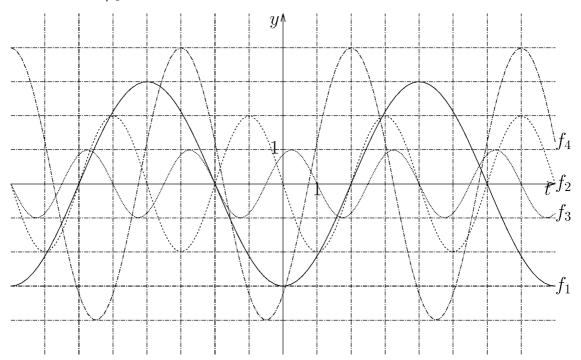
Übungen (16)

- 1) Geben Sie für die folgenden Schwingungsfunktionen die Periode T, Amplitude A und den Phasenwinkel $\varphi_0 \in]-\pi,\pi]$ für den Startzeitpunkt an. Geben Sie jeweils grobe Skizzen der Graphen und markieren Sie darin die Größen T, A und t_0 bzw. φ_0 .

 - a) $f_1(t) = \sin(\pi t)$, b) $f_2(t) = 3\sin(\frac{\pi}{2}t + \frac{\pi}{2})$, c) $f_3(t) = 2\sin(\frac{3\pi}{2} \cdot (t+1))$, d) $f_4(t) = \cos(\pi t)$, e) $f_5(t) = -\sin(2\pi t)$.

- 2) Bestimmen Sie für die nachstehend skizzierten harmonischen Schwingungsfunktionen die Amplitude A, Schwingungsdauer T, Faktor ω und Verschiebung t_0 sowie Phasenwinkel φ_0 .



3) Gegeben sind zwei Schwingung(sfunktion)en

$$f_1(t) = 3 \cdot \sin(\omega t - \frac{\pi}{3})$$
 und $f_2(t) = 2 \cdot \sin(\omega t + \frac{\pi}{4})$.

- a) Skizzieren Sie die Graphen von f_1 und f_2 für die Periodendauer T=12 in einem Koordinatensystem.
- b) Stellen Sie beide Funktionen als Linearkombinationen

$$f_1(t) = a_1 \sin \omega t + b_1 \cos \omega t$$
 bzw. $f_2(t) = a_2 \sin \omega t + b_2 \cos \omega t$

dar.

- c) Zeichnen Sie die Zeigervektoren \vec{A}_1 und \vec{A}_2 beider Schwingungen und deren Summenvektor \hat{A} .
- d) Berechnen Sie für die Überlagerung $f = f_1 + f_2$ sowohl Amplitude A als auch den Phasenwinkel φ_0 . Vergleichen Sie Ihr Ergebnis mit Ihrer Zeichnung aus c).
- e) Skizzieren Sie den Graphen von f in demselben Koordinatensystem wie f_1 und f_2 .

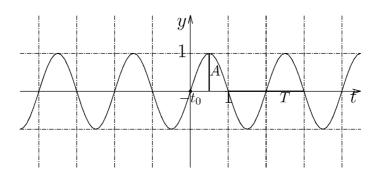
1

1) Wir stellen die gegebenen Funktionsterme in der Standardform

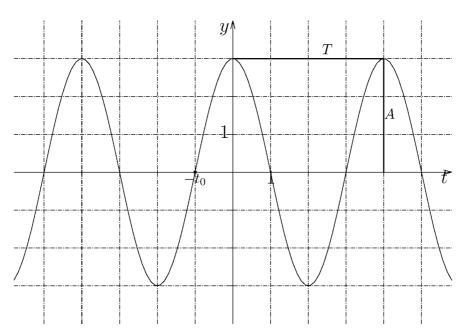
$$f(t) = A\sin(\omega t + \varphi_0) = A\sin(\omega(t + t_0))$$

dar und lesen daraus die gesuchten Parameter ab bzw. berechnen die Periode $T=\frac{2\pi}{T}$.

a) $f_1(t) = 1 \cdot \sin(\pi t + 0) \implies A = 1$, $\omega = \pi$, $T = \frac{2\pi}{\pi} = 2$, $\varphi_0 = t_0 = 0$. Mit diesen Daten erhält man folgende Skizze des Graphen:

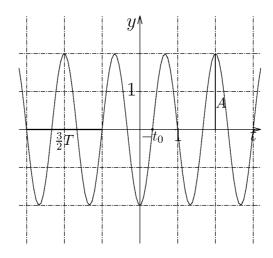


b) $f_2(t) = 3 \cdot \sin(\frac{\pi}{2}t + \frac{\pi}{2}) \implies A = 3$, $\omega = \frac{\pi}{2}$, $T = \frac{2\pi}{\omega} = 4$, $\varphi_0 = \frac{\pi}{2}$, $t_0 = \frac{\varphi_0}{\omega} = 1$. $\varphi_0 = \frac{\pi}{2}$ bedeutet, dass die Funktion f an der Stelle 0 mit einem Hochpunkt (beim Phasenwinkel $\frac{\pi}{2}$ hat die Sinusfunktion einen Hochpunkt) startet. Man erhält damit folgende Skizze des Graphen:



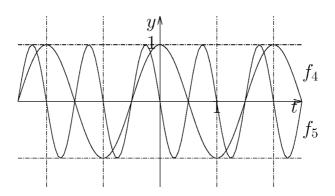
c) $f_3(t) = 2 \cdot \sin(\frac{3\pi}{2} \cdot (t+1)) \implies A = 2$, $\omega = \frac{3\pi}{2}$, $T = \frac{2\pi}{\omega} = \frac{4}{3}$. Wegen der Periodizität von f_3 kann man aus dem Term die Parameter t_0 bzw. φ_0 nur bis auf Vielfache der Periode T bzw. 2π ablesen, also $t_0 = 1 + kT$ bzw. $\varphi_0 = \omega t_0 = \frac{3}{2}\pi + k \cdot 2\pi$ (mit $k \in \mathbb{Z}$). Wegen $-\pi < \varphi_0 \le \pi$ bzw. $-\frac{T}{2} < t_0 \le \frac{T}{2}$ folgt hier $t_0 = 1 - T = -\frac{1}{3}$

und $\varphi_0 = \omega t_0 = -\frac{\pi}{2}$. Wegen $f_3(0) = 2\sin\frac{3}{2}\pi = -2 = -A$ startet f_3 bei 0 mit einem Tiefpunkt. Dies ergibt folgenden Graphen:



d) Amplitude A=1 und $\omega=\pi,\,T=2$ sind bereits an der gegebenen Cosinusfunktion ablesbar. Damit ist die Skizze des Graphen von f_4 klar (siehe unten)

e) Hier ist A = 1 und $\omega = 2\pi$, also T = 1 und die Skizze von f_5 wiederum direkt aus dem bekannten Verlauf von $\sin x$ ablesbar.



Will man jedoch die Standardform der Schwingungsfunktionen erreichen, muss man in d) zunächst den Cosinus durch den Sinus ausdrücken. Dies ist möglich, da eine Verschiebung des Sinus um $\frac{\pi}{2}$ nach links den Cosinus ergibt: $\sin(x + \frac{\pi}{2}) = \cos x$. Also $f_3(t) = \cos(\pi t) = \sin(\pi t + \frac{\pi}{2})$. Damit ist $\varphi_0 = \frac{\pi}{2}$ und $t_0 = \frac{1}{2}$.

Auch bei e) ist wegen des Minuszeichens noch nicht die Standardform erreicht. Hier benutzt man $-\sin x = \sin(x+\pi)$ und erhält so $f_5(t) = -\sin(2\pi t) = \sin(2\pi t + \pi)$, also $\varphi_0 = \pi$ und $t_0 = \frac{1}{2}$.

2) Wir lesen zunächst aus den Graphen die Amplitude A sowie die Periode T ab und berechnen $\omega = \frac{2\pi}{T}$. Die Bestimmung von φ_0 oder t_0 folgt dann später.

 f_1 : Es ist A=3 und T=8 (ablesbar an den Hochpunkten), also $\omega=\frac{\pi}{4}$ und daher $f_1(t)=3\sin(\frac{\pi}{4}(t+t_0))$.

 f_2 : Es ist A=2 und T=4 (ablesbar an den Extrempunkten), also $\omega=\frac{\pi}{2}$ und somit $f_2(t)=2\sin(\frac{\pi}{2}(t+t_0))$.

 f_3 : Es ist A=1 (ablesbar an den Hochpunkten) und T=3 (ablesbar an den Nullstellen -2 und +1, die eine volle Periode von f_3 begrenzen. Damit ist $\omega=\frac{2\pi}{3}$ und $f_3(t)=\sin(\frac{2\pi}{3}(t+t_0))$.

 f_4 : Hier ist A=4 und T=5 (siehe Hochpunkte), also $\omega=\frac{2\pi}{5}$ und $f_4(t)=4\sin(\frac{2\pi}{5}(t+t_0))$.

