

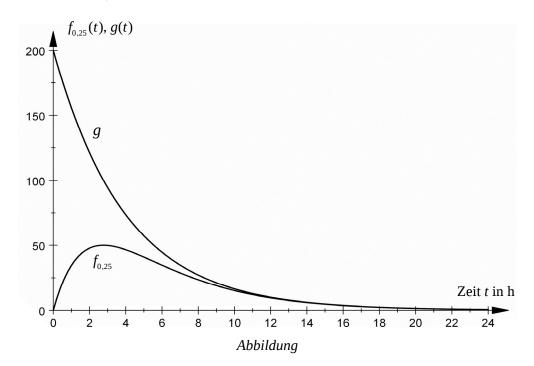
Abiturprüfung 2008

Mathematik, Leistungskurs

Aufgabenstellung:

Gegeben sind die Funktionen f_a mit $f_a(t)=200\cdot e^{-a\cdot t}\cdot (1-e^{-a\cdot t})$, a>0, $t\geq 0$, und die Funktion g mit $g(t)=200\cdot e^{-0.25\cdot t}$, $t\geq 0$.

Die Graphen von $f_{0,25}$ und von g sind in der *Abbildung* dargestellt.



a) Geben Sie das Verhalten der Funktionen f_a für $t \to \infty$ an und untersuchen Sie ihr Monotonieverhalten.

Zeigen Sie, dass die Funktionen f_a an der Stelle $t = \frac{\ln 2}{a}$ ihr absolutes Maximum annehmen.

Alle Hochpunkte der Funktionen f_a liegen auf einer Geraden.

Geben Sie die besondere Lage dieser Geraden an.

(12 Punkte)



b) Berechnen Sie den Term einer Stammfunktion F_a der Funktion f_a . Ermitteln Sie den Inhalt der Fläche, die begrenzt wird durch den Graphen von f_a , die Koordinatenachsen und durch eine Senkrechte zur t-Achse an der Stelle $t_1 > 0$. Prüfen Sie auch, ob sich für $t_1 \to \infty$ ein endlicher Flächeninhalt ergibt. (9 Punkte)

[Zur Kontrolle:
$$F_a(t) = \frac{200}{a} \cdot \left(\frac{1}{2}e^{-2a \cdot t} - e^{-a \cdot t}\right)$$
]

c) Für t > 12 ist in der obenstehenden Abbildung nicht mehr zu erkennen, ob der Graph der Funktion $f_{0.25}$ ober- oder unterhalb des Graphen von g verläuft.

Zeigen Sie rechnerisch, dass der Graph der Funktion $f_{0,25}$ immer unterhalb des Graphen von g verläuft und dass sich die beiden Funktionsgraphen für wachsendes t immer stärker annähern. Berechnen Sie, an welcher Stelle t_2 die Punkte $(t_2 | f_{0,25}(t_2))$ und $(t_2 | g(t_2))$ der beiden Graphen den Abstand 0,01 LE haben. (8 Punkte)

Funktionen wie g und f_a werden zur Modellierung des sogenannten Mutter-Tochter-Zerfalls verwendet. Als Mutter-Tochter-Zerfall bezeichnet man den Zerfall eines radioaktiven Mutterstoffs in einen Tochterstoff, der ebenfalls zerfällt, weil auch er radioaktiv ist. Im Folgenden soll $\mathbf{a} = \mathbf{0}, \mathbf{25}$ sein.

d) Für $t \ge 0$ wird die Masse des Mutterstoffs durch g(t) beschrieben und die Masse des Tochterstoffs durch $f_{0,25}(t)$. Dabei wird die Zeit t in Stunden ab Beobachtungsbeginn (t = 0) und $f_{0,25}(t)$ bzw. g(t) in Milligramm angegeben.

Interpretieren Sie unter Verwendung Ihrer Ergebnisse aus a) den Verlauf des Graphen von $f_{0,25}$ in diesem Sachzusammenhang.

