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Quantum Hall effect

Observed in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields. Hall conductance is quantized
σH = I/VH = ν, where ν is integer for integer QHE, or a fraction for
fractional QHE. Involves many (N ∼ 106) electrons on lowest Landau
level, described by a collective (Laughlin) state.



Laughlin state
On the plateaus QHE is described by collective Laughlin state

Ψ(z1, . . . , zN ) =

N∏
i<j

(zi − zj)βe−
B
4

∑
i |zi|

2

, β ∈ Z+

[Laughlin’83]

β = 1: Integer QHE,
non-interacting electrons.
β = 3, 5, 7, ..: Fractional QHE,
interacting system.
Planar geometry, strong
constant magnetic field B.
Hall conductance is quantized
σH = ν = 1/β.

Other candidate states were proposed for other plateaus (e.g. Pfaffian
state Pf 1

zi−zj ∆(z)2, Jain, Read-Rezayi, ...).



Laughlin state
We would like to consider Laughlin state on a compact Riemann surface
Σ of genus g

Aim: Study Laughlin state(s) on a genus-g Riemann surface Σ with
arbitrary geometry:
- inhomogeneous magnetic field B, with flux NΦ = 1

2π

∫
Σ
B
√
gd2x

- arbitrary solenoid (Aharonov-Bohm) phases around the cycles (flat
connections moduli)
- metric g, and curvature R,
- complex structure moduli J ,
- singularities of different types at points z1, ..., zn.



Main problem: partition function
The Laughlin states have the general form

Ψr =
1√
Z
Fr(z1, .., zN ), r = 1, .., rg,

where F is a holomorphic function. (rg = βg
[Wen-Niu’90])

The partition function is the normalization constant Z = 〈Fr, Fr〉2L2 . It is
a functional of various geometric parameters

Z = Z[g, J,B, ϕ, ...]

For example, the partition function for planar Laughlin state is

Z =

∫
CN

N∏
i<j

|zi − zj |2βe−
B
2

∑
i |zi|

2
N∏
j=1

d2zj

Central object in Log-gases (Coulomb gas, random matrix β-ensemble).

Main goal: Determine logZ[g, J,B, ϕ, ...] in the limit of large number N
of particles.



Why?

Suppose all you ever want to study is the QHE in samples of planar
geometry. Still, coupling the system to the metric and studying the
dependence of the partition function can help you do that. The
prototypical example is conformal field theory, where partition function in
a flat metric g0 and in perturbed metric g = g0e

2σ(z,z̄) are related as

log
ZCFT (g)

ZCFT (g0)
=

c

12π
SL(g0, σ),

where c ∈ R is the central charge of the CFT, and the Liouville action is

SL(g0, σ) =

∫
M

(∂σ∂̄σ +R0σ)d2z,

and R0 = − 1√
g0
∂∂̄ log

√
g0 is the scalar curvature of g0.

This way we learn the value of an important coefficient: central charge.



Why: geometric adiabatic transport

In QHE on Riemann surfaces important coefficients are encoded by
geometric adiabatic transport [Thouless et.al.; Avron, Seiler, Simon, Zograf, ...], via
Berry connection and curvature. Riemann surface (Σ, g, J) provides a
natural set of parameters. For example, on a torus we have a complex
structure τ ∈ H and AB-phases ϕ1, ϕ2 ∈ [0, 1]2, such that the integrals
of the magnetic field gauge connection around the a, b-cycles are∫
a
A = ϕ1;

∫
b
A = ϕ2. The parameter space has complex coordinates

τ, ϕ = ϕ1 + τϕ2.



Why: geometric adiabatic transport

Degenerate Laughlin states Ψr on Riemann surfaces form a vector bundle
over the parameter space Y with complex coordinates y = (τ, ϕ).
Moreover, the states depend on parameter space in holomorphic fashion
Ψr = 1√

Z(y,ȳ)
Fr(y). For example, Laughlin states on the torus

Fr(z1, .., zNΦ
) = θ r

β ,0
(βzc + ϕ, βτ)

∏
i<j

(
θ1(zi − zj , τ)

η(τ)

)β
e−πiNΦ

(z−z̄)2
τ−τ̄

r = 1, .., β, zc =
∑
zj [Haldane-Rezayi’85]

Then adiabatic (Berry) connection and curvature are

Arr′ = 〈Ψr, dyΨr′〉L2 = dy(〈Ψr,Ψr′〉L2)− 〈dyΨr,Ψr′〉L2 = δrr′
1

2
dy logZ,

Rrr′ = dArr′ = δrr′dydȳ logZ(y, ȳ).



Geometric adiabatic transport

• Hall conductance σH is a first Chern number of the vector bundle of
Laughlin states over the space of AB-phases (flat connections
moduli) [Thouless et.al.’82’85, Tao-Wu’85, Avron-Seiler’85, Avron-Seiler-Zograf’94]

• Anomalous Hall viscosity ηH , is a first Chern number of the vector
bundle of Laughlin states on the moduli space of complex structures
of a torus M1. IQHE: [Avron-Seiler-Zograf’95], FQHE: [Tokatly-Vignale’07,

Read’09]

• Transport on higher genus. IQHE: [Levay’97], FQHE [SK-Wiegmann’15].



Another motivation

• Curvature in the experimental sample arises in graphene

M.A.H. Vozmediano et al., Physics Reports 496 (2010)

• Recently a QHE-like system was experimentaly realised on a spatial
cone Schine et al., Arxiv:1511.07381

”At the cone tip, we observe that spatial curvature increases the
local density of states, and we measure fractional state number
excess consistent with the Wen-Zee effective theory, providing the
first experimental test of this theory of electrons in both a magnetic
field and curved space”.



Results: Partition function for IQHE

logZ =
1

2π

∫
Σ

[
AzAz̄ +

1− 2s

2
(Azωz̄ + ωzAz̄) +

(
(1− 2s)2

4
− 1

12

)
ωzωz̄

]
d2z

+ F [B,R].

F [B,R] = − 1

2π

∫
Σ

[
1

2
B logB +

2− 3s

12
R logB +

1

24
(logB)∆g(logB)

]
√
gd2z

+O(1/B).

[SK’13; SK-Ma-Marinescu-Wiegmann’15]

This holds for surfaces of any genus. Terminology: Az, Az̄ are components of
the gauge-connection 1-form for the magnetic field

B = gzz̄(∂zAz̄ − ∂z̄Az)

Also ωz, ωz̄ are components of spin-connection ωz = i∂z log gzz̄, and scalar
curvature is

R = gzz̄(∂zωz̄ − ∂z̄ωz)
and s ∈ Z/2 is gravitational spin.



Results: relation to Chern-Simons theory

Note that generating functional logZ and 3d Chern-Simons (Wen-Zee) actions
look similar:

logZ =
1

2π

∫
Σ

[
AzAz̄ +

1− 2s

2
(Azωz̄ + ωzAz̄) +

(
(1− 2s)2

4
− 1

12

)
ωzωz̄

]
d2z

SCS =
1

4π

∫
Σ×R

[
AdA+ (1− 2s)Adω +

(
(1− 2s)2

4
− 1

12

)
ωdω

]
[Wen-Zee’92, Abanov-Gromov’15, Gromov-Cho-You-Abanov-Fradkin’15, Son’13, Bradlyn-Read’14]

These two actions are obviously very similar, but one is 2d and another one is
in 3d. What is the precise relation?



Results: relation to Chern-Simons theory

Consider geometric adiabatic
transport of IQHE wave
function along a contour C
in the moduli space Y
Define adiabatic connection:

Ay = 〈Ψ, dyΨ〉L2 ,

and adiabatic phase:

ei
∫
C Ay .