Wir kommen nun zur Bestimmung von t_0 . Eine direkte Bestimmung von t_0 ist möglich, wenn eine Nullstelle von f exakt ablesbar ist, denn $-t_0$ ist die betraglich kleinste Nullstelle, an der die Schwingungsfunktion von negativen zu positiven Werten wechselt oder anders formuliert, an der die Funktion wächst.

 f_1 : Bei f_1 ist 2 die betraglich kleinste Nullstelle, an der f wächst, also $-t_0=2$, d. h. $t_0=-2$ und daher $\varphi_0=\omega t_0=\frac{\pi}{4}\cdot(-2)=-\frac{\pi}{2}$. Wir erhalten abschließend $f_1(t)=3\sin(\frac{\pi}{4}(t-2))=3\sin(\frac{\pi}{4}t-\frac{\pi}{2})$.

 f_2 : Hier sind +2 und -2 die betraglich kleinsten Nullstellen, an denen f_2 wächst, also $t_0 = \pm 2$ und damit $\varphi_0 = \omega t_0 = \frac{\pi}{2} \cdot (\pm 2) = \pm \pi$. Wegen $-\pi < \varphi_0 \le \pi$ folgt $t_0 = 2$ und $\varphi_0 = \pi$. Wir erhalten $f_2(t) = 2\sin(\frac{\pi}{2}(t+2)) = 2\sin(\frac{\pi}{2}t+\pi)$.

 f_3 : Hier ist die Nullstelle 1 ablesbar, aber f_3 ist hier nicht wachsend, sondern fallend. Die betraglich kleinste Nullstelle, an der f_3 wächst, ist nicht exakt ablesbar, aber da T=3 bekannt ist, kann man sie berechnen: $-t_0=+1-\frac{T}{2}=-\frac{1}{2}$. Wir erhalten schließlich $f_3(t)=\sin(\frac{2\pi}{3}(t+\frac{1}{2}))=\sin(\frac{2\pi}{3}t+\frac{\pi}{3})$.

 f_4 : Hier ist keine Nullstelle exakt ablesbar, aber ein Hochpunkt (2,4) ist erkennbar. Setzt man diesen in den gefundenen Term für f_5 ein, so erhält man eine Gleichung für t_0 :

$$4 = f_4(2) = 4\sin(\frac{2\pi}{5} \cdot 2 + \varphi_0)$$

$$\iff 1 = \sin(\frac{4\pi}{5} + \varphi_0) \iff \frac{4}{5}\pi + \varphi_0 = \frac{\pi}{2} + 2k\pi$$

$$\iff \varphi_0 = -\frac{3\pi}{10} + 2k\pi.$$

Da φ_0 im Intervall $]-\pi,\pi]$ liegen soll, folgt $\varphi_0=-\frac{3}{10}\pi$.

Dieses Beispiel zeigt, dass man zur Bestimmung von t_0 grundsätzlich irgendeinen gut ablesbaren Punkt (t, f(t)) auf dem Graphen wählen kann, diesen in die Funktionsgleichung einsetzt und dann t_0 daraus bestimmt.

Alternative (für f_1 und f_2): Man erkennt sofort, dass der Graph von f_1 ohne Verschiebung aus der Cosinusfunktion entsteht, und zwar $f_1(t) = -3\cos(\omega t)$. Unter Verwendung von $-\cos x = \sin(x - \frac{\pi}{2})$ ergibt sich dann $\varphi_0 = -\frac{\pi}{2}$ und $f_1(t) = -3\cos\omega t = 3\sin(\omega t - \frac{\pi}{2})$ (wie oben ermittelt).

Ebenso erkennt man $f_2(t) = -2\sin\omega t$ und wegen $-\sin x = \sin(x+\pi)$ dann $\varphi_0 = \pi$ und $f_2(t) = 2\sin(\omega t + \pi)$.

