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Motivation

Random complex geometry, originating from Polyakov’s 1981
paper on 2d gravity, gave rise to many fruitful developments,
most recent examples being SLE, AGT conjecture etc. It is
reasonable to expect more surprises along the lines where
complex geometry meets random processes. At the same time,
due to the work of Yau, Tian, Donaldson and others, there has
been a lot of progress in understanding the space of Kähler
metrics. The main idea is to look at the random metrics from
the point of view of Kähler geometry.
For most of the talk we focus on metrics on two dimensional
compact surfaces.
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Brief reminder: 2d gravity

Start with the path integral over all embeddings X i(z, z̄), i = 1, ...,d
and all metrics gµν of closed compact surfaces∫

DgµνDgX i exp
(∫

M

√
det g d2z X i∆gX i

)
,

with standard L2 metric on the space of embeddings
||δX i ||2 =

∫ √
det g d2z (δX i)2. The X i integral is gaussian and can

be performed to give a power of det ∆g . Two-dimensional metric can
be put in Weyl form (conformal gauge) with help of diffeos
gzz̄ = eσg0zz̄ . Then the dependence of det ∆g on the conformal factor
σ can be determined

δσ log det ∆g = − 1
6π

∫
M

g d2z R(g)δσ = − 1
12π

δσSL(σ)

where R(g) = −g−1∂∂̄ log g is the scalar curvature of metric g, and
the Liouville action is

SL(σ) = SL(g0,eσg0) =

∫
M

g0 d2z (−σ∆0σ + 2R0σ)
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SL(σ) = SL(g0,eσg0) =

∫
g0 d2z (−σ∆0σ + 2R0σ)

As a functional of two metrics SL satisfies the cocycle identity
(background independence)

SL(g0,g2) = SL(g0,g1) + SL(g1,g2)

Under the constant area constraint A =
∫

M g d2z =
∫

M g0d2z eq. of
motion of Liouville theory is the equation for constant scalar curvature
(csc) R(g) = const. Integral over metrics splits into integral over
diffeos, which decouples, and the integral over conformal factor∫

Dσσ exp(−SL(σ))

Note, that the L2 metric on the space of 2d metrics leads to
non-free-field metric on the space of confomal factors:
||δσ||2 =

∫
eσg0 d2z (δσ)2
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Kähler metrics: brief intro

Now we would like to see what happens in Kähler gauge. Let M be
n-dimensional compact Kähler manifold. A Kähler metrics is given by
its Kähler form ω =

√
−1gab̄dza ∧ dz̄ b̄. Kähler form is closed dω, so it

defines cohomology class [ω] in H(1,1)(M). Also, the metric gab̄ must
be positive definite Hermitian, therefore any metric in the class of [ω]
can be written as ωφ = ω0 + ∂∂̄φ > 0, for a representative
’background’ metric ω0. All metrics in a given class have same
volume V =

∫
M ω

n
0 =

∫
M ω

n
φ. The space of Kähler metrics in the given

class is equivalent to the space of Kähler potentials

K =
{
φ ∈ C∞(M) : ωφ = ω0 + ∂∂̄φ > 0

}
(modulo constant φ’s). Formally, K is an infinite dimensional space. It
is endowed with a natural ’Donaldson-Semmes-Mabuchi’ metric

||δφ||2 =

∫
M
ωn
φ (δφ)2,

in which K is a negatively curved locally symmetric space.
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In complex dimension one, we have the equivalence between
conformal and Kähler gauges

eσω0 = ω0(1 + ∆0φ) = ωφ,

where fixed area constraint in conformal gauge is assumed. For
simplicity, here and in the following ω will stand for g. Note that L2

metric and Mabuchi metric are mutually non-local

||δσ||2 =

∫
eσω0 (δσ)2 ||δφ||2 =

∫
M
ωφ (δφ)2
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Mabuchi K-energy

Mabuchi K-energy is the most natural action functional associated
with Kähler metrics. It has csc metrics as critical points

δSM(φ) = −
∫

M
(R(ωφ)− R̄)δφωn

φ,

(R̄ is average scalar curvature= Euler characteristic). Cocycle identity

SM(ω0, ωφ) = SM(ω0, ωψ) + SM(ωψ, ωφ)

is imposed and the variation formula can be integrated to give (n = 1)

SM(ω0, ωφ) =

∫
M

[
R̄
2
φ∂∂̄φ+ ωφ log

ωφ
ω0

+ φ(R̄ω0 − Ric(ω0))

]
Note the wrong sign of kinetic term. In dimension n, the expression is

SM(ω0, ωφ) =

Z
M

"
R̄ φωn

φ

n(n + 1)
+ ωn

φ log
ωn

φ

ωn
0

+ φ

„
R̄ω0

n(n + 1)
− Ric(ω0)

« n−1X
i=0

ωi
φωn−1−i

0

#
(T. Mabuchi’87, explicit form is due to G. Tian’98)
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We claim that Mabuchi energy plays a role in 2d gravity. Let’s return
to the anomaly of the conformal laplacian. The zeta-function on M is
defined as

ζ(s) =
∑
λk 6=0

λ−s
k =

1
Γ(s)

∫ ∞

0
ts−1dt (Tr et∆g − 1)

where λk ’s are eigenvalues of conformal laplacian ∆guk + λk uk = 0.
Then log det ∆g corresponds to ζ ′(0). However, a nice variation
formula exists as well for the Green’s function Tr∆−1

g = ζ(1). A caveat
is that divergence at s = 1 is subtracted

ζ̃(s) = ζ(s)− 1
s − 1

A
4πΓ(s)

the variation for Sd has been computed (C. Morpurgo’96)

δζ̃(1) = δ

∫
Sn

g0(
g
g0
− 1)∆−1

g (
g
g0
− 1) +

2
n!

g log
g
g0
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δζ̃(1) = δ

∫
Sn

g0(
g
g0
− 1)∆−1

g (
g
g0
− 1) +

2
n!

g log
g
g0

In the Kähler gauge g/g0 = ωφ/ω0 = (1 + ∆0φ), we recover
Mabuchi energy

δζ̃(1) =

∫
M

[
R̄
2
φ∂∂̄φ+ ωφ log

ωφ

ω0

]
The Liouville energy is positive definite SL ≥ 0
(Onofri-Moser-Trudinger inequality), and invariant under
conformal transformations z → f (z), σ → σ − log |f ′|2.
Mabuchi energy is also positive definite SM ≥ 0 and also
conformally invariant z → f (z), ωφ/ω0 → ωφ/ω0 · |f ′|−2.
Consider the path integral:∫

Dφe−SM(φ)

Question: does it make sense, and what is the relation to
Liouville gravity?
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Legendre transform

Kinetic terms and interaction terms of Mabuchi and Liouville actions
are Legendre dual. The following relations hold

log
∫

M
eσω0 = sup

φ

(∫
M
σωφ −

∫
M
ωφ log

ωφ
ω0

)
∫

M
ωφ log

ωφ
ω0

= sup
σ

(∫
M
σωφ − log(

∫
M

eσω0)

)
and ∫

M

1
2
φ∂∂̄φ+ φω0 = sup

σ

(∫
M
σωφ −

∫
M
σ∂∂̄σ

)
Conjecture: quantum theories are dual in the sense that

e−SM (φ) =

∫
Dσe−SL(σ)+

R
M σωφ

(compare with 〈e−
R

M (µT (z)+µ̄T̄ (z̄))〉, studied by Takhtajan and
collaborators)
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Matrix model

Consider the following matrix model (β-ensemble)

ZN =

∫
|∆(zi)|2β

N∏
i=1

e
1
~ W (zi ) d2zi

At β = 1 this arises from the matrix integral for normal random
matrices or for GL(N) random matrices with quasiharmonic potential.
Following Zabrodin-Wiegmann (2006), we want to study its large-N
limit log ZN in terms of the density

ρ(z) = ~
∑

i

δ(z − zi) = π~ ∂∂̄ log |z − zi |2

The idea is that at large N, ρ approximates a smooth function, so one
could trade integration over infinite number of discrete variables zi to
a path integral over one function ρ(z).