Bestimmen Sie den Zeitpunkt, an dem die Masse des Tochterstoffs am stärksten abnimmt. (13 Punkte)

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen

Name:	
-------	--

e) Bestimmen Sie in Abhängigkeit von k die mittlere Masse m(k) des Tochterstoffs während der ersten k Stunden nach Beobachtungsbeginn.

Berechnen Sie die mittlere Masse des Tochterstoffs während der ersten 12 Stunden nach Beobachtungsbeginn. (8 Punkte)

Zugelassene Hilfsmittel:

- Wissenschaftlicher Taschenrechner (ohne oder mit Grafikfähigkeit)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Abiturprüfung 2008

Mathematik, Leistungskurs

1. Aufgabenart

Analysis

2. Aufgabenstellung

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Vorgaben 2008

- 1. Inhaltliche Schwerpunkte
 - Untersuchung von ganzrationalen Funktionen, gebrochen-rationalen Funktionen einschließlich Funktionenscharen, Exponentialfunktionen und Logarithmusfunktionen mit Ableitungsregeln (Produktregel, Quotientenregel, Kettenregel) in Sachzusammenhängen
 - Untersuchungen von Wirkungen (Änderungsrate)
 - Integrationsregeln (partielle Integration, Substitution)
 - Flächenberechnung durch Integration
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- Wissenschaftlicher Taschenrechner (ohne oder mit Grafikfähigkeit)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

6. Vorgaben für die Bewertung der Schülerleistungen

6.1 Modelllösungen

Modelllösung a)

Verhalten der Funktionen f_a für $t \rightarrow \infty$:

$$\lim_{t \to \infty} (200 \cdot e^{-a \cdot t} \cdot (1 - e^{-a \cdot t})) = \lim_{t \to \infty} (200 \cdot e^{-a \cdot t} - 200 \cdot e^{-2a \cdot t}) = 0$$

 $f_a'(t) = -200 \cdot a \cdot e^{-a \cdot t} + 400 \cdot a \cdot e^{-2a \cdot t}$ (Summen-, Kettenregel oder Produkt-, Kettenregel)

Aus
$$f'_a(t) > 0$$
 folgt: $a \cdot e^{-at}(-200 + 400 \cdot e^{-at}) > 0 \iff t < \frac{\ln 2}{a}$,

d. h., f_a ist streng monoton steigend für $t < \frac{\ln 2}{a}$.

Entsprechend gilt $f_a'(t) < 0$ für $t > \frac{\ln 2}{a}$, d. h., f_a ist streng monoton fallend für $t > \frac{\ln 2}{a}$.

$$f_a'(t) = 0 \Leftrightarrow a \cdot e^{-a \cdot t} (-200 + 400 \cdot e^{-a \cdot t}) = 0 \Leftrightarrow t = \frac{\ln 2}{a} \text{ und VZW (+/-) von } f_a' \text{ an der } f_a'(t) = 0$$

Stelle
$$t = \frac{\ln 2}{a}$$
 (oder: $f_a''(\frac{\ln 2}{a}) < 0$)

An der Stelle $t = \frac{\ln 2}{a}$ besitzt f_a das relative Maximum $f_a(\frac{\ln 2}{a}) = 50$.

Aus dem Monotonieverhalten folgt, dass $f_a(\frac{\ln 2}{a}) = 50$ absolutes Maximum der Funktion f_a ist.

Da der Funktionswert der Funktionen f_a an der Stelle $t = \frac{\ln 2}{a}$ unabhängig von a ist, liegen alle Hochpunkte der Schar auf einer Parallelen zur t-Achse im Abstand 50.