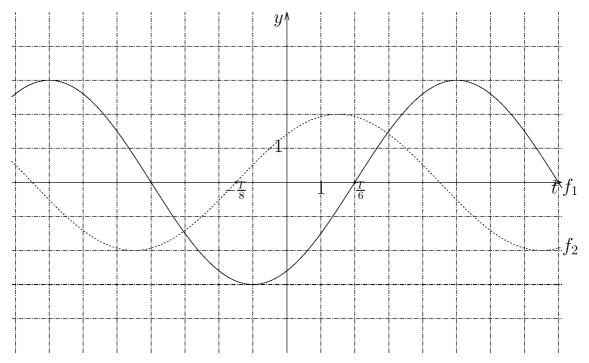
3) a) Wir berechnen zunächst

$$f_1(t) = 3 \cdot \sin(\omega t - \frac{\pi}{3}) = 3 \cdot \sin(\omega t - \frac{\pi/3}{2\pi/T}) = 3 \cdot \sin(\omega t - \frac{T}{6}),$$

 $f_2(t) = 2 \cdot \sin(\omega t + \frac{\pi}{4}) = 2 \cdot \sin(\omega t - \frac{\pi/4}{2\pi/T}) = 2 \cdot \sin(\omega t + \frac{T}{8}).$

Damit hat f_1 die Amplitude $A_1 = 3$ und die betraglich kleinste Nullstelle mit Wechsel von - zu + an der Stelle $-t_{01} = \frac{T}{6}$, während f_2 die Amplitude $A_2 = 2$ hat und diese Nullstelle liegt bei $-t_{02} = -\frac{T}{8}$. Für T = 12 erhält man also die folgenden

Graphen



b)/c) Wir bestimmen nun die Zeigerdarstellung für f_1 und f_2 :

$$a_1 = A_1 \cos \varphi_{01} = 3 \cos \frac{\pi}{3} = \frac{3}{2}, \qquad b_1 = A_1 \sin \varphi_{01} = 3 \sin \frac{\pi}{3} = \frac{3}{2} \sqrt{3},$$

$$a_2 = A_2 \cos \varphi_{02} = 2 \cos(-\frac{\pi}{4}) = \sqrt{2}, \qquad b_2 = A_2 \sin \varphi_{02} = 2 \sin(-\frac{\pi}{4}) = -\sqrt{2},$$

also

$$f_1(t) = \frac{3}{2} \sin \omega t + \frac{3}{2} \sqrt{3} \cos \omega t,$$

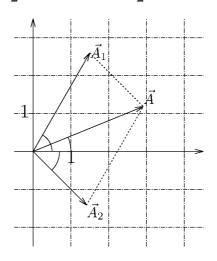
$$f_2(t) = \sqrt{2} \sin \omega t - \sqrt{2} \cos \omega t.$$

Daraus ergibt sich dann der Zeigervektor der Summenfunktion

$$a = a_1 + a_2 = \frac{3}{2} + \sqrt{2}, \qquad b = \frac{3}{2}\sqrt{3} - \sqrt{2}$$

und

$$f(t) = (\frac{3}{2} + \sqrt{2})\sin \omega t + (\frac{3}{2}\sqrt{3} - \sqrt{2})\cos \omega t.$$



d) Aus dem Zeigervektor von f

$$\vec{A} = \begin{pmatrix} \frac{3}{2} + \sqrt{2} \\ \frac{3}{2}\sqrt{3} - \sqrt{2} \end{pmatrix}$$

berechnen wir zunächst die Amplitude

$$A = \sqrt{(\frac{3}{2} + \sqrt{2})^2 + (\frac{3}{2}\sqrt{3} - \sqrt{2})^2} = \sqrt{13 - 3(\sqrt{6} - \sqrt{2})} \approx 3.15.$$

Sodann bestimmen wir den Phasenwinkel φ_0 von f. Wegen b>0 ist $\sin\varphi_0>0$ und $\varphi_0>0$ und daher gilt

$$\varphi_0 = +\arccos\frac{a}{A} = \arccos\frac{\frac{3}{2} + \sqrt{2}}{\sqrt{13 - 3(\sqrt{6} - \sqrt{2})}} \approx 0.39$$

Das Winkelmaß von φ_0 ist dann $\frac{180^0}{\pi} \cdot 0.39 = 22.11^0$; dieser Wert stimmt mit der Skizze überein.

e) Wir erhalten insgesamt als Überlagerung f beider Schwingungen

$$f(t) \approx 3.15 \cdot \sin(\omega t + 0.39) = 3.15 \cdot \sin \omega (t + 0.06T)$$
.

Hier die Skizze für f (und die beiden Summanden f_1, f_2), wieder mit T = 12:

