on the torus.

Other notable constructions of balanced metrics, considered in the literature, include

numerical approximation of the Ricci flat Calabi-Yau metric on K3 surface [21] and on

the quintic surface in CP5 [22].

2.6 Quantum Hall effect in higher dimensions

The standard example in which the projector on LLL appears in physics is the Quantum

Hall effect, see e.g. the review [23]. In the standard setup of integer QHE one considers

a system of non-interacting electrons on a two-dimensional plane subjected to a constant

orthogonal magnetic field. At low temperatures and high values of the magnetic field

only the lowest lying energy levels are important. Usually, incompressible droplets of

electrons are considered in a confining potential V , with partly filled ground level and

a number of filled states K < N . The edge dynamics of the droplets is of particular

interest.

In recent years this problem has been much generalized. It has been considered for

Riemann surfaces, see [58] and references therein; higher dimensional examples include

the case of S4 [24], R4 [25] and CPn [26]; see also [27] for a review.

The case of CPn is the first nontrivial case in which we can make contact with the
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balanced metrics. The choice made in [26] is the U(1) background field proportional to

the Ricci tensor

Faā ∼ Raā, (2.36)

which in turn is taken to be equal to the Fubini-Study metric on CPn. Therefore this

equation is equivalent to Eq. (2.20). In the local projective coordinates z1, . . . , zn, the

LLL wave functions can be constructed explicitly

ψα ∼
zα1
1 zα2

2 · · · zαn
n

(1 + |z|2)k/2
, α = 1, . . . , N (2.37)

up to a normalization constant [27]. As in Eq. (2.22) they have the form of holomorphic

function, weighted by the metric of the line bundle.

The dynamics of the droplet is characterized in the following way. One starts with

diagonal density matrix ρ0 with K states occupied, then the fluctuations, preserving

the number of states correspond to the unitary transfomations ρ0 → ρ = Uρ0U
†, and

the equation of motion is the quantum Liouville equation

i
∂ρ

∂t
= [V, ρ].

The form of the droplet is determined by the form of the minima of the confining

potential. In [26] the case of spherically symmetric potential V = V (r = zz̄) was

studied. In the limit of large number of states N (i.e. large magnetic field) and large

number of fermions K < N the density matrix has the form

ρ(r2) = Θ(r2 −R2
d),

where Rd is the radius of the droplet and Θ is the step function. In other words

the density matrix is equal to constant in the region, occupied by the droplet. The

presence of the boundary is due to partly filled LLL. For the completely filled lowest

level the droplet is constant everywhere on the manifold. Therefore the droplet without

a boundary is described by the mixed state, corresponding to the balanced metric.
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One can also generalize the above construction to nonabelian background gauge

fields. Since CPn = SU(n+ 1)/U(n) and Lie algebra of U(n) = U(1)× SU(n), then in

addition to U(1) gauge field one can also turn on SU(n) gauge field. In [26] the case

of constant SU(n) gauge field was considered, with the wavefunctions belonging to a

certain SU(n) representation.

The similar generalization of the Bergman kernel was considered in mathematical

literature [48, 49]. One can consider a tensor product of L with a more general hermitian

vector bundle E , with the curvature F E . By analogy with Eq. (2.30), the Bergman kernel

expansion exists

ρ(x) = kn + kn−1(R/2 · 1E + F E) + . . . .

The second term was computed in [49]. We derive this expansion for the abelian line

bundle E in §4.3. It was shown in Ref. [48] that balanced metric exists in this case as

well, and satisfies Hermitian-Einstein equation in large k limit.

2.7 Kähler quantum gravity

According to the Tian-Yau-Zelditch theorem, any Kähler metric can be approximated

by a Bergman metric. For the metric in a Kähler class c1(L), the Bergman metric (or

more precisely, its Kähler form) ω can be written in the following way

ω(z) = ∂∂̄ log sα(z)Hαβ s̄β(z).

The positiveN×N hermitian matrixH explicitly parameterizes the symmetric space Kk

(2.27) of the Bergman metrics. The large N limit thus corresponds to the approximation

of the full space K of Kähler metrics.

This setup turns out to provide a natural framework for the study of random mea-

sures on Kähler metrics, with the main goal being to give a definition to “Kähler quantum

gravity”, by analogy with the well known 2d Liouville quantum gravity. Here we consider

the simplest example of Gaussian random matrix measure on the Bergman metrics.



29

A positive hermitian matrix H can always be put in the form H = A†A for a general

complex matrix A, defined up to a unitary rotation. We would like to compute the

n-point correlation function in the large N limit, for the following Gaussian measure

〈ω(z1) . . . ω(zn)〉 =
∫
ω(z1) . . . ω(zn) e−NtrA†ADA,

where DA is the usual euclidean measure on complex matrices.

The following variation of the replica trick (see e.g. [59]) will be useful

∂∂̄ log sα(z)Hαβ s̄β(z) = lim
m→0

1
m
∂∂̄(sα(z)Hαβ s̄β(z))m.

The computation of the n-point function then reduces to the computation of ordinary

matrix integrals of polynomial insertions of A†A. The propagator is given by

〈(A†)αγAδβ〉 =
∫

(A†)αγAδβ e−NtrA†ADA =
1
N
δαβδγδ.

Using this we obtain

〈(A†A)αβ〉 =
1
N
δαβ ,

〈(A†A)α1β1(A†A)α2β2〉 = δα1β1δα2β2 +
1
N
δα1β2δα2β1 ,

〈(A†A)α1β1 . . . (A†A)αnβn〉 = δα1β1 . . . δαnβn + (2.38)

+
1
N

(δα1β2δα2β1δα3β3 . . . δαnβn + all similar pairwise permutations).

Thus one can immediately compute the one point function

〈ω(z)〉 = lim
m→0

1
m
∂∂̄ sα1(z)s̄β1(z) . . . sαm(z)s̄βm(z) ·

·〈(A†A)α1β1 . . . (A†A)αmβm〉 (2.39)

= lim
m→0

1
m
∂∂̄ [(s, s̄)m +O(1/N)] = ∂∂̄ log(s, s̄) ≡ ω0, (2.40)

where we adopt the notation (s, s̄) = sαδ
αβ s̄β . Note, that this answer is actually exact

to all orders in 1/N . Here ω0 is the “reference metric” in the Kähler class, for which the

basis of sections is orthonormal. The final answer will of course depend on choice of the
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reference metric. This situation is completely analogous to the Liouville theory, which

is also defined up to a choice of background.

The 2-point function is nontrivial only in the next-to-leading order, one would need

the order-1/N term in (2.38) to derive the following result (with a slight abuse of

notation we call s1 = s(z1), s2 = s(z2), etc.):

〈ω(z1)ω(z2)〉 = lim
m1,m2→0

1
m1m2

∂1∂̄1∂2∂̄2 sα1(z1)s̄β1(z1) . . . sαm1
(z1)s̄βm1

(z1) ·

·sγ1(z2)s̄δ1(z2) . . . sγm2
(z2)s̄δm2

(z2) ·

·〈(A†A)α1β1 . . . (A†A)αm1βm1 (A†A)γ1δ1 . . . (A†A)γm2δm2 〉

= lim
m1,m2→0

1
m1m2

∂1∂̄1∂2∂̄2 [(s1, s̄1)m1(s2, s̄2)m2+

+
1
N

m1(m1 − 1) +m2(m2 − 1)
2

(s1, s̄1)m1(s2, s̄2)m2+

+
m1m2

N
(s1, s̄1)m1−1(s2, s̄2)m2−1(s1, s̄2)(s2, s̄1) +O(1/N2)

]
= 〈ω(z1)〉〈ω(z2)〉+

1
N
∂1∂̄1∂2∂̄2

(s1, s̄2)(s2, s̄1)
(s1, s̄1)(s2, s̄2)

+O(1/N2). (2.41)

Thus the connected 2-point function in the large-N limit is equal to

〈ω(z1)ω(z2)〉c = 〈(ω(z1)− 〈ω(z1)〉)(ω(z2)− 〈ω(z2)〉〉

=
1
N
∂1∂̄1∂2∂̄2

(s1, s̄2)(s2, s̄1)
(s1, s̄1)(s2, s̄2)

. (2.42)

Following the same technics one can derive the expression for the connected large-N

n-point function

〈ω(z1) . . . ω(zn)〉c =
1

Nn−1
∂1∂̄1 . . . ∂n∂̄n

∑n−1
k=1

∏n
i=1,{i∼i+n}(si, s̄i+k)

(s1, s̄1) · · · (sn, s̄n)
,

where in the numerator si is identified with si+n.

It is interesting, that the expression inside the derivatives in the two-point function

(2.42) has an interesting geometric interpretation. It is equal to the exponent of the

diastasic function D(z1, z2), introduced by Calabi [60]

(s1, s̄2)(s2, s̄1)
(s1, s̄1)(s2, s̄2)

= exp(−D(z1, z2)) (2.43)
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It can be shown that the diastatic function has the following short distance behaviour

D(z1, z2) ∼ ||z1 − z2||2ω0

where the quantity on the rhs is the squared geodesic distance between the two points,

computed in the reference metric. Hence, the Gaussian theory has a very peculiar

“ultralocal” behavour, with the propagator falling exponentially with the distance. It

would be interesting to consider other random matrix measures as well, in particular,

corresponding to the Liouville functional and higher Chen-Tian functionals [61].
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Chapter 3

Path integral derivation of the Bergman kernel

3.1 LLL density matrix

In this chapter we consider the physical derivation of the asymptotic expansion of the

Bergman kernel. Our basic result is to rederive the Tian-Yau-Zelditch expansion as

the infinite time limit of the perturbative expansion for the quantum mechanical path

integral [15].

Let us state the result for (nonsupersymmetric) quantum mechanics. We consider

a compact Kähler manifold M , and a particle in magnetic field, with the field strength

proportional to the Kähler form on the manifold, as in Eq. (2.20). More general magnetic

field Eq. (2.21) will be considered in the next chapter. Now, given that there is a large

degeneracy of ground states and thus a nontrivial LLL, it becomes interesting to study

the projector on the LLL, or in other words the LLL density matrix

ρ ≡
∑

i;Ei=E0

|i〉〈i|.

If we shift the hamiltonian to set the ground state energy E0 = 0, it can also be defined

as the large time limit of propagation in Euclidean time. Regarded as a function of two

variables, the projector ρ can be defined as a path integral by the standard Feynman-Kac

formula.

It is not hard to see that the regime of large magnetic field is semiclassical, so that

one can get an expansion of the LLL density matrix in the inverse magnetic field strength
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using standard perturbative methods. In the large k limit, the diagonal term satisfies

ρ(x, x) ∼ kn

(
1 +

~
2k
R+

~2

k2

(
1
3
∆R+

1
24
|Riem|2 − 1

6
|Ric|2 +

1
8
R2

)
+O((~/k)3)

)
as an asymptotic expansion of the path integral. This formula coincides with the ex-

pansion of the Bergman kernel [12], thus providing the “physical proof” of the TYZ

expansion.

In some ways this expansion is similar to the well known short time expansion

of the heat kernel, except that its a long time expansion, because it projects on the

ground states. Unlike other analogous results for ground states, it does not require

supersymmetry, either for its definition or computation. Of course, similar results can

be obtained for supersymmetric theories, our point is that that they do not depend

on supersymmetry. Whether they depend ultimately on holomorphy is an interesting

question, which we do not discuss here.

3.2 Path integral representation

The euclidean time path integral for a particle on a 2n-dimensional Kähler manifold M

with the magnetic field is given by

ρ(xi, xf ) = N
∫ x(tf )=xf

x(ti)=xi

∏
ti<t<tf

det gab̄(x(t))DxaDx̄b̄ e−
1
~

R tf
ti

dt [gab̄ẋ
a ˙̄x

b̄
+Aaẋa+Āā ˙̄xā]

(3.1)

Here we assume that Fab = Fāb̄ = 0 and work in the anti-holomorphic gauge Aa = 0

for the gauge connection1. We also set the non-zero components of the magnetic field

strength to be aligned with the metric

Fab̄ = ∂aĀb̄ = kgab̄ = k∂a∂b̄K, (3.2)

1Although the gauge, which trivializes anti-holomorphic derivatives is rather Āā = 0 (2.23), the
difference between gauge choices is inessential, since the density matrix is a gauge invariant object. We
find it convenient for technical reasons to work in the anti-holomorphic gauge.
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as in Eq. (2.20), with K = − log h being the Kähler potential for the metric. Note that

we chose the coupling to the vector potential such that the field strength, defined as in

(3.2), is real, which corresponds to imaginary Āb̄.

Our goal is to compute the value of the density matrix (3.1) on the diagonal xi =

xf = x and project to the lowest Landau level, i.e. take a long time T = tf − ti → ∞

limit. Note, that one cannot take this limit inside the path integral. That would simply

suppress the kinetic term, and one would end up with a rather trivial answer. Thus,

we must keep T finite in the process of calculation and take the T → ∞ limit after

computing the correlators. The long time limit is free of IR divergent terms, provided

the path integral is properly regularized. It should also be mentioned, that by taking the

long time limit we implicitly use the fact that there is a spectral gap between the lowest

and first positive eigenvalues, which makes it a well-defined operation. The resulting

expansion is a local asymptotic expansion in ~/k, whose coefficients at each order we

would like to compute.

To keep track of the dependence on T we can introduce the rescaled time parameter

t = tf + (tf − ti)τ = tf + Tτ

with τ ∈ [−1, 0]. The classical solution for the trajectory with boundary conditions

xi = xf is just a constant. Introduce normal coordinates za, z̄ā in the vicinity of the

classical trajectory

xa = xa
f + za(τ)

x̄ā = x̄ā
f + z̄ā(τ)

The normalization factor N can be fixed by considering the standard normalization of

the heat kernel in the case of non-coincident initial and final points, as e.g. in [62], and

is equal to

N = kn,

where n is the complex dimension of the manifold.
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3.3 Weyl-ordering counterterm

The Weyl-ordering counterterm in the path integral measure has been discovered by

DeWitt [1]. In the hamiltonian framework the path integral corresponds to transition

amplitude

K(xi, xf ;T ) = 〈xf |e−(T/~)Ĥ |xi〉.

Since the kinetic term in Ĥ depends on the coordinate variable through the metric,

there may be a discrepancy due to the operator ordering of momentum and coordinate

variables, when constructing quantum hamiltonian. Different choices of ordering lead

to different definition of path integral (this issue was studied in great detail in Ref.

[63, 64, 8]). It can be shown that there is a unique choice the ordering of the hamiltonian

which preserves general coordinate invariance

Ĥ =
1
2
G−1/4(p̂i − iAi)GijG1/2(p̂j − iAj)G−1/4

=
1
2
g−1/2p̂a g

ab̄ g (ˆ̄pb̄ − iĀb̄)g
−1/2 +

1
2
g−1/2(ˆ̄pb̄ − iĀb̄) g

ab̄ g p̂ag
−1/2, (3.3)

where we specified our hamiltonian to the Kähler case. Here G = det gij = g2 =

(det gaā)2. To transform the hamiltonian framework to lagrangian we rewrite this ex-

pression in a Weyl-ordered form (see Eq. (3.24) in the Appendix) and then perform the

Legendre transform with the generalized momenta

pa = gab̄
˙̄zb̄
, P̄b̄ = gab̄ż

a + iĀb̄.

The following action, written in euclidean time, appears in the exponent of path integral

S =
∫ tf

ti

dt

(
gab̄ż

a ˙̄zb̄ + Āb̄
˙̄zb̄ − ~2

4
R

)
.

The Weyl-ordering corresponds to a “mid-point rule” prescription in the path integral,

introduced in the next paragraph. The last term in this “quantum corrected” action is

necessary, for instance, to obtain correct short time heat kernel expansion [8]. We will

demonstrate, that leads to a correct long time as well.
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3.4 Normal coordinates, free action and propagators

In the Kähler normal coordinate frame, defined in Appendix, all pure (anti-) holomor-

phic derivatives of the metric at a chosen point are set to zero. We will use the Kähler

normal coordinate frame, centered at x, where the following expansions for the Kähler

potential, metric and gauge connection hold up to the sixth order in derivatives

K(xa +za, x̄ā + z̄ā) = gab̄(x)z
az̄b̄ +

1
4
Kabāb̄(x)z

azbz̄āz̄b̄ +
1
36
Kabcāb̄c̄(x)z

azbzcz̄āz̄b̄z̄c̄ + . . . ,

Āb̄(x
a + za, x̄ā + z̄ā) = k∂b̄K(xa + za, x̄ā + z̄ā)

= k

(
gab̄(x)z

a +
1
2
Kabāb̄(x)z

azbz̄ā +
1
12
Kabcāb̄c̄(x)z

azbzcz̄āz̄c̄ + . . .

)
,

gab̄(x
a + za, x̄ā + z̄ā) = gab̄(x) +Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄ + . . .

in self-explanatory notations. Note that we omitted terms which turn out not to be

relevant up to the second order in ~. For example, the term with five derivatives of

mixed type Kabcāb̄(x)z
azbzcz̄āz̄b̄ is non-zero in our coordinate frame, but it contributes

to the density matrix only starting from ~3, as one can check by power counting.

The determinant in the measure (3.1) can be raised to the exponent, using auxiliary

anti-commuting ghost fields ba and cb̄. The integral in these variables is the Berezin

integral. The diagonal of the density matrix (3.1) can be now rewritten as

ρ(x) = N
∫ z(0)=0

z(−1)=0
Dza(τ)Dz̄b̄(τ)Dba(τ)Dcb̄(τ) e−

1
~ S0− 1

~ Sint

where we split the action into a free part

S0 =
∫ 0

−1
dτ

[
1
T
gab̄(x)ż

a ˙̄zb̄ + kgab̄(x)z
a ˙̄zb̄ + gab̄(x)b

acb̄
]
, (3.4)

and interaction part, with the terms up to the sixth order in derivatives of the Kähler
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potential

Sint =
∫ 0

−1
dτ

[
1
T

(
Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄

)
ża ˙̄zb̄

+ k

(
1
2
Kabāb̄(x)z

azbz̄ā +
1
12
Kabcāb̄c̄(x)z

azbzcz̄āz̄c̄

)
˙̄zb̄

+
(
Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄

)
bacb̄

− ~2

4
T
(
R(x) + ∂c∂̄c̄R(x)zcz̄c̄

)]
,

here dots denote τ derivatives. The propagator for free theory (3.4)

〈z̄b̄(τ)za(σ)〉 = ~gab̄∆(τ, σ), (3.5)

satisfies the following equation[
− 1
T

d2

dτ2
+ k

d

dτ

]
∆(τ, σ) = δ(τ − σ),

and the path integral boundary conditions translate into Dirichlet boundary conditions

for ∆

∆(−1, σ) = ∆(0, σ) = ∆(τ,−1) = ∆(τ, 0) = 0

The unique solution is

∆(τ, σ) =
1

k(ekT − 1)

{
θ(τ − σ)ekT (1− ekTτ )(1− e−kT (σ+1))

+θ(σ − τ)(1− e−kTσ)(1− ekT (τ+1))
}
, (3.6)

where the step-function is defined using the “mid-point rule”

θ(τ − σ) =


1, τ > σ

1
2 , τ = σ

0, τ ≤ σ

(3.7)

The non-zero value at coincident point depends on the choice of Weyl-ordering in the

hamiltonian formulation and is crucial for obtaining correct results for the short-time

heat kernel expansion from the path integral [8]. Ghost propagator can be regulated
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with the help of ∆(τ, σ) in the following way

〈ba(σ)cb̄(τ)〉 = −~gab̄δ(τ − σ) = ~gab̄

(
1
T
••∆(τ, σ)− k•∆(τ, σ)

)
where •∆(τ, σ) = d∆(τ, σ)/dτ , etc.

3.5 Perturbation theory. First Order

Now we are ready to study the perturbation theory in ~ for the diagonal of the density

matrix (3.4)

ρ(x) = N (1 + ~ρ1(x) + ~2ρ2(x) + . . .).

From (3.5) the dimension of variable z is ~1/2, therefore by power counting ρn(x) should

contain terms with 2n covariant derivatives of the metric. For example, at first order in

~ the only invariant of the metric is the Ricci scalar.

Expanding the interacting part of the exponent in the path integral (3.4) to the first

order in ~, we have

~ρ1 = −1
~
Kabāb̄

∫
dτ

(
1
T
〈zbz̄āża ˙̄zb̄〉|τ +

k

2
〈zazbz̄ā ˙̄zb̄〉|τ + 〈zbz̄ābacb̄〉|τ

)
+ ~

T

4
R

= ~R
1
T

∫
dτ (∆(•∆• + ••∆) + •∆∆•) |τ + ~

T

4
R = ~RI1(T, k) +

~T
4
R. (3.8)

and from here on the integration always runs from −1 to 0. Here we apply usual Wick

rule to calculate the correlators. We also use the fact that Raābb̄(x) = Kabāb̄(x) in

normal frame centered at x. To illustrate how the Wick rule works in this case, consider

e.g. the first term here

〈zbz̄āża ˙̄zb̄〉|τ = 〈z̄āzb〉|τ 〈 ˙̄zb̄
ża〉|τ + 〈 ˙̄zb̄

zb〉|τ 〈z̄āża〉|τ

= gbāgab̄∆(τ, τ)•∆•(τ, τ) + gaāgbb̄•∆(τ, τ)∆•(τ, τ),

where we explicitly used (3.5). In general for a given polynomial in z and z̄ one has to

replace its expectation value by a sum of all possible pairwise "contractions" between
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z’s and z̄’s. The same holds for the ghost fields b, c, the only subtlety one has take into

account is that they anticommute.

This calculation elucidates the role of the ghosts. Their contribution cancels the

contact terms, containing δ(0), which appear in second derivatives of the bosonic prop-

agators at coincident points.

The values of the integrals used in the main text and their large time asymptotics

are collected in Appendix. In T →∞ limit of the expression above becomes

~ρ1 =
(
−T

4
+

1
2k

)
~R+

~T
4
R =

~
2k
R. (3.9)

Note, that the Weyl-ordering counterterm (3.24) is necessary to cancel the large-T

divergence. This calculation provides an independent check of the coefficient in front of

this term2, see also [8] for a related discussion.

3.6 Perturbation theory. Second Order

At the ~2 order the following metric invariants can appear in the expansion: ∆R =

gaā∂a∂̄āR, |Ric|2 = RaāR
aā, |Riem|2 = Raābb̄R

aābb̄ and R2. Therefore the second order

correction splits into four components, corresponding to the listed invariants. The full

second-order contribution reads

~2ρ2 = −1
~
Kabcāb̄c̄

∫
dτ

(
1

4T
〈zbzcz̄āz̄c̄ża ˙̄zb̄〉|τ

+
k

12
〈zazbzcz̄āz̄c̄ ˙̄zb̄〉|τ +

1
4
〈zbzcz̄āz̄c̄bacb̄〉|τ

)
+

1
2~2

Kabāb̄Ka′b′ā′b̄′

∫ ∫
dτdσ

(
1
T 2
〈zbz̄āża ˙̄zb̄|τzb′ z̄ā′ ża′ ˙̄zb̄′ |σ〉

+
k

T
〈zbz̄āża ˙̄zb̄|τza′zb′ z̄ā′ ˙̄zb̄′ |σ〉+

k2

4
〈zazbz̄ā ˙̄zb̄|τza′zb′ z̄ā′ ˙̄zb̄′ |σ〉

+
2
T
〈zbz̄āża ˙̄zb̄|τzb′ z̄ā′ba

′
cb̄

′ |σ〉+ k〈zazbz̄ā ˙̄zb̄|τzb′ z̄ā′ba
′
cb̄

′ |σ〉

+〈zbz̄ābacb̄|τzb′ z̄ā′ba
′
cb̄

′ |σ〉
)

+

2Factor 1/4 here compared to 1/8 in [8] is due to our definition of scalar curvature (3.18) in Kähler
case.
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+
~T
4
∂c∂̄c̄R

∫
dτ 〈z̄c̄zc〉|τ +

~T
4
R · ~RI1(T, k) +

1
2

(
~T
4
R

)2

(3.10)

We start computation from the first line in this expression. Taking into account the

identity (3.19), the first line reads

−~2(−∆R+ 2|Ric|2 + |Riem|2)
∫
dτ

1
T

(•∆∆•∆ + ∆2(•∆• + ••∆)/2)|τ

= −~2(−∆R+ 2|Ric|2 + |Riem|2) I2(T, k)

≈ −~2(−∆R+ 2|Ric|2 + |Riem|2)
(

5
6k2

− T

4k

)
, as T →∞ (3.11)

Consider now the second integral in (3.10). There are several nonequivalent ways to

contract z variables, leading to different invariants. Contraction of each of the primed

indices a′, b′, ā′, b̄′ with a non-primed index, leads to the |Riem|2 structure. Such terms

are given by the following expression

~2

2
|Riem|2

∫ ∫
dτdσ

(
1
T 2

(∆(σ, τ)∆(τ, σ)•∆•(σ, τ)•∆•(τ, σ)

+∆(σ, τ)∆•(τ, σ)•∆•(σ, τ)•∆(τ, σ) + •∆(σ, τ)∆(τ, σ)∆•(σ, τ)•∆•(τ, σ)

+•∆(σ, τ)∆•(τ, σ)∆•(σ, τ)•∆(τ, σ)) + 2
k

T
(∆(σ, τ)∆(τ, σ)•∆•(σ, τ)•∆(τ, σ)

+•∆(σ, τ)∆(τ, σ)∆•(σ, τ)•∆(τ, σ)) + k2∆(σ, τ)∆(τ, σ)•∆(σ, τ)•∆(τ, σ)

−∆(σ, τ)∆(τ, σ)
(

1
T
••∆(σ, τ)− k•∆(σ, τ)

)(
1
T
••∆(τ, σ)− k•∆(τ, σ)

))
=

~2

2
|Riem|2 · I4(T, k) ≈

~2

2
|Riem|2

(
7

4k2
− T

2k

)
, as T →∞ (3.12)

If we contract only two of the prime indices with the two nonprime indices, we get the

structure |Ric|2

~2

2
|Ric|2

∫ ∫
dτdσ

(
1
T 2

(•∆(τ)•∆(σ)•∆(τ, σ)∆•(σ, τ) + •∆(τ)•∆•(σ)∆(τ, σ)∆•(σ, τ)

+•∆(τ)∆(σ)∆•(τ, σ)•∆•(σ, τ) + •∆(τ)∆•(σ)∆(τ, σ)•∆•(σ, τ)

+∆•(τ)•∆(σ)•∆•(τ, σ)∆(σ, τ) + ∆•(τ)•∆•(σ)•∆(τ, σ)∆(σ, τ)

+∆•(τ)∆(σ)•∆•(τ, σ)•∆(σ, τ) + ∆•(τ)∆•(σ)•∆(τ, σ)•∆(σ, τ) +
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+•∆•(τ)•∆(σ)∆•(τ, σ)∆(σ, τ) + •∆•(τ)•∆•(σ)∆(τ, σ)∆(σ, τ)

+•∆•(τ)∆(σ)∆•(τ, σ)•∆(σ, τ) + •∆•(τ)∆•(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆•(τ, σ)∆•(σ, τ) + ∆(τ)•∆•(σ)•∆(τ, σ)∆•(σ, τ)

+∆(τ)∆(σ)•∆•(τ, σ)•∆•(σ, τ) + ∆(τ)∆•(σ)•∆(τ, σ)•∆•(σ, τ))

+
2k
T

(•∆(τ)•∆(σ)∆(τ, σ)∆•(σ, τ) + •∆(τ)∆(σ)∆(τ, σ)•∆•(σ, τ)

+∆•(τ)•∆(σ)•∆(τ, σ)∆(σ, τ) + ∆•(τ)∆(σ)•∆(τ, σ)•∆(σ, τ)

+•∆•(τ)•∆(σ)∆(τ, σ)∆(σ, τ) + •∆•(τ)∆(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆(τ, σ)∆•(σ, τ) + ∆(τ)∆(σ)•∆(τ, σ)•∆•(σ, τ))

+k2(•∆(τ)•∆(σ)∆(τ, σ)∆(σ, τ) + •∆(τ)∆(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆(τ, σ)∆(σ, τ) + ∆(τ)∆(σ)•∆(τ, σ)•∆(σ, τ))

+
2
T

(•∆•(τ)∆(τ, σ)∆(σ, τ) + •∆(τ)∆(τ, σ)∆•(σ, τ)

+∆•(τ)•∆(τ, σ)∆(σ, τ) + ∆(τ)•∆(τ, σ)∆•(σ, τ))
(

1
T
••∆(σ)− k•∆(σ)

)
+2k(•∆(τ)∆(τ, σ)∆(σ, τ) + ∆(τ)•∆(τ, σ)∆(σ, τ))

(
1
T
••∆(σ)− k•∆(σ)

)
+∆(τ, σ)∆(σ, τ)

(
1
T
••∆(τ)− k•∆(τ)

)(
1
T
••∆(σ)− k•∆(σ)

)
−∆(σ)∆(τ)

(
1
T
••∆(σ, τ)− k•∆(σ, τ)

)(
1
T
••∆(τ, σ)− k•∆(τ, σ)

))

=
~2

2
|Ric|2 · I5(T, k) ≈

~2

2
|Ric|2

(
−T
k

+
3
k2

)
, as T →∞ (3.13)

If we contract prime indices as well as nonprime indices only between each other, or in

other words we contract separately z’s and z̄’s at point τ and z’s and z̄’s at σ, we get

disconnected correlators only. The structure of such term is just (~RI1)2. Adding up

this term and last two terms from (3.10) we obtain the first order term (3.9) squared

with the coefficient one-half

1
2
(~ρ1)2 =

1
2

(
~RI1(T, k) +

~T
4
R

)2

≈ ~2

8k2
R2, as T →∞. (3.14)

This term appears since we compute partition function, not the free energy, and therefore

do not subtract integrals, corresponding to disconnected diagrams.
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Finally the first term in the last line in (3.10) reads

~2T

4
∆R

∫
dτ ∆(τ, τ) =

~2T

4
∆RI3(T, k) ≈ ~2∆R

(
− 1

2k2
+
T

4k

)
, as T →∞. (3.15)

Let us now collect all the terms (3.11, 3.12, 3.13, 3.15) that contribute to ρ2 and

compute its T →∞ limit

ρ2 = (I2(T, k) + TI3(T, k)/4)∆R+ (−2I2(T, k) + I5(T, k)/2)|Ric|2

+(−I2(T, k) + I4(T, k)/2)|Riem|2 +
1
2
(I1(T, k) + T/4)2R2

≈ 1
k2

(
1
3
∆R+

1
24
|Riem|2 − 1

6
|Ric|2 +

1
8
R2

)
, as T →∞ (3.16)

Now we are ready write down the full expansion of the density matrix (3.4) up to second

order in ~

ρ = kn

(
1 +

~
2k
R+

~2

k2

(
1
3
∆R+

1
24
|Riem|2 − 1

6
|Ric|2 +

1
8
R2

)
+O((~/k)3)

)
. (3.17)

Note that this expansion is in perfect agreement with the expansion of Bergman kernel,

obtained in [12].

3.7 Appendix

3.7.1 Curvatures

We follow conventions of [12]

Raābb̄ = ∂b∂̄b̄gaā − gcc̄∂bgac̄∂̄b̄gcā,

Raā = −gbb̄Raābb̄,

R = gaāRaā, (3.18)

∆R = gaā∂a∂̄āR,

|Riem|2 = Raābb̄R
aābb̄,

|Ric|2 = RaāR
aā.



43

Let K be the Kähler potential for the metric

gaā = ∂a∂̄āK.

In Kähler normal coordinate frame the Cristoffel symbols and all pure holomorphic

derivatives of the metric vanish at the origin

Kaāb1...bn(x) = 0,

for any n. The following terms in the Taylor expansions of the Kähler potential, the

metric, Rieman tensor and Ricci scalar are relevant for the present paper

K(xa + za, x̄ā + z̄ā) = K(x) +Kab̄(x)z
az̄b̄ +

1
4
Kabāb̄(x)z

azbz̄āz̄b̄+

+
1
36
Kabcāb̄c̄(x)z

azbzcz̄āz̄b̄z̄c̄ + . . . ,

gab̄(x
a + za, x̄ā + z̄ā) = gab̄(x) +Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄ + . . .

Raābb̄(x
a + za, x̄ā + z̄ā) = Kabāb̄(x) +Kabcāb̄c̄(x)z

cz̄c̄ − gcc̄(x)Kabc̄d̄(x)Kcdāb̄(x)z
dz̄d̄ + . . .

R(xa + za, x̄ā + z̄ā) = R(x) + (2gad̄(x)gdā(x)gbb̄(x)Kabāb̄(x)Kcdc̄d̄(x)−

−gaā(x)gbb̄(x)Kabcāb̄c̄(x)− gaā(x)gbb̄(x)gdd̄(x)Kabc̄d̄(x)Kcdāb̄(x))z
cz̄c̄ + . . .

= R(x) + ∂c∂̄c̄R(x)zcz̄c̄.

The following useful identity holds in the normal coordinate frame

gaāgbb̄Kabcāb̄c̄ = −∂c∂̄c̄R(x) + 2Rcd̄R
d̄
c̄ +Rcb̄dd̄R

b̄dd̄
c̄. (3.19)

3.7.2 Hamiltonian

Here we rewrite the hamiltonian (3.3) in a Weyl-symmetric way. First we simplify the

expression without the gauge potential

Ĥ =
1
2
g−1/2p̂a g

ab̄ g ˆ̄pb̄g
−1/2 +

1
2
g−1/2 ˆ̄pb̄ g

ab̄ g p̂ag
−1/2 =

1
2
(p̂a g

ab̄ ˆ̄pb̄ + ˆ̄pb̄ g
ab̄p̂a)

+
~2

4
∂̄b̄(g

ab̄∂a ln g) +
~2

4
∂a(gab̄∂̄b̄ ln g) +

~2

4
gab̄∂̄b̄ ln g∂a ln g, (3.20)
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where we use p̂a = −i~∂a, ˆ̄pā = −i~∂̄ā. The Weyl-ordered form of the first term in the

previous expression is

(p̂ag
ab̄ ˆ̄pb̄)W =

1
4
(p̂a ˆ̄pb̄g

ab̄ + p̂ag
ab̄ ˆ̄pb̄ + ˆ̄pb̄g

ab̄p̂a + gab̄p̂a ˆ̄pb̄)

Therefore

1
2
(p̂a g

ab̄ ˆ̄pb̄ + ˆ̄pb̄ g
ab̄p̂a) = (p̂ag

ab̄ ˆ̄pb̄)W +
1
8
([p̂a, [gab̄, ˆ̄pb̄]] + [ˆ̄pb̄, [g

ab̄, p̂a]])

= (p̂ag
ab̄ ˆ̄pb̄)W +

~2

4
R+

~2

4
gab̄Γb

abΓ
c̄
b̄c̄. (3.21)

The last three terms in (3.20) can be written as

∂̄b̄(g
ab̄∂a ln g) = ∂a(gab̄∂̄b̄ ln g) = −R− gab̄Γb

abΓ
c̄
b̄c̄.

gab̄∂̄b̄ ln g∂a ln g = gab̄Γb
abΓ

c̄
b̄c̄. (3.22)

Using (3.21, 3.22) we get the expression for Weyl-ordered hamiltonian (3.20)

Ĥ = (p̂ag
ab̄ ˆ̄pb̄)W − ~2

4
R. (3.23)

Now it is straightforward to see that the similar expression holds in the presence of

gauge connection (3.3). One just has to shift ˆ̄pb̄ → ˆ̄pb̄ − iĀb̄ in the previous equation,

and then order the part of Ĥ that involves Āb̄

Ĥ = (p̂ag
ab̄ ˆ̄pb̄)W − ~

2
gab̄Fab̄ −

~2

4
R. (3.24)

For the field strength (3.2) the second term here is just a “zero-point energy” constant,

which we subtract. However, it will play an important role in the next chapter, when

we consider a more general magnetic field strength.

3.7.3 Integrals

Here we collect exact expressions for the integrals that appear in the main text. The

following short hand notations are used

•∆(τ, σ) = d∆(τ, σ)/dτ, ∆•(τ, σ) = d∆(τ, σ)/dσ, ••∆(τ, σ) = d2∆(τ, σ)/dτ,

∆(τ, τ) = ∆(τ), •∆(τ) = •∆(τ, σ)|σ=τ , (3.25)
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and so on.

I1(T, k) =
∫
dτ

1
T

(∆(•∆• + ••∆) + •∆∆•) |τ

= − ekT + 1
4k(ekT − 1)2

(
2 + kT + ekT (−2 + kT )

)
(3.26)

I2(T, k) =
∫
dτ

1
T

(•∆∆•∆ + ∆2(•∆• + ••∆)/2)|τ = − 1
12k2(ekT − 1)3

(3.27)(
10 + 3kT + 3ekT (6 + 7kT ) + 3e2kT (−6 + 7kT ) + e3kT (−10 + 3kT )

)

I3(T, k) =
∫
dτ ∆(τ, τ) =

1
Tk2(ekT − 1)

(
2 + kT + ekT (−2 + kT )

)
(3.28)

I4(T, k) =
∫ ∫

dτdσ

(
1
T 2

(∆(σ, τ)∆(τ, σ)•∆•(σ, τ)•∆•(τ, σ)

+∆(σ, τ)∆•(τ, σ)•∆•(σ, τ)•∆(τ, σ) + •∆(σ, τ)∆(τ, σ)∆•(σ, τ)•∆•(τ, σ)

+•∆(σ, τ)∆•(τ, σ)∆•(σ, τ)•∆(τ, σ)) + 2
k

T
(∆(σ, τ)∆(τ, σ)•∆•(σ, τ)•∆(τ, σ)

+•∆(σ, τ)∆(τ, σ)∆•(σ, τ)•∆(τ, σ)) + k2∆(σ, τ)∆(τ, σ)•∆(σ, τ)•∆(τ, σ)

−∆(σ, τ)∆(τ, σ)
(

1
T
••∆(σ, τ)− k•∆(σ, τ)

)(
1
T
••∆(τ, σ)− k•∆(τ, σ)

))
=

1
4k2(ekT − 1)4

(
7 + 2kT + 12kTekT + 2e2kT (−7 + 2k2T 2)

−12kTe3kT + e4kT (7− 2kT )
)

(3.29)

I5(T, k) =
∫ ∫

dτdσ

(
1
T 2

(•∆(τ)•∆(σ)•∆(τ, σ)∆•(σ, τ) + •∆(τ)•∆•(σ)∆(τ, σ)∆•(σ, τ)

+•∆(τ)∆(σ)∆•(τ, σ)•∆•(σ, τ) + •∆(τ)∆•(σ)∆(τ, σ)•∆•(σ, τ)

+∆•(τ)•∆(σ)•∆•(τ, σ)∆(σ, τ) + ∆•(τ)•∆•(σ)•∆(τ, σ)∆(σ, τ)

+∆•(τ)∆(σ)•∆•(τ, σ)•∆(σ, τ) + ∆•(τ)∆•(σ)•∆(τ, σ)•∆(σ, τ)

+•∆•(τ)•∆(σ)∆•(τ, σ)∆(σ, τ) + •∆•(τ)•∆•(σ)∆(τ, σ)∆(σ, τ)
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+•∆•(τ)∆(σ)∆•(τ, σ)•∆(σ, τ) + •∆•(τ)∆•(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆•(τ, σ)∆•(σ, τ) + ∆(τ)•∆•(σ)•∆(τ, σ)∆•(σ, τ)

+∆(τ)∆(σ)•∆•(τ, σ)•∆•(σ, τ) + ∆(τ)∆•(σ)•∆(τ, σ)•∆•(σ, τ))

+
2k
T

(•∆(τ)•∆(σ)∆(τ, σ)∆•(σ, τ) + •∆(τ)∆(σ)∆(τ, σ)•∆•(σ, τ)

+∆•(τ)•∆(σ)•∆(τ, σ)∆(σ, τ) + ∆•(τ)∆(σ)•∆(τ, σ)•∆(σ, τ)

+•∆•(τ)•∆(σ)∆(τ, σ)∆(σ, τ) + •∆•(τ)∆(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆(τ, σ)∆•(σ, τ) + ∆(τ)∆(σ)•∆(τ, σ)•∆•(σ, τ))

+k2(•∆(τ)•∆(σ)∆(τ, σ)∆(σ, τ) + •∆(τ)∆(σ)∆(τ, σ)•∆(σ, τ)

+∆(τ)•∆(σ)•∆(τ, σ)∆(σ, τ) + ∆(τ)∆(σ)•∆(τ, σ)•∆(σ, τ))

+
2
T

(•∆•(τ)∆(τ, σ)∆(σ, τ) + •∆(τ)∆(τ, σ)∆•(σ, τ)

+∆•(τ)•∆(τ, σ)∆(σ, τ) + ∆(τ)•∆(τ, σ)∆•(σ, τ)
(

1
T
••∆(σ)− k•∆(σ)

)
+2k(•∆(τ)∆(τ, σ)∆(σ, τ) + ∆(τ)•∆(τ, σ)∆(σ, τ)

(
1
T
••∆(σ)− k•∆(σ)

)
+∆(τ, σ)∆(σ, τ)

(
1
T
••∆(τ)− k•∆(τ)

)(
1
T
••∆(σ)− k•∆(σ)

)
−∆(σ)∆(τ)

(
1
T
••∆(σ, τ)− k•∆(σ, τ)

)(
1
T
••∆(τ, σ)− k•∆(τ, σ)

))
=

=
1

k2(ekT − 1)4
(
3 + kT + ekT (4 + 8kT + k2T 2) + 2e2kT (−7 + k2T 2)+

+e3kT (4− 8kT + k2T 2) + e4kT (3− kT )
)

(3.30)
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Chapter 4

Generalizations of the Bergman kernel

4.1 N = 1 supersymmetric quantum mechanics

4.1.1 Action, symmetries and propagators

One can obtain expansions similar to (3.17) in other quantum mechanical theories. Here

we consider (1, 1)-supersymmetric particle on Kähler manifold with the magnetic field

turned on. The action is

S =
∫ tf

ti

dt
(
gab̄ż

a ˙̄zb̄ + ψ̄ā(gaāψ̇
a + ẋb∂bgaāψ

a) + Āb̄
˙̄xb̄ + Faāψ̄

āψa
)

(4.1)

This action is invariant under the following N = (1, 1) supersymmetry transformations

δxa = −ε̄ψa

δx̄ā = −εψ̄ā

δψa = ẋaε

δψ̄ā = ˙̄xāε̄ (4.2)

if the metric is Kähler and if Aa, Āā is a connection of holomorphic vector bundle

Fab = Fāb̄ = 0.

We repeat the previous setup with the field strength proportional to the metric, exactly

as in Eq. (2.20). Consider now the path integral representation of this theory. If the

boundary conditions for x and ψ fields are the same, no ghosts are needed in the ac-

tion, because bosonic and fermionic determinants cancel in the measure. Moreover, the
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Weyl-ordering counterterm cancels due to the contribution of fermionic terms. Bosonic

propagator is the same a before, and fermionic propagator

〈ψ̄b̄(τ)ψa(σ)〉 = ~gab̄Γ(τ, σ)

satisfies [
d

dσ
+ Tk

]
Γ(τ, σ) = −δ(τ − σ)

We would like to compute the “index density”, i.e. the trace of the density matrix with

alternating signs for fermionic states

ρ(x) = lim
T→∞

Tr (−1)F e−TĤ ,

without performing the x-integral. The right hand side here depends only on the bosonic

“zero-mode” x, and all fermionic dependence is integrated out. Fermion number inser-

tion (−1)F corresponds to periodic boundary conditions for fermions. In this case the

propagator has the form

Γ(τ, σ) =
1

1− ekT

(
ekT (τ−σ)θ(τ − σ) + ekT (τ−σ+1)θ(σ − τ)

)
.

4.1.2 Perturbation theory

The calculation proceeds along the same lines as in nonsupersymmetric case. We use

Kähler normal coordinates and expand the metric around the constant configuration x.

Free part of the action is given by

S0 =
∫ 0

−1
dτ

[
1
T
gab̄(x)ż

a ˙̄zb̄ + kgab̄(x)z
a ˙̄zb̄ + gab̄(x)ψ̄

b̄ψ̇a + Tkgab̄ψ̄
b̄ψa

]
. (4.3)

The interaction part, up to the sixth order in derivatives of the Kähler potential, reads

Sint =
∫ 0

−1
dτ

[
1
T

(
Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄

)
ża ˙̄zb̄

+ k

(
1
2
Kabāb̄(x)z

azbz̄ā +
1
12
Kabcāb̄c̄(x)z

azbzcz̄āz̄c̄

)
˙̄zb̄

+
(
Kabāb̄(x)z

bz̄ā +
1
4
Kabcāb̄c̄(x)z

bzcz̄āz̄c̄

)
ψ̄b̄(Tk + ∂τ )ψa

+
(
Kabāb̄(x)z̄

ā +
1
2
Kabcāb̄c̄(x)z

cz̄āz̄c̄

)
żbψ̄b̄ψa

]
, (4.4)
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At the first order in ~ we get

ρ1(N = 1) = R

∫
dτ

(
1
T

(•∆∆• + •∆•∆) + k•∆∆−∆δ(0) + ∆•Γ
)
|τ = 0,

so ~1 term is exactly zero, even for finite T .

Computation at the second order in ~ proceeds in a similar fashion as in previous

section, let us only mention one shortcut. Note, that each contraction of ψ̄(σ) and

(Tk+ ∂τ )ψ(τ) is proportional to delta-function δ(τ, σ), exactly as contraction of ghosts

b and c. Therefore the first three lines in the interaction lagrangian (4.4) generate the

same terms as bosonic interaction lagrangian (3.5) and only the last line in (4.4) is a

new one. With this observation the calculation simplifies significantly. We only give the

final answer here

ρ2(N = 1) = −(I2(T, k) + I6(T, k))(−∆R+ 2|Ric|2 + |Riem|2)

+(I5(T, k)/2 + I7(T, k) + I8/2)|Ric|2

+(I4(T, k)/2 + I6(T, k)− I9(T, k))|Riem|2 (4.5)

and refer to Appendix for the values of the integrals here. The coefficients in front of

|Ric|2 and |Riem|2 turn out to be T -independent, as a consequence of supersymmetry,

and the answer for the density matrix up to the second order in ~ is

ρ(x)(N = 1) = kn

(
1 +

~2

24k2

(
2∆R− |Ric|2 + |Riem|2

)
+O(~3)

)
This is consistent with the index theorem [5, 6]. According to the latter the x-integral

of ρ(x)(N = 1) is equal to the index of Dirac operator on the Kähler manifold M for

which the exact answer is∫
M
dxρ(x)(N = 1) = indDA =

∫
M

chF ∧ Â(M).

If we plug F = kgab̄dz
a ∧ dz̄b̄ and expand the A-roof genus Â in powers of curvature

tensors then the first two terms in this expression coincide with first two terms in the

integrated density
∫
ρ(x)(N = 1).
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4.2 N = 2 supersymmetric quantum mechanics

4.2.1 Action, symmetries and propagators

The action is

S =
∫ tf

ti

dt
(
gab̄ż

a ˙̄zb̄ + ψ̄ā
+(gaāψ̇

a
+ + ẋb∂bgaāψ

a
+)

+ψ̄ā
−(gaāψ̇

a
− + ˙̄xb∂bgaāψ

a
−) + Āb̄

˙̄xb̄ + Faā(ψ̄ā
+ψ

a
+ + ψ̄ā

−ψ
a
−)
)
. (4.6)

The N = (2, 2) supersymmetry transformations

δxa = −ε̄+ψa
+ − ε̄−ψ

a
−

δx̄ā = −ε+ψ̄ā
+ − ε−ψ̄

ā
−

δψa
+ = ẋaε+ + ε̄−Γa

bcψ
b
−ψ

c
+

δψ̄ā
+ = ˙̄xāε̄+ + ε−Γā

b̄c̄ψ̄
b̄
−ψ̄

c̄
+ (4.7)

δψa
− = ẋaε− + ε̄+Γa

bcψ
b
+ψ

c
−

δψ̄ā
− = ˙̄xāε̄− + ε+Γā

b̄c̄ψ̄
b̄
+ψ̄

c̄
−

leave the action invariant, if A is a holomorphic connection and also if the hermitian

Yang-Mills equation is obeyed

gab̄DaFbb̄ = 0,

which was not required in the previous case of one supersymmetry. We assume the field

strength Fab̄ = kgab̄ (2.20), which satisfies this equation.

The object that we would like to compute is the Dolbeault index density, which

corresponds to taking the supertrace over one species of fermions, and setting the zero

modes of the second species of fermions to zero. To achieve this, we choose the following

propagators for the fermions

〈ψ̄b̄
+(τ)ψa

+(σ)〉 = ~gab̄Γ+(τ, σ)

〈ψ̄b̄
−(τ)ψa

−(σ)〉 = ~gab̄Γ−(τ, σ),
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where Γ+ satisfies periodic boundary conditions: Γ+(−1, σ) = Γ+(0, σ), Γ+(τ,−1) =

Γ+(τ, 0), and Γ− satisfies Dirichlet b.c. Γ−(−1, σ) = Γ−(τ, 0) = 0. These propagators

are given by

Γ+(τ, σ) =
1

1− ekT

(
ekT (τ−σ)θ(τ − σ) + ekT (τ−σ+1)θ(σ − τ)

)
Γ−(τ, σ) = ekT (τ−σ)θ(τ − σ),

One also has to add a pair of bosonic ghost fields aa, āā, coming from the path integral

measure

Sgh =
∫
dτgaāa

aāā.

4.2.2 Perturbation theory

The calculation proceeds along the same lines as in the previous two sections. Here we

present the final answer for the index density

ρ(x) = kn
(
1 + ~I13(T, k)R+ ~2(I14(T, k)∆R

+(I5(T, k)/2 + I11(T, k) + I12(T, k))|Ric|2

+ (−I2(T, k) + I4(T, k)/2 + I10(T, k))|Riem|2 + I2
13(T, k)R

2/2) +O(~3)
)

= kn

(
1 +

~
2k
R+ ~2(I14(T, k)∆R−

1
6k2

|Ric|2

+
1

24k2
|Riem|2 +

1
8k2

R2) +O(~3)
)

≈ kn

(
1 +

~
2k
R+

~2

k2

(
1
3
∆R+

1
24
|Riem|2 − 1

6
|Ric|2 +

1
8
R2

)
+O((~/k)3)

)
, as T →∞. (4.8)

Notice, that the only term that depends on T here, is a total derivative. Therefore

it is irrelevant for the index theorem [5, 6], that states∫
M
dxρ(x)(N = 2) = ind ∂̄A =

∫
M

chF ∧ Td(M).

This index formula computes dim
∑

q(−1)qH0,q(M,Lk), which is equal to dimH0(M,Lk)

for large enough k. Therefore the number of holomorphic sections dimH0(M,Lk) can
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be found for large k to be equal to

dim H0(M,Lk) =
∫

M
eF ∧ Td(M) = a0k

n + a1k
n−1 + . . . (4.9)

and the coefficients ai here are the integrals of the corresponding terms in the Tian-

Yau-Zelditch expansion Eq. (2.30). This explains why N = 2 and nonsupersymmetric

Bergman kernel expansions coincide.

4.3 General magnetic field

The large field expansion of the path integral can be generalized [40] for the most general

choice Eq. (2.21) of the U(1) magnetic field

Fab̄ = kgab̄ + uab̄.

where uab̄ is a (1, 1)-form in H1,1(M), not necessarily in the same cohomology class

as the Kähler form ωg of the metric gab̄. Mathematically, this setup corresponds to

the tensor product of two line bundles Lk ⊗ E , with u being the Ricci curvature of E .

The Bergman kernel and balanced embeddings in this case and for more general vector

bundles have been considered in [48].

Let Bb̄ be the vector potential in anti-holomorphic gauge, with the field strength

Fab̄ = ∂aBb̄. As before, the following expansion holds at the reference point in the

Kähler normal coordinate frame

Bb̄ = Fab̄z
a +

1
2
Fabāb̄z

azbz̄ā + . . .

The quadratic part of free action (3.4) is now changed to

S0 =
∫ 0

−1
dτ

[
1
T
gab̄(x)ż

a ˙̄zb̄ + Fab̄(x)z
a ˙̄zb̄ + gab̄(x)b

acb̄
]
,

so that the equation for the propagator now contains two non-collinear matrices[
− 1
T
gab̄

d2

dτ2
+ Fab̄

d

dτ

]
∆b̄b(τ, σ) = δ(τ − σ)δab. (4.10)
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The matrix-valued solution to this equation in the real case has been found in [65]. In

the Kähler case the solution can be obtained by formally replacing k → F in (3.6)

∆b̄b(τ, σ) =
(

1
F (eFT − 1)

[
θ(τ − σ)eFT (1− eFTτ )(1− e−FT (σ+1))+

+θ(σ − τ)(1− e−FTσ)(1− eFT (τ+1))
])b̄b

, (4.11)

where the expression on the rhs should be understood as a formal Taylor series in F

and the product of two matrices is defined as a contraction by the metric, i.e. (F 2)aā =

Fab̄g
bb̄Fbā (we can always use the freedom of choosing gaā(x) to be an identity matrix

at the reference point).

The path integral (3.1) contains an overall normalization factor, equal to the deter-

minant of the operator (4.10). Since we are interested in large k asymptotic expansion,

the determinant can be computed by summing up the perturbation series for

e−
1
~

R 0
−1 uaāza ˙̄zādτ

with the help of the old scalar-valued propagator (3.6). It is enough to compute con-

nected diagrams only. Expanding the exponent into Taylor series and taking into ac-

count the following asymptotic of the integrals as T →∞

uab̄

∫ 0

−1
dτ〈za ˙̄zb̄〉c = ~

(
kT

2
− 1
)

Tru

and for n > 1

ua1b̄1
. . . uanb̄n

∫ 0

−1
dτ1 . . .

∫ 0

−1
dτn〈za1(τ1) ˙̄zb̄1(τ1) . . . zan(τn) ˙̄zb̄n(τn)〉c = −~n(n− 1)!Trun,

where Trun = ua1b̄1
gb̄1a2 . . . uanb̄n

gb̄na1 , we arrive at the following answer

〈e−
1
~

R 0
−1 uaāza ˙̄zādτ 〉 = exp〈e−

1
~

R 0
−1 uaāza ˙̄zādτ 〉c = exp

[
Tr log(1 + u)− kT

2
Tru

]
=

=
detF
det g

exp
(
−kT

2
Tru

)
. (4.12)

Note, that the expression in the exponent cancels with the magnetic field counterterm

of (3.24), up to a “zero-point energy” constant, which can be omitted.
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Now we would like to compute large k perturbative expansion to the first order in

~. The relevant interaction part of the action is

Sint =
∫ 0

−1
dτ

[
1
T
Kabāb̄(x)z

bz̄āża ˙̄zb̄ +
1
2
Fabāb̄(x)z

azbz̄ā ˙̄zb̄ +Kabāb̄(x)z
bz̄ābacb̄

− ~
2
T (gaā(x)Faābb̄(x)− F aā(x)Kaābb̄(x))z

bz̄b̄ − ~2

4
TR(x)

]
,

where the fourth term comes from the expansion of the second term in (3.24). In the

first order in ~ we get the following correlator

~ρ1 = −1
~

∫ 0

−1
dτ

[
Kabāb̄

(
1
T
〈zbz̄āża ˙̄zb̄〉|τ + 〈zbz̄ābacb̄〉|c

)
+

1
2
Faābb̄〈zazbz̄ā ˙̄zb̄〉|c−

−~
2
T (gaāFaābb̄ − F aāKaābb̄)〈zbz̄b̄〉|c

]
+

~
4
TR. (4.13)

The first two correlators in this expression can be rewritten as

−~Kabāb̄

∫ 0

−1
dτ

1
T

(•∆aā∆•bb̄ + ∆bā(•∆•ab̄ − Tgaāδ(0))) = − ~
T
Kabāb̄

∫ 0

−1
dτ[(

− T

2(−1 + eFT )

(
2eF (1+τ)T − (1 + eFT )

))aā

·

·
(

T

2(−1 + eFT )
(
2e−FτT − (1 + eFT )

))bb̄

+ (4.14)(
1

F (−1 + eFT )

(
1− e−FτT − eF (τ+1)T + eFT

))aā(
− FT 2

2(−1 + eFT )
(1 + eFT )

)bb̄
]
.

The integral here takes values in a “tensor product” of two matrices with indices aā and

bb̄ respectively. It can be computed by standard methods in the infinite T limit, under

the assumption that F is positively valued. This is a natural assumption from the point

of view of the large k limit. The T = ∞ answer for the integral above is

~Kabāb̄

(
gaā(F−1)bb̄ − F aā(F−2)bb̄ +

T

2
(F−1)aāF bb̄ +

T

4
gaāgbb̄

)
, (4.15)

where F−1 is the inverse matrix to F , defined as Fab̄g
bb̄(F−1)bā = gaā, or equivalently

as a Taylor expansion around gaā

(F−1)aā =
1
k
gaā −

1
k2
gab̄u

bb̄gbā + . . .
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The term in front of Faābb̄ in Eq. (4.13) can be computed in the infinite time limit

− ~Fabāb̄

∫ 0

−1
dτ∆aā•∆bb̄ =

= −~Fabāb̄

∫ 0

−1
dτ

1
F (−1 + eFT )

(1 + eFT − e−FτT − eF (τ+1)T )aā

·
(
− T

2(−1 + eFT )
(2eFT (τ+1) − eFT − 1)

)bb̄

≈ ~Fabāb̄

(
(F−1)aā(F−1)bb̄

+(F−2)aāgbb̄ − T

2
(F−1)aāgbb̄ − [(F ⊗ F + F 2 ⊗ g)−1]aābb̄

)
. (4.16)

where the last term is understood as an inverse of the tensor product of matrices.

The third term in Eq. (4.13) in the T →∞ limit is equal to

~
T

2
(gaāFaābb̄ − F aāKaābb̄)

∫ 0

−1
dτ∆bb̄

≈ ~
T

2
(gaāFaābb̄ − F aāKaābb̄)

(
(F−1)bb̄ − 2

T
(F−2)bb̄

)
. (4.17)

Combining (4.15, 4.16) and (4.17) together with the contribution of the last term in

(4.13) and the overall normalization (4.12) we get the following answer for the diagonal

of the density matrix up to first order in ~

ρ =
detF
det g

(
1 + ~Faābb̄((F

−1)aā(F−1)bb̄ − [(F ⊗ F + F 2 ⊗ g)−1]aābb̄)

−~(F−1)aāRaā +O(~2)
)
.

As in the previous cases, all terms linear in T cancel1. One can immediately check that

the standard TYZ-expansion is reproduced, by taking F = αg, with ρ then reducing to

the first two terms in Eq. (2.30).

We can extract the first term in 1/k expansion from the previous expression

ρk = kn

(
1 +

~
2k
R+

~
k
gaāuaā +O(

1
k2

)
)
. (4.18)

This expansion coincides with the expansion of the Bergman kernel for Lk⊗E , obtained

by X. Wang [48], using the peak section method. As well as for the regular Bergman

1Note, that without the counterterms (3.24) the T -linear terms combine into the sum of F−1 ·∆F +
R/4, where ∆F is the Hodge laplacian on (1, 1)-forms.
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kernel, the solution of the constant density matrix condition

ρk =
Trρk

V olM

defines a balanced hermitian metric uaā(k) on the vector bundle E . For k → ∞ the

metric u(∞) satisfies the hermitian Einstein equation

1
2
R+ gaāuaā = const (4.19)

as can be seen from the first term in the expansion.

4.4 Appendix

Here we collect the integrals, that appear in §4.1 and §4.2. In addition to previously

introduced notations (3.25) we also use Γ(τ) = Γ(τ, τ)

I6(T, k) =
∫
dτ Γ∆∆•|τ =

1 + ekT

4k2(−1 + ekT )3
(3 + kT + 4kTekT + e2kT (−3 + kT )) (4.20)

I7(T, k) =
∫ ∫

dτdσ (Γ(σ) ((•∆•(τ)∆•(τ, σ)∆(σ, τ) + ∆•(τ)•∆•(τ, σ)∆(σ, τ)

+•∆(τ)∆•(τ, σ)∆•(σ, τ) + ∆(τ)•∆•(τ, σ)∆•(σ, τ))/T

+k(•∆(τ)∆•(τ, σ)∆(σ, τ) + ∆(τ)•∆•(τ, σ)∆(σ, τ))

−δ(0)∆•(τ, σ)∆(σ, τ)) + δ(τ, σ)∆•(σ)∆(τ)Γ(τ, σ))

=
1 + ekT

4k2(−1 + ekT )4
(−5− 2kT + ekT (5− 8kT − 2k2T 2)

+e2kT (5 + 8kT − 2k2T 2) + e3kT (−5 + 2kT )) (4.21)

I8(T, k) =
∫ ∫

dτdσ (∆•(τ, σ)∆•(σ, τ)Γ(τ)Γ(σ)−∆•(τ)∆•(σ)Γ(τ, σ)Γ(σ, τ))

=
1

4k2(−1 + ekT )3
(1 + ekT (5 + 4kT ) + e2kT (−5 + 4kT )− e3kT ) (4.22)
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I9(T, k) =
∫ ∫

dτdσ ∆•(τ, σ)∆•(σ, τ)Γ(τ, σ)Γ(σ, τ)

=
ekT

k2(−1 + ekT )4
(−(−1 + ekT )2 + k2T 2ekT ) (4.23)

I10(T, k) =
∫ ∫

dτdσ

(
−1

2
∆•(τ, σ)∆•(σ, τ)(Γ+(τ, σ)Γ+(σ, τ) + Γ−(τ, σ)Γ−(σ, τ))

+
T 2

2
Γ+(τ, σ)Γ+(σ, τ)Γ−(τ, σ)Γ−(σ, τ)

)
=

ekT

2(−1 + ekT )4k2
((−1 + ekT )2 − ekTk2T 2) (4.24)

I11(T, k) =
∫ ∫

dτdσ (∆•(τ, σ)∆•(σ, τ)(Γ+(τ) + Γ−(τ))(Γ+(σ) + Γ−(σ))

− ∆•(τ)∆•(σ)(Γ+(τ, σ)Γ+(σ, τ) + Γ−(τ, σ)Γ−(σ, τ))

− T 2(Γ+(τ)Γ+(σ)Γ−(τ, σ)Γ−(σ, τ) + Γ−(τ)Γ−(σ)Γ+(τ, σ)Γ+(σ, τ))

+
2
T

(Γ+(σ) + Γ−(σ))(∆•(τ, σ)∆•(σ, τ)•∆(τ)

+ (•∆•(τ)− Tδ(0))∆•(τ, σ)∆(σ, τ)

+ (•∆•(τ, σ)− Tδ(τ − σ))∆•(σ, τ)∆(τ)

+ (•∆•(τ, σ)− Tδ(τ − σ))∆(σ, τ)∆•(τ))

+ 2k(Γ+(σ) + Γ−(σ))((•∆•(τ, σ)− Tδ(τ − σ))∆(σ, τ)∆(τ)

+ ∆•(τ, σ)∆(σ, τ)•∆(τ))

+ 2T∆•(τ)(Γ+(τ, σ)Γ+(σ, τ)Γ−(σ) + Γ−(τ, σ)Γ−(σ, τ)Γ+(σ)))

= − 1
(−1 + ekT )4k2

(3(−1 + ekT )2(1 + ekT ) + kT (1 + e3kT (−3 + kT )

+ekT (5 + kT ) + e2kT (−3 + 2kT ))) (4.25)



58

I12(T, k) =
∫
dτ (∆(∆• + kT∆)(Γ− + Γ+)

− 1
T

((•∆− Tδ(0))∆2 + 2∆∆••∆)− k•∆∆2

)
|τ

=
1

6(−1 + ekT )3k2
(1 + 9ekT (2 + kT ) + 9e2kT (−1 + 2kT )

+e3kT (−10 + 3kT )) (4.26)

I13(T, k) =
∫
dτ

(
1
T

((•∆• − Tδ(0))∆ + •∆∆•) + k•∆∆− TΓ+Γ−

+∆•(Γ+ + Γ−)) |τ =
1
2k

(4.27)

I14(T, k) =
∫
dτ

(
1

2T
((•∆• − Tδ(0))∆2 + 2∆•∆∆•)

+
k

2
•∆∆2 − T∆Γ+Γ− + ∆∆•(Γ+ + Γ−)

)
|τ

=
1

6(−1 + ekT )3k2
(1− 6ekT − 3e2kT (−1 + 2kT ) + 2e3kT ) (4.28)
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Chapter 5

Black holes and balanced metrics

5.1 Effective metric

In this chapter we propose a conjecture on the role of balanced metric, as an effective

metric of the probe in the background of N = 2 supersymmetric black hole solution,

and explore its consequences.

A famous problem in quantum gravity is to derive the Bekenstein-Hawking entropy

of a black hole by counting its microstates. In string theory, this was first done by

Strominger and Vafa [28]. They counted the microstates of a BPS bound state of

Dirichlet branes with the same charge as the black hole, and then argued that the

number of states was invariant under varying the string coupling, turning the bound

state into a black hole.

This line of argument has been the basis for a great deal of work, generalizing

the result to other systems and away from the semiclassical limit. One important

element in such results is the claim that entropies and numbers of microstates are

independent of the moduli of the background. An argument to this effect is provided by

the attractor mechanism [29]. This was originally stated for BPS black holes in type II

strings compactified on a Calabi-Yau manifold M , but the idea is probably more general

(see [66] for a recent discussion). The attractor mechanism is based on the observation

that the equations of motion for the moduli in a black hole background can be written

in the form of gradient flow equations for the area of a surface of fixed radius as a

function of the moduli. This flow approaches an attracting fixed point at the event
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horizon, with a definite value of the moduli and area. Thus, these values are insensitive

to small variations of the initial conditions. By the Bekenstein-Hawking relation, this

implies that the entropy is invariant under such variations.

It is plausible that other properties of the black hole microsystem share this type of

universal behavior. For example, we might conjecture that not only the Kähler moduli

of the Calabi-Yau metric near a black hole take universal values, but that the entire

metric is universal, determined only by the charge and structure of the black hole and

independent of the asymptotic moduli.

What would this mean? In classical supergravity, of course the metric is determined

by the Einstein equation, reducing to the Ricci flatness condition for the source-free

case. Thus the stronger conjecture is quite reasonable and indeed follows directly from

the validity of supergravity. On the other hand, for a finite charge black hole preserving

eight or fewer supercharges, one knows that these equations will get string theoretic

(α′ or gs) corrections. Thus, while the stronger conjecture is still reasonable, it is not a

priori clear either what the attractor CY metric should be, or what equations determine

it.

Now, one reason the general question of finding exact metrics or even precisely

defining corrected supergravity equations is hard, is that the metric and equations can

be changed by field redefinitions, with no obvious preferred definition. For example, the

metric gij could be redefined as gij → gij + αRij + β(R2)ij + . . .. Unless we postulate

an observable which singles out one definition, say measurements done by a point-

like observer who moves on geodesics, there is no way to say which definition is right.

This problem shows up in computing α′ corrections in the sigma model as the familiar

question of renormalization scheme dependence; in general there is no preferred scheme.

We must first answer this question, to give meaning to the “CY attractor metric.”

A nice way to answer this question is to introduce a probe brane, say a D0-brane,

and study its world-volume theory. The kinetic term for its transverse coordinates is
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observable, and defines a unambiguous metric on the target space, including any α′

corrections. While one can still make field redefinitions in the action, now these are just

coordinate transformations. To make this argument straightforward, one requires that

the mass (or tension) of the probe be larger than any other quantities under discussion,

so that the action can be treated classically, and the metric read off from simple mea-

surements.1 For example, this is true for D0-branes in weakly coupled string theory, as

their mass goes as 1/gs. One can then (in principle) define any term in the gs expansion

this way.

Both on general grounds [68] and in examples [69], the moduli space metric seen by

a D-brane probe gets α′ corrections, and for a finite size Calabi-Yau background it is

not Ricci flat. The existing results are consistent with the first such correction arising

from the standard α′3R4 correction to supergravity [70, 71], but pushing this to higher

orders seems difficult.

Perhaps this problem becomes simpler in a black hole background. Rather than the

D0, the probe brane we will use is a D2 or M2-brane wrapped on the black hole horizon.

As discussed in [72, 73, 30, 74], such a brane, and D0-branes as well, in a near horizon

BPS black hole background can preserve SU(1, 1|2) superconformal invariance. This

is a symmetry of the AdS2 × S2 near horizon geometry and thus this is as expected if

multi-D0 quantum mechanics can be used as a dual gauge theory of the black hole. In

these works, this quantum mechanics was argued to factorize into a space-time part,

and an internal (Calabi-Yau) part; this second part describes motion of the probe in

the Calabi-Yau and can be used to define a probe metric.

Given this system and its relation to the black hole, we will give a physical argument,

based on the idea that a black hole must have “maximal entropy” no matter how this is

defined, that suggests that the probe metric in such a black hole background is in fact

1This was the point of view taken in [67, 68]. Actually, one can in principle reconstruct a manifold
with metric from quantum measurements (the spectrum and some position space observables), so one
can work without this assumption.
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the balanced metric, introduced in §2.5, for a particular level k, which depends on black

hole charge. Thus the probe metric, satisfying the maximal entropy principle is not a

Ricci flat metric. Nevertheless, one can define a certain large charge scaling limit where

it approaches Ricci flat metric, with computable corrections in inverse powers in k.

Since our physical argument for the balanced metric does not assume the equations

of motion, it illustrates a way to derive equations of motion from a maximum entropy

principle. This idea was suggested some time ago by Jacobson [75, 76] and might have

more general application.

5.2 BPS black holes and probes

Let us consider a BPS black hole solution in IIa theory compactified on a Calabi-Yau

manifold M . Such a solution is characterized by discrete and continuous parameters.

The discrete parameters are its electric and magnetic charges, which we take to be those

of a system of D0, D2 and D4-branes. The continuous parameters are the values of the

hypermultiplet moduli, namely the dilaton, complex structure moduli and their N = 2

supersymmetry partners. The vector multiplet (Kähler) moduli are determined by the

attractor mechanism, as we review shortly.

By varying the dilaton to strong coupling, this theory is continuously connected to

M theory compactified on M × S1. In this theory, the black hole can be thought of as

a black string wrapped on S1, and carrying S1 momentum [77]. It will eventually turn

out that our conjecture appears more natural in M theory, so let us start from that

limit. To get a black string, we can wrap M5-branes on a four-cycle [P ] ∈ H4(M,Z).

By Poincaré duality [P ] can also be thought of as a class pAωA in H2(M,Z), where

we introduce a basis ωA of H2(M,Z). In general, there are also electric charges qA,

corresponding to M2-branes wrapping dual two-cycles. We will set these to zero in the

subsequent discussion.

According to the attractor mechanism, the Kähler class J5 of the CY at the horizon
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of the black string is determined in terms of the charges pA. Unlike in d = 4, in the

black string solution, the volume V of the CY is a free parameter; thus we have (using

11d conventions of [78])
J5

V 1/3
=
pAωA

D1/3
,

where D ≡ DABCp
ApBpC and DABC are the triple intersection numbers on the Calabi-

Yau. We recall that V = DABCJ
AJBJC/6 where J = JAωA. It will also be useful to

define

JCY ≡ pAωA

D1/3
(5.1)

which is independent of the overall scale of the charges. The corresponding supergravity

solutions simplify in the near-horizon limit: the M theory solution approaches AdS3×S2

geometry

ds2 = L2

(
−dt2 + dx2

4 + dσ2

σ2
+ dΩ2

S2

)
. (5.2)

with the following 4-form flux sourced by M5-branes

F(4) ∼
1
L
ωS2 ∧ pAωA.

Now, by compactifying the black string on S1 with the radius R10, we obtain a

4d black hole with additional charge q0, corresponding to momentum along the string.

At this level, the discussion is simply mapped into IIa string theory, and the charges

(q0, qA, pA) correspond to D0, D2 and D4 brane charges. The radius L of S2 and AdS3

is related to the radius R10 of S1 as L ∼ R10

√
D/q0 and the volume of Calabi-Yau

scales as V ∼ α′3q0
√
q0/D. In d = 4, the overall scale of J and thus the volume V is

also determined by the attractor mechanism, and Eq. (5.1) becomes

J4 = α′
√
q0
D
pAωA, (5.3)

where as usual α′ = l3p/R10 and Q is the graviphoton charge (10d conventions correspond

to those of [30]). The IIa supergravity solution in four dimensions approaches the

AdS2 × S2 near horizon geometry.
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The metric on the CY M is determined by the Einstein equations,

Rij −
1
2
Rgij ∼ (F 2)ij + δ +O(lp) (5.4)

where (F 2)ij schematically denotes the contribution to stress-energy density due to

the RR fields of the charged black hole, and δ denotes the contribution from brane

sources [79]. The last term on the rhs represents string or M-theoretic corrections to

this equation [71, 80].

In general, this metric depends on details of the state of the black hole. For example,

if there are localized brane sources, the metric will depend on their location. However,

we can simplify it by considering an appropriate state of the black hole. For general M ,

despite the non-zero rhs in Eq. (5.4), there exists a black hole state in which the sources

are averaged in an analogous way, removing the localized terms, and leading to a Ricci

flat metric on M in the supergravity limit.

At first it may seem that the field strength F would lead to a complicated position-

dependent source; say concentrated on the cycles wrapped by the M5-branes. However,

as observed in [74], the combination of the attractor mechanism and the equations of

motion force the field strength to be proportional to the Kähler form on M ,

F = dA = pAωA = QJ, (5.5)

where Q is the graviphoton charge Q ∼
√
D/q0. Note, that this condition appeared

before in Eq. (2.20). This is true before adding α′ or gs corrections, and all the simple

candidate corrections one can write down (such as powers of F and its derivatives, for

example those which appear in the MMMS equation [81]), preserve Eq. (5.5). While

there are still F 2 sources in Eq. (5.4), one can now check that these are canceled by terms

coming from the space-time dependence of radius R10 of 11th dimension (in M theory)

or the dilaton (in IIa). We omit the explicit check, instead pointing out that since the

sources are constructed only from the metric tensor on M , they can at most add a

cosmological constant term in Eq. (5.4), leading to a Kähler-Einstein metric. However,
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standard arguments imply that a solution exists only if this term is proportional to

c1(M), which is zero for a Calabi-Yau manifold.

We have thus defined a preferred state of the black hole, for which the metric on M

would be Ricci flat in the supergravity limit. To study corrections, we need to define

this preferred state in a way which does not assume that we know the correct equations

of motion or their solution in advance. Since the supergravity argument required us to

average over all of the internal structure of the black hole, it is natural to define it as a

mixed state of maximal entropy, as we will do below.

5.3 The probe theory

Having defined the state of the black hole under consideration, we now proceed to

define the metric with lp (11d Planck length) or α′ corrections. As we discussed earlier,

this can be made precise by introducing a probe, whose moduli space (space of zero

energy configurations) includes M . This typically requires that the probe preserves

some supersymmetry.

Now, the BPS black hole preserves an N = 1 supersymmetry, determined by the

phase of its central charge Z, which is determined by the charges and attractor moduli.

In asymptotically Minkowski space-time, introducing another BPS brane will typically

break all of the supersymmetry. However, it was shown in [72] that in the near-horizon

limit, a probe zerobrane can nevertheless preserve space-time supersymmetry, if it fol-

lows its “charged geodesic” (i.e. trajectory determined by the background metric and

RR field). Even a collection of such branes with misaligned charges can preserve super-

symmetry; consistent with this, the combined gravitational and RR potential energy of

such a collection is additive.

Choosing a probe brane which preserves supersymmetry, one expects its configura-

tion space to be some moduli space associated with the compactification space M . In

the simplest example of a D0-brane, the moduli space is M itself. Another example
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for which the moduli space is M is a D2-brane wrapped around the S2 horizon. Other

choices, for example a Dp-brane wrapped on a p-cycle of M , would lead to different

moduli spaces, related to the geometry of M .

While there will be a probe world-volume potential, this is determined by supercon-

formal invariance [73] to be a function of the radius σ, but independent of the other

coordinates. In particular, it is independent of position on M or other “internal” coor-

dinates. Thus the world-volume theory includes a supersymmetric quantum mechanics

on the moduli space M . Ground states of this quantum mechanics will correspond in

the usual way to differential forms on M .

The argument we are about to make is clearest for the case of a probe D2 wrapping

the S2 horizon, so let us consider that. According to [73], the supersymmetry condition

for such a brane forces it to the center of AdS2 (in global coordinates), so there are no

other moduli on which the probe metric on M can depend.

At leading order, the probe will see both the metric on M , and a magnetic field on

M . The latter follows (in IIa language) from the D4 charge of the black hole: a probe

D2 wrapping the horizon will see a background magnetic field on the CY M [30, 74],

FCY =
∫

S2

F(4) = pAωA.

Mathematically, such a magnetic field defines a line bundle L over M ; whose first Chern

class is the D4 charge pA. From Eq. (5.3), the Kähler class J is proportional to the first

Chern class of L,

J =
1
Q
c1(L).

5.4 Maximal entropy argument for the probe metric

Our argument will be based on two assumptions. First, the most symmetric state of

a BPS black hole, and thus the state corresponding to the simplest metric on M , is a

state of maximal entropy. Second, that there is a sense in which the black hole can be
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regarded as made up of constituents with “the same dynamics” as the probe. We will

use this to argue that the probe should also be in a state of maximal entropy to get a

simple result.

The first assumption is very natural and straightforward to explain. To define “max-

imal entropy,” we look at the Hilbert space of BPS states of the black hole, call this

HBH . By standard arguments going back to [28], these are BPS states of the quantum

system describing the black hole, here a bound state of D0 and D4 branes. Let us denote

an orthonormal basis of HBH as |hα〉. Now, the states |hα〉 are pure states in the usual

sense of quantum mechanics. The maximal entropy state of such a system is a mixed

state, described by the density matrix

ρBH =
1

dimHBH

∑
α

|hα〉〈hα|, (5.6)

in which each pure state appears with equal probability. Thus, we have a clear definition

of “maximal entropy” of the black hole.

The original description of the black hole Hilbert space HBH [82] was in terms

of a postulated bound state of D0-branes at each triple intersection of D4-brane on

the Calabi-Yau. Denoting the number of triple intersections as k, one finds that the

supergravity entropy formula can be matched if there is one D0 bound state for each

value n of eleven-dimensional momentum, with 4 bosonic and 4 fermionic degrees of

freedom, leading to a partition function

ZBH =
k∏

i=1

∏
n≥1

(
(1 + qn)
(1− qn)

)4

(5.7)

A later argument to the same effect [77] proceeds by lifting the black hole to M

theory on M × S1, in which it becomes a wrapped M5-brane. First compactifying on

M , a wrapped five-brane on a 4-cycle (or divisor) D becomes a black string. The string

is then compactified on S1 to obtain the black hole.

In this analysis, the string has world-sheet fields parameterizing the moduli space

of degree N hypersurfaces PN , which is precisely the projectivization of the space of
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sections of L. The resulting black string Hilbert space is that of a symmetrized orbifold

SymM (M(PN )) of the moduli space, constructed as

k∏
i=1

αAi
−ni

|0〉 (5.8)

with
∑
ni = M . Along with these moduli are additional fields (the dimensional re-

duction of the fivebrane two-form, and fermions), combining into (0, 4) supersymmetry

multiplets with 4 + 4 components. Finally, using the standard result for the density of

states of a conformal field theory with central charge c = 6k, the entropy is

S = 2π
√
c · q0

6
.

Another, more mathematical way to derive the multiplicity 4 + 4 for each modulus, is

to observe that the BPS states of (0, 4) supersymmetric quantum mechanics include all

(p, q) forms taking values in the target space (here the moduli space of divisors),

H = ⊕0≤p,q≤3H
p(M,Ωq ⊗ L). (5.9)

Since the divisor is ample, these vanish for p > 0, while the q = 0, 1, 2, 3 terms have

multiplicities k, 3k, 3k, k (for large D). The even and odd q-forms then give rise to

bosonic and fermionic moduli (respectively), whose quantization reproduces Eq. (5.7)

or Eq. (5.8).

More recently, a related but not obviously identical description of the black hole

Hilbert space has been developed, motivated by the idea that the black hole should be

described by a superconformal matrix quantum mechanics of n D0-branes in the D4

background. [30, 74] In this picture, the basic object is a bound state of n D0-branes

which can be thought of as a “fuzzy D2-brane,” which arises from the matrix D0 theory

by a Myers-type effect [83]. The general form of Eq. (5.7) then arises by summing over

all partitions of the total D0 charge q0.

Note that this second description is in terms of a supersymmetric quantum mechanics

with target space the Calabi-Yau manifold M , very much like our probe theory. Indeed,
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the background RR field is postulated to appear as a non-trivial U(1) magnetic field, of

topological type exactly that of the bundle L.

A strategy to get the D0 matrix quantum mechanics on this background, pursued in

[30], is to consider a D2-brane wrapped on the black hole horizon, an S2. As is familiar

(for example) in M(atrix) theory [84, 85], D0 matrix quantum mechanics contains bound

configurations of N D0’s which represent a wrapped or stretched D2. If we can reverse

this identification, we can derive the matrix quantum mechanics from the D2 theory.

Of course, the D2 theory in this background is precisely the probe theory we discussed

in section 5.3. Its full low-energy hamiltonian was found in [30]. It factorizes into an

AdS2 part and a CY part, with the latter being

HCY = gaā(pa −Aa)(p̄ā −Aā). (5.10)

Here the metric g is built from the Kähler form J and the gauge field has the field

strength proportional to J as in Eq. (5.5). The general idea is then that, by promoting

this quantum mechanics to matrix quantum mechanics, one would obtain a description

of the black hole.

This brings us to our second assumption, that there is a sense in which the black

hole can be regarded as made up of constituents with “the same dynamics” as the

probe. If we grant the second description of the black hole, in terms of D0 matrix

quantum mechanics, then clearly we can identify constituents with the same dynamics

as our probe. As we mentioned, reproducing the black hole partition function Eq. (5.7)

requires summing over configurations each labelled by a partition {ni} of the total D0

charge. Such a configuration is obtained by considering the matrix variables as a direct

sum of blocks, each a matrix of dimension ni. The dynamics of such a block is described

by the U(ni) reduction of the matrix quantum mechanics, with interactions with the

rest of the black hole produced by integrating out off-diagonal degrees of freedom. The

supersymmetry of the combined system will cancel the relative potential between the

blocks, and presumably makes the other induced interactions small.
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Let us consider a sector with n1 = 1, in other words containing single unbound

D0. The dynamics of this D0 is approximately described by the U(1) version of matrix

quantum mechanics, in other words the theory discussed in [30]. The BPS Hilbert space

of this theory is H defined in Eq. (5.9), and we see that this sits naturally in HBH .

Now, we will implement our second assumption, by deriving a natural maximal

entropy state for the probe. By starting with the maximal entropy state Eq. (5.6) of

the black hole in HBH and tracing over all of the other degrees of freedom, we obtain

a density matrix ρ over the Hilbert space H. The result will be the standard quantum

state of maximal entropy for this quantum mechanics, which assigns equal probability

to each state in H, given by the expression

ρ =
1

dimH
∑
α

|hα〉〈hα|, (5.11)

Indeed, one might regard this choice of quantum state as the natural one whatever the

probe is, without calling upon any relation to the black hole. However we spell out this

step as it explains how we could, given a precise D0 quantum mechanics for the black

hole, compute the probe state and observables.

Now, given ρ, we can ask, what is the probability to find the D2 probe at a given

point z ∈M . This will be

ρ(z, z̄) = 〈z|ρ|z〉. (5.12)

In general, the D2 will have “spin” degrees of freedom as well, corresponding to the

degrees (p, q) of cohomology; let us fix these in the p = q = 0 sector.2 By inserting

explicit wave functions ψα(z, z̄), the density matrix can be written in position space as

a kernel,

ρ(z1, z̄1, z2, z̄2) =
1

dimH0

∑
α

ψ∗α(z1, z̄1) ψα(z2, z̄2), (5.13)

with Eq. (5.12) its values on the diagonal z1 = z2 = z.

2We comment on this point in section 5.5.



71

Note that, although the lowest Landau level wavefunctions satisfy the metric inde-

pendent linear differential equation D̄h = 0, their normalizations depend on the metric.

Thus the kernel Eq. (5.13) depends on the specific choice of metric, not just the Kähler

class.

Now, since the probe has maximal entropy, one would expect that this probability

does not favor any particular point in moduli space, in other words

ρ(z, z̄) = constant. (5.14)

But this is not at all obvious from what we have said so far. We might regard it as a

second, independent interpretation of the claim that the black hole has maximal entropy.

5.5 Balanced metric as maximally entropic metric

While from the point of view of an asymptotic observer, the first definition Eq. (5.11) of

maximal entropy seems more natural, if we can only make measurements with the probe,

the second definition seems more natural. Going further, to the extent that (following

the arguments above) the probe can also be thought of as a constituent of the black

hole, we might be able to reformulate black hole thermodynamics in terms of the second

definition. In particular, the postulate that the black hole has maximal entropy, should

imply that its constituents are equidistributed in moduli space. Otherwise, there would

be a simple way for the system to increase its entropy

While not self-evident, it is an attractive hypothesis that the entropy should be

maximal in both senses. As we have seen before, the two definitions of maximal entropy

are not directly in conflict. Indeed, we could compute Eq. (5.12) from the definition

Eq. (5.13), and check whether they agree. But since the actual wave functions and thus

Eq. (5.13) depend on the details of the probe world-volume theory, in particular the

metric, we need to know the probe metric to make this check.

Turning around this logic, we can regard the conjunction of Eq. (5.11) and Eq. (5.14)
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as a non-trivial condition on the probe metric. In fact, this is exactly the condition we

encountered with in the §2.5: it implies that the probe metric is the balanced metric.

As we have demonstrated in Chapter 3, for the magnetic field proportional to the

Kähler form (5.5, 2.20), the LLL density matrix Eq. (5.11) is equal to the Bergman

kernel, at least for large k. Thus the constant probability distribution for the probe

brane has a balanced metric as a solution, as previously for the Eq. (2.31).

Conversely, it is a theorem that (given suitable assumptions, which hold here), the

balanced metric exists and is unique [19]; thus this is the only metric satisfying both

Eq. (5.14) and Eq. (5.5). Thus, granting Eq. (5.5), our physical consistency condition

between the two definitions of “maximal entropy,” precisely picks out the balanced metric

associated to the line bundle L whose first Chern class is the D4 charge.

Now, in the limit of a large charge black hole, in which the local curvatures and field

strengths near the black hole become small, one would expect the probe metric to be

approximately Ricci flat. To take the large charge limit, we scale up the D4 charge by

a factor k, and take A → k A. Mathematically, this corresponds to replacing the line

bundle L by the line bundle Lk.

The claim is now that, in the large k limit, the balanced metric, defined by the max-

imal entropy property Eq. (5.14), should satisfy the supergravity equations of motion.

By the discussion following Eq. (5.4), these equation imply that the metric on M will be

Ricci flat. But a priori, the condition Eq. (5.14) has no evident connection with Ricci

flatness or any other equation of motion. Thus this claim is in fact a nontrivial test of

the conjecture, which it passes as we explain now.

Indeed, from the Tian-Yau-Zelditch asymptotic expansion (3.17) of the diagonal of

density matrix Eq. (5.11) it follows that

P (z, z̄) =
k3

dimH0

(
1 +

1
k
R+

1
k2

(
1
3
∆R+

1
24

(|Raābb̄|2 − 4|Raā|2 + 3R2)
)

+ . . .

)
. (5.15)
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Combining this expansion with Eq. (5.14) we obtain, that for sufficiently large k, the

effective metric will have constant scalar curvature, up to corrections of order 1/k. In

the case at hand with c1(M) = 0, this implies Ricci flatness, and the probe metric

satisfies this test at leading order. Thus the basic consistency of our conjecture with

supergravity is clear.

Let us also comment on the appropriate large k scaling limit in terms of black holes

charges. Looking at Eq. (5.1) one sees that in M-theory settings the above scaling

corresponds just to rescaling of the magnetic charges pA → k pA. In the IIa set up,

Eq. (5.3) and Eq. (5.5) tell us that in addition to rescaling the magnetic charges p→ kp,

one also has to scale q0 → kq0, so that the curvature of line bundle Lk scales as k times

the metric. Such a scaling limit is described in [87] as the natural limit scaling up Kähler

moduli.

Another variation of the conjecture is that, because the probe is a superparticle, we

should also sum over spin states in the density matrix Eq. (5.13), and enforce Eq. (5.14)

on the diagonal of this density matrix. In Chapter 4 we have shown how to define and

compute the leading terms of this kernel using supersymmetric quantum mechanics. The

resulting expansion has the leading nontrivial term, proportional to the Ricci scalar with

a coefficient |N − 1|, where N is the number of supercharges. In the case at hand, the

probe is an N = 2 supersymmetric quantum mechanics. Thus incorporating the spin

states leads to the same basic result, that in the large volume limit the conjecture agrees

with supergravity.

However, we have not been able to identify the subleading terms in Eq. (5.15), nor

those in its supersymmetric analogs, with any known physical corrections. In particular,

one might expect the famous coefficient ζ(3) of the R4 correction to show up in this

expansion, from both the IIA string and M theory points of view. On the other hand, it

is clear from the nature of the expansion Eq. (5.15) that such transcendental coefficients

will not appear.
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It seems possible that the limits involved kill these particular terms, but one still

needs to explain the other corrections. One might speculate that these are related to

the much studied higher genus superpotential terms in RR backgrounds [88, 89], but

we did not find evidence for this either. Or, it could be that the problem is essentially

nonperturbative from the supergravity point of view, and that these terms are seeing

another regime.

One might ask if the expression Eq. (5.5) for the magnetic field could also get stringy

or M-theoretic corrections, which while preserving its cohomology class, nevertheless

modify Eq. (5.15). This is possible, and as shown in §4.3, the expansion still exists, as

well as the balanced metric. In that case, the infinite k scaling limit requires for the

gauge connection to satisfy the hermitian Einstein equation (4.19).

Another possibility is that additional couplings on the probe world-volume are im-

portant. We assumed that the probe can be described purely in terms of a particle in a

background metric and magnetic field, and then derived the balanced metric from the

maximal entropy condition. Of course, there could be higher derivative terms, perhaps

induced by interactions with the other constituents of the black hole. These might

modify the wave functions so as to achieve Eq. (5.14) with a different metric.

Of course, the maximal entropy assumptions might not hold for these black holes.

We nevertheless feel that our argument is making an important point. The assumptions

do seem very natural in the context of this problem. Indeed, if we had a precise definition

of the D0 matrix quantum mechanics suggested in [30, 74], we could in principle use

it to compute the probe metric, and find out where the contradiction arises. Indeed,

understanding this point might be a useful hint to how this (still mysterious) quantum

mechanics works.

Furthermore our argument is very simple, indeed far simpler than the supergravity

or topological string considerations one might compare it with. We believe it will find

applications regardless of the fate of this conjecture.
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