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Summary of the talk

Liouville theory of 2d quantum gravity was originally
introduced as the formal path integral over the space of all
the metrics in a given conformal class. This path integral
can be properly defined using the methods of CFT, and
leads to results, consistent with the matrix model
description of 2d gravity.
A good understanding of the geometry of the space of all
metrics has been developed recently, for the metrics in the
Kähler class (in 2d, Conformal and Kähler classes are
almost equivalent), using so-called Bergman metrics
(Yau-Tian-Donaldson program).
We propose the program of using Bergman
approximations to define the theory of random metrics.
We propose certain new interesting measures on the
space of Kähler metrics, which are closely related to the
Liouville measure.



Plan
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Liouville theory

In two dimensions, we have (Polyakov, 1981) a successful
theory of quantum gravity, i.e. a theory of random metrics. The
Einstein action is trivial (

∫
M R

√
g = 2πχ(M), the Euler number),

but the nontrivial metric dependence appears from the coupling
to gravity the theory of free conformal matter fields X i with
central charge c

S(X i ; gab) =

∫
R
√

gd2z − µ

∫
M

√
gd2z −

∫
M

X i∆gX i√gd2z.

The gaussian integral over X i can be performed∫
e

R
M X i∆gX i√gd2zDgX i =

(
det′∆g

)−c/2
.

Two-dimensional metric can be put into conformal form
gzz̄ = eσg0zz̄(τ), and the space of conformal classes is
parameterized by some moduli space of τ .



Then the dependence of det′∆g on the conformal factor σ can
be determined

δσ log det ∆g = − 1
6π

∫
M

R(g)δσ
√

gd2z = − 1
12π

δσSL(σ)

where R(g) = − 1√
g ∂∂̄ log

√
g is the scalar curvature of metric

g, and the Liouville action is

SL(σ) = SL(g0, eσg0) =

∫
M

(−σ∆0σ + 2R0σ)
√

g0d2z

Therefore, in 2d quantum gravity we would like to make sense
of the path integral∫

exp
[
−
∫

R
√

gd2z − µ

∫
M

eσ√g0d2z − 26− c
24π

SL(g0, σ)

]
Dσ

over all the metrics in a fixed conformal class gab = eσg0ab.



Under the constant area constraint
A =

∫
M g d2z =

∫
M g0d2z eq. of motion of Liouville theory

is the equation for constant scalar curvature (csc) metric
R(g) = const.
The crucial property of the Liouville action SL satisfies the
cocycle identity

SL(g0, g2) = SL(g0, g1) + SL(g1, g2)

There is a natural L2 metric (DeWitt) on the space of
conformal metrics ||δσ||2 =

∫
eσg0 d2z (δσ)2, which

generates the formal path integral measure Dσ.
The gravity-matter theory is background independent
(independent of the background metric g0)

Z matter[g0]

∫
exp

(
−26− c

24π
SL(g0, σ)

)
Dσ



The space of Kähler metrics

Now we would like to change the point of view, and consider what
happens when instead of the conformal class we consider Kähler
class. Let M be n-dimensional compact Kähler manifold. A Kähler
metrics is given by its Kähler form ω =

√
−1gab̄dza ∧ dz̄ b̄. Kähler

form is closed dω, so it defines cohomology class [ω] in H(1,1)(M).
Also, the metric gab̄ must be positive definite Hermitian, therefore any
metric in the class of [ω] can be written as ωφ = ω0 + ∂∂̄φ > 0, for a
representative ’background’ metric ω0. All metrics in a given class
have same volume V =

∫
M ωn

0 =
∫

M ωn
φ. The space of Kähler metrics

in the given class is equivalent to the space of Kähler potentials

K =
{
φ ∈ C∞(M) : ωφ = ω0 + ∂∂̄φ > 0

}
(modulo constant φ’s). Formally, K is an infinite dimensional space. It
is endowed with a natural ’Donaldson-Semmes-Mabuchi’ metric

||δφ||2 =

∫
M

ωn
φ (δφ)2,

in which K is a negatively curved locally symmetric space.



Kähler metrics in 2d

In complex dimension one, we have the equivalence between
conformal and Kähler gauges

eσω0 = ω0(1 + ∆0φ) = ωφ,

where fixed area constraint in conformal gauge is assumed. For
simplicity, here and in the following ω will stand for g. Note that the
Mabuchi metric and DeWitt metric are mutually non-local

||δσ||2 =

∫
eσω0 (δσ)2 ||δφ||2 =

∫
M

ωφ (δφ)2

In fact, while the first one has constant negative curvature, the
second one has constant positive curvature.



Bergman metrics

The infinite-dimensional space of Kähler potentials can be
approximated by a finite dimensional space as follows.
Consider M compact Kähler manifold, with a line bundle L and its k-th
power Lk . For a hermitian metric h on L the metric on Lk is hk , its
Ricci curvature R(h) = −∂∂̄ log hk . If L is positive ( ≡ R(h) is positive
definite) we can take the metric in the cohomology class c1(L) to be
proportional to curvature

ω = −1
k

∂∂̄ log hk

Consider a basis [s1(z), ..., sNk (z)] in the space of global holomorphic
sections H0(M, Lk ) (think holomorphic polynomials of degree k ).
Since sα’s are defined up to multiplication by complex number, the
choice of basis defines a ’Kodaira embedding’ of M into the projective
space of sections z → sα(z) ∈ CPNk−1.



Now, there is a natural Fubini-Study metric on the projective space
CPNk , which we can pull-back to M to define a Bergman metric on M

ω|FS =
1
k

∂∂̄ log

(
Nk∑
α=1

|sα|2
)

The basis of sα is not necessarily normalized. Different choice of
basis leads to different embedding M → CPNk−1, and therefore
different Bergman metric. The space Bk of Bergman metrics of level
k is therefore

Bk = GL(Nk )/U(Nk )

Now we show that this finite dimensional space approximates the
space of Kähler metrics K in a fixed class.



Tian-Yau-Zelditch theorem

The Bergman metric can be rewritten as

ω|FS =
1
k

∂∂̄ log

(
Nk∑
α=0

|sα|2
)

= −∂∂̄ log h +
1
k

∂∂̄ log

(
hk

Nk∑
α=0

|sα|2
)

Inside the logarithm we have a global ’density of states’ function,
called Bergman kernel. It allows for asymptotic 1/k -expansion

ρk [ωφ] = hk
NkX

α=0

|sα|2 = kn+
kn−1

2
R+kn−2(

1
3

∆R+
1

24
|Riem|2−1

6
|Ric|2+1

8
R2)+...

Therefore the difference between the metric ω and the Bergman
metric is

ω|FS − ω ∼ O(1/k2)

Therefore we can approximate any metric ω by a Begman metric in
the same Kähler class (Tian-Yau-Zelditch theorem): K = limk→∞ Bk .



Hilb and FS map

There are explicit maps between the infinite-dimensional space K of
Kähler potentials, and the symmetric space Bk = GL(Nk )/U(Nk ).
Let ω0 = −∂∂̄ log h0 represent a Kähler class. Consider an
orthonormal basis of sections sα:

∫
s̄αsβhk

0ω0 = δαβ . Then for any
other metric ωφ in the class [ω0] define the Hilb map as

Hilbαβ(φ) =
1
V

∫
M

s̄αsβhk
0e−kφ ωφ.

Hilbαβ is clearly a positive hermitian matrix, i.e it belongs to
Bk = GL(Nk )/U(Nk ). The map back from GL(Nk )/U(Nk ) to K is
called FS map. For a given positive hermitian matrix H, we can built a
metric

ωφ = FS(H) =
1
k

∂∂̄ log
∑
α,β

s̄αHαβsβ

The composition FS ◦ Hilb(φ) = ωφ +O(1/k) for large k .



Random Bergman metrics

We would like to define probability measures on K by taking k →∞
limit of probability measures µk (H) on finite-dimensional Bergman
spaces Bk . This will provide a regularization of the formal path
integral over the space of metrics, in the sense, that∫

K
...µ(ωφ) := lim

k→∞

∫
Bk

...µk (H)

E.g., using the Hilb map, the invariant metric on GL(Nk )/U(Nk )
converges to Mabuchi metric on the space K of Kähler potentials

Tr(H−1δH)2 = k3
∫

M
(δφ)2ωφ +O(1/k),

so are the corresponding volume forms.