Modelllösung b)

Durch Integration erhält man eine mögliche Stammfunktion F_a :

$$\int f_a(t)dt = 200 \cdot \int (e^{-a \cdot t} - e^{-2a \cdot t})dt = \frac{200}{a} \cdot (\frac{1}{2}e^{-2a \cdot t} - e^{-a \cdot t}) = F_a(t)$$

Die Maßzahl des Flächeninhalts ist:

$$A(t_1) = \int_0^{t_1} f_a(t)dt = F_a(t_1) - F_a(0) = \frac{200}{a} \cdot (\frac{1}{2}e^{-2a \cdot t_1} - e^{-a \cdot t_1} + \frac{1}{2})$$

Da die ersten beiden Summanden in der Klammer für $t_1 \to \infty$ den Grenzwert Null haben, ergibt sich für $t_1 \to \infty$ als endliche Maßzahl für den Flächeninhalt: $A = \lim_{t_1 \to \infty} A(t_1) = \frac{100}{a}$.

Modelllösung c)

Die Gleichung der Differenzfunktion d
 der Funktionswerte von g und $f_{0,25}$ lautet:

$$d(t) = g(t) - f_{0.25}(t) = 200 \cdot e^{-0.25 \cdot t} - 200 \cdot e^{-0.25 \cdot t} \cdot (1 - e^{-0.25 \cdot t}) = 200 \cdot e^{-0.5 \cdot t}$$

Da die Funktion d nur positive Werte annimmt, ist für alle t der Funktionswert von g an der Stelle t stets größer als der Funktionswert von $f_{0,25}$. Deshalb verläuft der Graph von g oberhalb des Graphen von $f_{0,25}$.

Da d streng monoton fallend ist, nähern sich die Graphen immer stärker an.

Aus dem Ansatz $200 \cdot e^{-\frac{1}{2}t_2} = 0,01$ erhält man $t_2 = 2 \cdot \ln 20000 \approx 19,8$.

Modelllösung d)

Der Graph von $f_{0,25}$ beginnt im Ursprung, d. h., zum Zeitpunkt t = 0 ist noch keine Masse des Tochterstoffs registriert.

Der Graph steigt zunächst wegen der anfänglich hohen "Massenlieferungsrate" des Mutterstoffes streng monoton an. An der Stelle $t=4\ln 2$ erreicht die Masse des Tochterstoffs ihren Maximalwert. Anschließend nimmt sie wieder ab, weil der eigene Zerfall die "Nachlieferung" durch den Mutterstoff übertrifft. Für große t strebt die Masse gegen Null.

Gesucht ist die Stelle, an der die Änderungsrate $f'_{0,25}$ der Masse des Tochterstoffs ein Minimum besitzt.

$$f_{0,25}''(t) = \frac{25}{2} \cdot e^{-\frac{1}{4}t} - 50 \cdot e^{-\frac{1}{2}t} = \frac{25}{2} \cdot e^{-\frac{1}{4}t} (1 - 4 \cdot e^{-\frac{1}{4}t})$$

$$f_{0.25}''(t) = 0 \Leftrightarrow 1 - 4 \cdot e^{-\frac{1}{4}t} = 0 \Leftrightarrow t = 8 \cdot \ln 2$$

 $f_{0,25}''(t) < 0$ für $0 \le t < 8 \cdot \ln 2$ und $f_{0,25}''(t) > 0$ für $t > 8 \cdot \ln 2$; d. h., VZW (-/+) der 2. Ablei-

tung
$$f_{0,25}''$$
 an der Stelle $t = 8 \cdot \ln 2$ (oder $f_{0,25}'''$ (8 · ln 2) = $-\frac{25}{8} \cdot e^{-2\ln 2} + \frac{50}{2} \cdot e^{-4\ln 2} = \frac{25}{32} > 0$).

Außerdem gilt: $f'_{0,25}(8 \cdot \ln 2) = -\frac{25}{4} < 0$, d. h., an der Stelle $t = 8 \cdot \ln 2$ ist die Änderungsrate

 f_a' der Masse des Tochterstoffs negativ und sie besitzt dort ein Minimum.

Die Masse des Tochterstoffs nimmt zum Zeitpunkt $t = 8 \cdot \ln 2$ am stärksten ab.

Modelllösung e)

$$F_a(t) = \frac{200}{a} \cdot (\frac{1}{2}e^{-2a \cdot t} - e^{-a \cdot t}) \quad \to \quad F_{0,25}(t) = 800 \cdot (\frac{1}{2} \cdot e^{-0.5 \cdot t} - e^{-0.25 \cdot t})$$

Die mittlere Masse in den ersten k Stunden lässt sich ermitteln über:

$$m(k) = \frac{1}{k} \cdot \int_{0}^{k} f_{0,25}(t) dt = \frac{1}{k} \cdot \left[F_{0,25}(t) \right]_{0}^{k} = \frac{1}{k} \cdot \left(F_{0,25}(k) - F_{0,25}(0) \right) = \frac{800}{k} \cdot \left(\frac{1}{2} e^{-0.5 \cdot k} - e^{-0.25 \cdot k} + \frac{1}{2} \right)$$

$$m(12) = \frac{1}{12} \cdot \int_{0}^{12} f_{0,25}(t) dt = \frac{1}{12} \cdot \left[F_{0,25}(t) \right]_{0}^{12} = \frac{1}{12} \cdot \left(F_{0,25}(12) - F_{0,25}(0) \right) = \frac{200}{3} \cdot \left(\frac{1}{2} e^{-6} - e^{-3} + \frac{1}{2} \right) \approx 30,097.$$

Damit erhält man in den ersten 12 Stunden eine mittlere Masse von ca. 30,097 mg.

6.2 Teilleistungen - Kriterien

Teilaufgabe a)

	Anforderungen	maximal erreichbare Punktzahl
	Der Prüfling	(AFB) ¹
1	gibt das Verhalten der Funktionen f_a für $t \to \infty$ an.	2 (I)
2	berechnet die 1. Ableitung von f_a .	2 (I)
3	untersucht das Monotonieverhalten der Funktion f_a .	3 (II)
4	zeigt, dass die Funktionen f_a an der Stelle $t = \ln 2/a$ ihr absolutes Maximum anehmen.	3 (II)
5	gibt die Lage der Geraden an, auf der alle Hochpunkte liegen.	2 (I)
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		

Teilaufgabe b)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl (AFB)
1	berechnet den Term einer Stammfunktion F_a der Funktion $f_a.$	4 (I)
2	ermittelt die Maßzahl des beschriebenen Flächeninhalts mit Hilfe des Hauptsatzes.	3 (II)
3	prüft, ob sich ein endlicher Flächeninhalt ergibt.	2 (II)
	Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.	

¹ AFB = Anforderungsbereich

Teilaufgabe c)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl (AFB)
1	zeigt, dass der Graph der Funktion $f_{\scriptscriptstyle 0,25}$ immer unterhalb des Graphen von g verläuft.	4 (II)
2	zeigt, dass sich die beiden Funktionsgraphen für wachsendes t immer stärker annähern.	2 (II)
3	berechnet die Stelle t_2 .	2 (I)
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		

Teilaufgabe d)

	Anforderungen	maximal erreichbare
	Der Prüfling	Punktzahl (AFB)
1	interpretiert den Verlauf des Graphen im Sachzusammenhang.	3 (III)
2	berechnet die 2. Ableitung von $f_{0,25}$.	3 (I)
3	zeigt, dass $f'_{0,25}$ an der Stelle $t = 8 \cdot \ln 2$ ein Minimum besitzt.	3 (II)
4	stellt den Zusammenhang zwischen Massenabnahme und Änderungsrate dar und begründet, dass die Masse an der Stelle $t = 8 \cdot \ln 2$ am stärksten abnimmt.	4 (III)
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		

Teilaufgabe e)

	Anforderungen	maxi-
	Der Prüfling	erreichbare Punktzahl (AFB)
1	ermittelt einen Ansatz für die mittlere Masse des Tochterstoffs m(k).	3 (III)
2	bestimmt m(k) mit Hilfe des Hauptsatzes.	3 (II)
3	berechnet die mittlere Masse für $k = 12$.	2 (I)
Der gewählte Lösungsansatz und -weg muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet.		