Theorem ([SK-Ma-Marinescu-Wiegmann’15]):∫
C
AY =

1

4π

∫
ΣY ×C

[
AdA+ (1− 2s)Adω +

(
(1− 2s)2

4
− 1

12

)
ωdω

]
(proof relies on Bismut-Gillet-Soulé formula for Quillen anomaly)



Results: Partition function for Laughlin
states

logZ =
1

2πβ

∫
Σ

[
AzAz̄ +

β − 2s

2
(Azωz̄ + ωzAz̄) +

(
(β − 2s)2

4
− β

12

)
ωzωz̄

]
d2z

+ F [B,R].

F [B,R] = − 1

2π

∫
Σ

[
2− β

2β
B logB

]
√
gd2z + ...

[Can-Laskin-Wiegmann’14;Ferrari-SK’14, SK-Wiegmann’15]



Results: Adiabatic curvature

Let’s focus on anomalous part

logZH =
1

2π

∫
Σ

[
σHAzAz̄ + 2ηH(Azωz̄ + ωzAz̄)−

cH
12
ωzωz̄

]
d2z,

which consists of three terms with three coefficients

σH =
1

β
, ηH =

β − 2s

4β
, cH = 1− 3

(β − 2s)2

β

The adiabatic curvature for AB-phases on torus δϕAz = dϕ, δϕAz̄ = dϕ̄

Rrr′ = dϕdϕ̄ logZHδrr′ = σHdϕ ∧ dϕ̄δrr′

First Chern number c1 = Tr
∫
Rrr′ = βσH = 1.

Adiabatic curvature for the moduli τ

Rrr′ = δrr′dτdτ̄ logZH = ηHδrr′
dτ ∧ dτ̄
(τ − τ̄)2

where ηH is anomalous (Hall) viscosity.



New transport coefficient on higher genus

Consider complex structure deformations gzz̄|dz|2 → gzz̄|dz + µdz̄|2,

where Beltrami differential is µ = g−1
zz̄

∑3g−3
κ=1 ηκδyκ and ηκ is a basis of

holomorphic quadratic differentials.
Adiabatic curvature, associated with these deformations is

R = idydȳ logZ =
(
ηHNΦ −

cH
24
χ(Σ)

)
ΩWP ,

where ΩWP = i
∫
M
dyµ ∧ dȳµ̄ gzz̄d2z is the Weil-Petersson form on the

moduli space. Here [SK-Wiegmann’15] (see also [Bradlyn-Read’15] )

cH = 1− 3
(β − 2s)2

β

is a new transport coefficient, transpiring on higher genus surfaces. On
singular surfaces (like e.g. cone) it becomes most important!



Lowest Landau level (LLL) and IQHE state

Consider compact connected Riemann surface (Σ, g, J) and positive
holomorphic line bundle LNΦ . The latter corresponds to the magnetic
field. The curvature form of the hermitian metric hNΦ(z, z̄) is given by
F = −i∂∂̄ log hNΦ . This is the magnetic field strength of total flux NΦ

though the surface 1
2π

∫
Σ
F = NΦ. Magnetic field: B = gzz̄Fzz̄. On the

plane and for constant magnetic field B = NΦ, this corresponds to
hNΦ = e−

B
2 |z|

2

. LLL wave functions

∂̄ψ = 0

are holomorphic sections of LNΦ ,

ψi = si(z), i = 1, . . . , N = NΦ + 1− g

IQHE state: take Nk points on Σ: z1, z2, . . . , zNk . The (holomorphic
part F of the) IQHE state is Slater determinant:

F (z1, . . . , zNk) = det[si(zj)]
N
i,j=1



Definition of Laughlin state (FQHE)

Consider now line bundle LNΦ . But take N = 1
βNΦ + 1− g particles, i.e.

only fraction of LLL states is occupied (thus fractional QHE). The
(holomorphic part F of the) Laughlin state satisfies

• F (z1, ..., zN ) is completely anti-symmetric

• Fix all zj except one, say zm. Then F (·, .., ·, zm, ·, .., ·) is a
holomorphic section of LNΦ .

• Vanishing condition near diagonal zi ∼ zj in local complex
coordinate system on Σ,

F (z1, ..., zN ) ∼
∏
i<j

(zi − zj)β

.



Examples

1. Round sphere S2, constant magnetic field: hNΦ
0 = 1

(1+|z|2)NΦ

FQHE state: F (z1, ..., zN ) =
∏
i<j(zi − zj)β

|Ψ(z1, ..., zN )|2 =
∏
i<j

|zi − zj |2β
N∏
j=1

hNΦ
0 (zj) [Haldane’83]

2. Flat torus, constant magnetic field: hNΦ
0 = e−2πiNΦ

(z−z̄)2
τ−τ̄ . FQHE

states:

Fr(z1, .., zN ) = θ r
β ,0

(βzc+ϕ, βτ)
∏
i<j

(
θ1(zi − zj , τ)

η(τ)

)β
[Haldane-Rezayi’85]

3. Higher genus Σg>1: βg states.



Arbitary metric and inhomogeneous
magnetic field

The advantage of the language of holomorphic line bundles is that it
gives us a clear idea how to put the Laughlin state on Σ with arbitrary
metric g and inhomogeneous magnetic field B. Consider some fixed
(constant scalar curvature) metric g0, and constant magnetic field B0

(and corresponding hermitian metric hNΦ
0 (z, z̄)). Arbitrary metrics are

parameterized by:

• Kähler potential φ(z, z̄): gzz̄ = g0z̄z + ∂z∂̄z̄φ,

• ”magnetic” potential ψ(z, z̄): F = F0 + ∂∂̄ψ, B = gzz̄Fzz̄



Partition function

For the integer QHE (β = 1), the partition function on arbitrary Σ is

Z =

∫
ΣN
|det si(zj)|2

N∏
j=1

hNΦ
0 (zj , z̄j)e

−NΦψ(zj ,z̄j)
√
g

1−s
(zj)d

2zj

For the fractional QHE

Z =

βg∑
r=1

∫
ΣN
|Fr(z1, .., zN )|2

N∏
j=1

hNΦ
0 (zj , z̄j)e

−NΦψ(zj ,z̄j)
√
g

1−s
(zj)d

2zj .



Derivation of logZ in IQHE

For β = 1 the partition function satisfies determinantal formula:

Z =

∫
ΣN
|det si(zj)|2

N∏
j=1

hNΦ
0 (zj , z̄j)e

−NΦψ(zj ,z̄j)
√
g(zj)d

2zj

= det〈si, sj〉L2

Denoting Gjl = 〈sj , sl〉, we get

δ logZ = δTr log〈sj , sl〉 =

= − 1

2π

∑
j,l

G−1
lj

∫
Σ

(
s− 1

2
(∆gδφ) +NΦδψ

)
s̄jslh

NΦ
√
g

1−s
d2z

= − 1

2π

∫
Σ

(
s− 1

2
(∆gB(z, z̄)) δφ+NΦB(z, z̄) δψ

)
√
g

1−s
d2z,

where B(z, z̄) is the density of states function (Bergman kernel).



Bergman kernel

B is the Bergman kernel on the diagonal. For orthonormal basis of LLL
wave functions {ψj}:

B(z, z̄) =

N∑
i=1

|ψi|2 =

=B +
1− 2s

4
R+

1

4
∆g logB +

1

12
∆g(B

−1R) +O(1/B2) .

[Zelditch’98, Catlin’99]

Path integral derivation:

B(z, z̄) =

N∑
i=1

|ψi(z)|2 = lim
T→∞

∫ x(T )=z

x(0)=z

e−
∫ T
0

(ẋ2+Aẋ)dtDx(t)

[Douglas, SK’09]



logZ in Integer QHE

logZ =
1

2π

∫
Σ

[
AzAz̄ +

1− 2s

2
(Azωz̄ + ωzAz̄)+

+

(
(1− 2s)2

4
− 1

12

)
ωzωz̄

]
d2z + F [B,R].

The last term is the Liouville action. CFT partition function transforms
within the conformal class g = e2σg0

log
ZCFT (g)

ZCFT (g0)
= − c

12π
SL(σ) = − c

24π

∫
Σ

ωzωz̄d
2z

where c is central charge. What we derived for Laughlin state is the
mixed electromagnetic-gravitational anomaly (in Coulomb gas).
Since the theory is not conformal (there is a scale, magnetic area:
l2 ∼ V/NΦ) we now have infinite asymptotic expansion.



logZ for Laughlin states: derivation

The proof is based on the free field representation of Laughlin states

βg∑
r

|Ψr|2 =

∫
ei
√
βX(z1) . . . ei

√
βX(zN )e−

1
2πS(g,X)DgX [Moore-Read’91]

where sum goes over all degenerate Laughlin states on Riemann surface
and the free field action is

S =

∫
M

(
∂X∂̄X + i

β − 2s√
β

XR
√
g +

i√
β
A ∧ dX

)
for compactified boson: X ∼ X + 2π

√
β.

Novelty: ”background charge” Q = β−2s√
β

, gauge connection coupling.



logZ for Laughlin states: derivation

Step 1. The ”anomalous part” of the expansion comes from
transformation properties under the deformation of the metric and the
magnetic field g0 → g = g0 + ∂z∂z̄φ,A0 → A = A0 + ∂ψ,∫

ei
√
βX(z1) . . . ei

√
βX(zN )e−

1
2πS(g,X)DgX

= eSano

∫
ei
√
βX(z1) . . . ei

√
βX(zN )e−

1
2πS(g0,X)Dg0

X

Step 2. The remainder term F [R,B] of the expansion of logZ comes
from the interacting path integral

1

Γ(s)

∫ ∞
0

dµµs−1

∫
e−

1
2πS(g,X)−µ

∫
M
ei
√
βX(z)√gd2zDgX ,

at s = −N .
[Ferrari-SK(JHEP2014)]



logZ for Laughlin states

logZ =
1

2πβ

∫
Σ

[
AzAz̄ +

β − 2s

2
(Azωz̄ + ωzAz̄) +

(
(β − 2s)2

4
− β

12

)
ωzωz̄

]
d2z

− 1

2π

∫
Σ

[
2− β

2β
B logB

]
√
gd2z + ...



Singular surfaces

(recent results, see also
Laskin-Chiu-Can-Wiegmann, arXiv:1602.04802)

New coefficient cH = 1− 3 (β−2s)2

β
transpires also on singular surfaces.

Recall (Cardy-Peschel’88) that the free energy of a 2d system of size L on a
surface Σ at criticality has the form

F = AL2 +BL− cχ(Σ)

6
logL+O(1).

Moreover, for a cone with angle 0 < α < 1

F = AL2 +BL− cχ(Σ)

12
(α+

1

α
) logL+O(1).



Singular surfaces

Similar formula holds for logZ for Laughlin states on singular surfaces

logZ = AN2
Φ +BNΦ −

cHχ(Σ)

12
(α+

1

α
) logNΦ +O(1),

The O(1) term here is very interesting. Recall that in the smooth case it
was given by gravitational anomaly (Liouville action) O(1) = cH

12πSL.
Here, in the integer QHE case, it is given by the regularized determinant
of laplacian on the cone:

O(1) = −1

2
log det ∆cone

This can be checked by explicit calculation,
e.g. in the case of sphere with two antipodal
singularities (american football/spindle)



Question

O(1) = −1

2
log det ∆cone ∼ ζ ′2(0, α, 1, α),

where ζ2 is Barnes double zeta function.

What is the answer for FQHE (Laughlin state)?

Conjecture: quantum Liouville theory.



Thank you