Random Bergman metrics, cont’d

Two possibilities:

one can start with some ’empirical’ measure on H and derive the
corresponding continuous measure at k →∞, if any good limit
exists.

one can start with a formal continuous measure of the type

µ(ωφ) = e−S(ωφ)Dφ

on the space of potentials K, and pull it back to Bk using Hilb
map, or push forward to Bk , using FS map.

What is the regularized measure, corresponding to 2d gravity? Are
there any other interesting action functionals on the metrics?



Action functionals in the Kähler gauge

What are the natural functionals on Kähler metrics?
Recall, that in conformal class the simplest functional was the area:
δA =

∫
δσ
√

gd2z. Analogously, for the Kähler metrics the simplest
functional is the Aubin-Yau energy

δFAY (ω0, φ) =

∫
M

δφ ωφ, FAY (ω0, φ) =

∫
M

1
2

φ∂∂̄φ + φω0

The second nontrivial functional in conformal class is the Liouville
energy, whose variation gave scalar curvature
δSL(ω0, σ) =

∫
M δσR(g)

√
gd2z. The analog in Kähler class is the

Mabuchi energy has csc metrics as critical points

δSM(φ) =

∫
M

(R̄ − R(ωφ))δφ ωφ,

R̄ = 1
A

∫
R
√

gd2z is the average scalar curvature.



Mabuchi energy

The variational formula for Mabuchi energy can be integrated to give
explicitly

SM(ω0, ωφ) =

∫
M

[
R̄
2

φ∂∂̄φ + φ(R̄ω0 − Ric(ω0)) + ωφ log
ωφ
ω0

]
(T. Mabuchi’87, explicit form is due to G. Tian’98). The cocycle
identity

SM(ω0, ωφ) = SM(ω0, ωψ) + SM(ωψ, ωφ)

is satisfied both by Mabuchi and Aubin-Yau functionals.
The Mabuchi action on the space of metrics in the Kähler class plays
a similar role to that of the Liouville action in the conformal class.
Indeed
- both actions are 1-cocycles,
- both actions are positive definite convex functionals on the
corresponding spaces of metrics,
- have constant scalar curvature metrics as critical points,
- another analogy comes from the relation to zeta-function on
manifold.



The zeta-function on M is defined as

ζ(s) =
∑
λk 6=0

λ−s
k =

1
Γ(s)

∫ ∞

0
ts−1dt (Tr et∆g − 1)

where λk ’s are eigenvalues of the laplacian ∆guk + λk uk = 0. Then
ζ ′(0) = log det ∆g and its variation gives the Liouville action.
A nice variation formula exists (C. Morpurgo’96) as well for the
Green’s function Tr∆−1

g = ζ(1), defined by subtracting divergence at
s = 1

ζ̃(s) = ζ(s)− 1
s − 1

A
4πΓ(s)

Then in the Kähler class we recover Mabuchi energy

δζ̃(1) =

∫
M

[
R̄
2

φ∂∂̄φ + ωφ log
ωφ
ω0

]
Summing up, all the above suggests that the following path integral
should be introduced ∫

e−γSM (ω0,φ)Dφ

Although there is yet no derivation of the Mabuchi path integral from
the first principles, there is a deeper relation with Liouville gravity.



Relation with Liouville theory

Classically, kinetic terms and interaction terms of Mabuchi and
Liouville actions are Legendre dual. The following relations hold

log
∫

M
eσω0 = sup

φ

(∫
M

σωφ −
∫

M
ωφ log

ωφ
ω0

)
∫

M
ωφ log

ωφ
ω0

= sup
σ

(∫
M

σωφ − log(

∫
M

eσω0)

)
and ∫

M

1
2

φ∂∂̄φ + φω0 = sup
σ

(∫
M

σωφ −
∫

M
σ∂∂̄σ

)
Quantum mechanically, we should consider generating functional

e−SM (φ) =

∫
Dσe−SL(σ)+

R
M σωφ



Relation with Liouville theory, cont’d

The generating functional is well-defined in the CFT formulation of
Liouville theory due to David-Distler-Kawai

e−Wβ(ω0,ωφ) =

∫
e−

1
4πb2 Sq

L (ω0,σ)−µ
R

M eσω0+
β

4π

R
M σωφ Dω0σ · Z matter[ω0]

Here deformed Liouville action Sq
L (ω0, σ) =

∫
M(−σ∆0σ + 2qR0σ)ω0,

and q = b2 + 1, is required for the background independence of the
theory. Now the measure is usual shift-invariant field theory measure
(not DeWitt). At βc = qR̄

b2 we get exact relation

Wβc (ω0, ωφ) = Wβc (ω0, ω0) +
q2R̄
4πb2

∫
M

(
R̄
2

φ∂∂̄φ + φ(R̄ω0 − R0ω0)

)
.