ZN ∼
∫
Dρe−

1
~2 S(ρ)
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ZN ∼
∫
Dρe−

1
~2 S(ρ,W )

(Jevicki-Sakita collective field theory). One can look at this as an
integral over metrics ρd2z on CP1. The action here is

−S(ρ,W ) = β

∫ ∫
ρ(z) log |z − w |ρ(w)d2zd2w−

−
∫

W (z)ρ(z)d2z − 2− β

2

∫
ρ log ρd2z

First term here is the logarithm of Vandermonde, which becomes
regular kinetic term for the field φ, defined as ρ = ∆φ. Second term
comes from the potential, and third term is ’entropy term’∏

i

d2zi = J[ρ]Dρ = e−
R
ρ log ρd2zDρ

It comes from the integration measure and from Vandermonde at
coincident points. This is ’modified’ Mabuchi action.
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Bergman metrics

The infinite-dimensional space of Kähler potentials can be
approximated by a finite dimensional space as follows.
Consider M compact Kähler manifold, with a line bundle L and its k-th
power Lk . For a hermitian metric h on L the metric on Lk is hk , its
Ricci curvature R(h) = −∂∂̄ log hk . If L is positive ( ≡ R(h) is positive
definite) we can take the metric in the cohomology class c1(L) to be
proportional to curvature

ω = −1
k
∂∂̄ log hk

Consider a basis [s0(z), ..., sNk (z)] in the space of global holomorphic
sections H0(M,Lk ) (think holomorphic polynomials of degree k ).
Since sα’s are defined up to multiplication by complex number, the
choice of basis defines a ’Kodaira embedding’ of M into big projective
space of sections z → sα(z) ∈ CPNk .
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Now, there is a natural Fubini-Study metric on the projective space
CPNk , which we can pull-back to M to define a Bergman metric on M

ω|FS =
1
k
∂∂̄ log

(
Nk∑
α=0

|sα|2
)

The basis of sα is not necessarily normalized. Different choice of
basis leads to different embedding M → CPNk , and therefore different
Bergman metric. The space Kk of Bergman metrics of level k is
therefore

Kk = GL(Nk + 1)/U(Nk + 1)

Now we show that this finite dimensional space approximates the
space of Kähler metrics K in a fixed class.
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TYZ theorem

The Bergman metric can be rewritten as

ω|FS =
1
k
∂∂̄ log

(
Nk∑
α=0

|sα|2
)

= −∂∂̄ log h +
1
k
∂∂̄ log

(
hk

Nk∑
α=0

|sα|2
)

Inside the logarithm we have a global ’density of states’ function,
called Bergman kernel. It allows for asymptotic 1/k -expansion

ρk [ωφ] = hk
NkX

α=0

|sα|2 = kn+
kn−1

2
R+kn−2(

1
3

∆R+
1

24
|Riem|2−1

6
|Ric|2+1

8
R2)+...

Therefore the difference between the metric ω and the Bergman
metric is

ω|FS − ω ∼ O(1/k2)

Therefore we can approximate any metric ω by a Begman metric in
the same Kähler class (Tian-Yau-Zelditch theorem): K = limk→∞Kk .
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Bergman kernel from Path integral

Bergman kernel is the density matrix of the magnetic Schrödinger
operator, projected on lowest Landau level. It can be represented as
long time limit of heat kernel of

ρk (z) = lim
T→∞

〈z|e−TH |z〉 = e−TE0
∑
LLL

ψnψ
∗
n

Path integral representation of the Bergman kernel (M. Douglas,
SK’08)

ρk (z) =

∫ z(T )=z

z(0)=z

∏
0<t<T

d2nz(t) det g(z(t)) · e− 1
~ S

with the action for particle in magnetic field

S =

∫ T

0
dt
(

gaāża ˙̄z ā + Aaża
)
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Hilb map

Let ω0 = −∂∂̄ log h0 represent a Kähler class. Any other metric ωφ in
[ω0] can be written as ωφ = −∂∂̄ log h0e−φ = ω0 + ∂∂̄φ. The Hilb map
gives a positive hermitian matrix in Kk = GL(Nk + 1)/U(Nk + 1)

Hilbαβ(φ) =
1
V

∫
M

s̄αsβhk
0e−kφ ωn

φ.