Here on the rhs stands the ’free field’ part of the Mabuchi energy.



Relation with Liouville theory, cont’d

Interaction term of the Mabuchi energy appears at large β

Wβ(ω0, ωφ) = −qβ

4π

∫
M

ωφ log
ωφ
ω0

, β →∞

In fact, for any β we get the following exact Ward identity

Wβ(ω0, ωφ) = Wβ(ωφ, ωφ)−
qβ

4π

∫
M

ωφ log
ωφ
ω0

,

As a consequence of these relations we can introduce the following
model, which interpolates between two theories∫

e−
1

4πb2 Sq
L (ω0,σ)+ β

4π

R
M σω0−µ

R
M eσ−b2βφω0− βb2

4π Sβ
M (ω0,φ)Dω0σDφ ·Z matter[ω0]

The main feature is that this path integral is independent of a choice
of ω0 (background independence).



Mabuchi theory as a matrix integral

To build the approximation of the Mabuchi path integral, using BK
consider again the Hilb map: φ → Hilb(φ) ∈ Bk The following
asymptotic formula holds (Donaldson’02)

1
k

log det Hilb(φ) = −Nk FAY (ω0, φ)+
1
2

SM(ω0, φ)+
1

6k
SL(ω0, φ)+O(1/k2)

Here on the rhs FAY (φ) is Aubin-Yau functional, SM is Mabuchi action
and SL is the Liouville action,. The proof is by taking a variation wrt φ,

δ log det Hilb(φ) =

∫
(−kρk + ∆ρk )δφ ωn

φ

and using the asymptotic expansion of the Bergman kernel ρk for
large k . Therefore, up to 1/k corrections

µ(ωφ) = e−γSMDφ = [det Hilb(φ)]−2γ/k e−γkNk FAY (ω0,φ)Dφ



µ(ωφ) = e−γSMDφ = [det Hilb(φ)]−2γ/k e−γkNk FAY (ω0,φ)Dφ

Therefore we propose the following definition of the path
integral measure

µ(ωφ) = e−γSMDφ := lim
k→∞

[det H]−2γ/k e−γkNk FAY (FS(H))[dH]Haar

Here, instead of ’pull-back’ of the Aubin-Yau FAY (φ) we take its
’push-forward’ under the FS map: H → φ = FS(H) ∈ K, since
the composition of these two maps FS ◦ Hilb = Id is identity
map for large k . The Haar measure GL(Nk )/U(Nk )
corresponds to the invariant metric, which converges to the
Mabuchi metric in the continuous limit. This is a complicated
matrix integral, since the U(Nk ) does not decouple (not an
eigenvalue integral). However, we need only large N limit.



Eigenvalue model

On CP1 we can choose a basis of section sα = zα, number of section
is Nk = k + 1. Then det Hilb can be written as an eigenvalue matrix
integral

det Hilb(φ) =

Nk∏
α=0

[∫
CP1

d2zα
(1 + |zα|2)2

]
|∆(z)|2 e

P
α W (zα),

with the potential W (z) = −kφ + log ωφ

ω0
. Consider β-ensemble

Zβ =

Nk∏
α=0

[∫
CP1

d2zα
(1 + |zα|2)2

]
|∆(z)|2β e

P
α W (zα)

There is large Nk expansion of this integral (Wiegmann, Zabrodin’06)

log Zβ = −N2
k FAY (ω0, φ) + Nk SβM(ω0, φ) + ...



Eigenvalue model, cont’d

Therefore at large Nk , we have∫
e−γSβ

M (ω,φ)Dφ :=

Nk∏
α=0

[∫
CP1

d2zα
(1 + |zα|2)2

]
|∆(z)|2β ·

·
∫

e
P

α W (zα)e−γN2
k FAY (ω0,φ)Dφ,

with the potential W (z) = −kφ + log ωφ

ω0
. At large k the expression

inside the multiple integral is a correlation function in the theory with
the (gaussian) Aubin-Yau action, but nontrivial integration measure
Dφ.