Interestingly, det Hilb is a matrix model-like integral. Indeed,

det Hilb(φ) =

∫
M
...

∫
M
·|det sα(zβ)|2 ·

Nk∏
α=1

e−kφ(zα)hk
0ω

n(zα)

For CP1, |det sα(zβ)|2 is the square of Vandermonde, for the basis
sα = zα−1.
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One can proof by taking a variation wrt φ,

δ log det Hilb(φ) =

∫
(−kρk + ∆ρk )δφωn

φ

and using TYZ expansion that for 2d surfaces the following
formula holds (Donaldson’02)

1
k

log det Hilb(φ) = NkF (φ) +
1
2

SM(φ) +
1

6k
SL(φ) +O(1/k2)

here SL is Liouville action, SM is Mabuchi action and
F (φ) =

∫
M(1

2 |∂φ|
2 − φω) is free field (Aubin-Yau) action.
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Random Bergman metrics

The idea is to define probability measures on K by taking k →∞ limit
of probability measures on finite-dimensional Bergman spaces Kk .
Let’s pick a basis of sections sα once and for all. Then Bergman
metric can be explicitly parametrized by a GL(Nk + 1) matrix A as

ω =
1
k
∂∂̄ log s̄A†As

then H = A†A is positive hermitian matrix. We want to study finite
dimensional matrix model of the form∫

Kk

...µk (H) →
∫
K
...µ(ωφ), as k →∞

with the goal e.g. to find µk , which approximates Polyakov’s 2d gravity
measure. Another question is whether there are any other interesting
measures possible.
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Eigenvalue models

It is interesting e.g. to look at correlation functions of the form
〈ω(z1)...ω(zn)〉, 〈R(z)〉 etc.
A natural set of measures on GL(N) matrix A can be represented as
A = VΛU, where U,V are unitary and Λ is diagonal
H = A†A = U†Λ2U. Then one can consider measures of the form

|∆(λ)|2e−
P

α V (λα)
∏
α

dλα

For eigenvalue measures the distribution on the space of metric is
peaked on the background metric

〈ω(z)〉 =
1
k
∂∂̄〈log(s̄Hs)〉 = ω0

where ω0 = 1
k ∂∂̄ log(s̄ · s).
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Wishart distibution

µ(A) = e−TrA†A(det A†A)a dA†dA
allows for explicit solution for the 2-point function

〈log(s̄Hs)|z log(s̄Hs)|w 〉 =

∫
log(s̄Hs)|z log(s̄Hs)|w e−TrA†A(det A†A)a dA†dA

This integral involves nontrivial integration over unitary group, but is
not harder than Harish-Chandra-Itzykson-Zuber integral. The answer

〈log(s̄Hs)|z log(s̄Hs)|w 〉 = −
∫ 1

0

dx
x

(1− x)Nk +a−1 ln(1− xρ(z,w)).

Here
ρ(z,w) =

(s̄z , sw )(s̄w , sz)

|sz |2 · |sw |2
= e−kD(z,w),

where D(z,w) is the Calabi’s diastasic function defined in the
reference metric ω0. If d(z,w) is a geodesic distance between the
points z and w in the reference metric, then

D(z,w) = d2(z,w) +O(d4(z,w)).
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Short-time behavior of the two-point function of the metrics

〈ω(z)ω(w)〉 =
1
k2 ∂∂̄|z∂∂̄|w 〈log(s̄Hs)|z log(s̄Hs)|w 〉 ∼

1
|z − w |4−2β

where β = Nk + a > 0, unless the integral diverges. In Liouville theory

〈eγσ(z)eγσ(w)〉 ∼ 1
|z − w |γ2 , γ ≤ 2

So the singularity is of the same order. Further analysis shows that
this property holds for more general eigenvalue potentials. However,
these measures are not background independent (except for
log det H), and conformal invariance is broken. The challenge
remains to built a proper discretization of Liouville energy.
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