Übung für Interessierte – Reihen

1) Gegeben ist eine beliebige Folge $(a_n)_{n\geq 0}$. Wir definieren dazu eine neue Folge $(s_n)_{n\geq 0}$ durch

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n = \sum_{k=0}^n a_k$$
 für $n \ge 0$.

Man nennt (s_n) die Reihe der (a_n) .

- a) Geben Sie eine verbale Beschreibung und eine rekursive Definition für (s_n) .
- b) Unter welchen Bedingungen an a_n ist die Reihe (s_n) monoton?
- c) Zeigen Sie unter der Voraussetzung $a_n \ge 0$ für alle n:
- (s_n) ist genau dann konvergent, wenn (s_n) (nach oben) beschränkt ist.
- d) Ist (s_n) konvergent, so ist (a_n) eine Nullfolge.

[Tip:
$$a_n = s_n - s_{n-1}$$
.]

e) Vorsicht: Selbst wenn (a_n) eine Nullfolge ist, kann (s_n) unbeschränkt sein! Beispiel für diese Situation ist die Reihe (s_n) zur Folge $a_n = \frac{1}{n}$, die sog. harmonische Reihe. Begründen Sie die Unbeschränktheit der harmonischen Reihe mit Hilfe des folgenden Gedanken:

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq 2 \cdot \frac{1}{4} = \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq 4 \cdot \frac{1}{8} = \frac{1}{2}} + \underbrace{\frac{1}{9} + \frac{1}{10} + \ldots + \frac{1}{15} + \frac{1}{16}}_{\geq 8 \cdot \frac{1}{16} = \frac{1}{2}} + \ldots$$

- 2) Wir betrachten eine geometrische Folge $a_n=q^n$ mit Anfangsglied $a_0=1$ und Quotient q.
 - a) Wiederholen Sie kurz, dass für $q \neq 1$ die zugehörige geometrische Reihe

$$s_n = 1 + q + q^2 + \ldots + q^n = \sum_{k=0}^n q^k$$

folgende explizite Darstellung hat:

$$s_n = \frac{q^{n+1} - 1}{q - 1}.$$

b) Zeigen Sie, dass diese geometrische Reihe (s_n) für |q| < 1 gegen $\frac{1}{1-q}$ konvergiert:

$$|q| < 1 \implies \sum_{k=0}^{\infty} q^k := \lim_{n \to \infty} \sum_{k=0}^{n} q^k = \lim_{n \to \infty} s_n = \frac{1}{1 - q}.$$

c) Zeigen Sie, dass die Reihe (s_n) für $|q| \ge 1$ nicht konvergieren kann.

3) (Majorantenkriterium)

Es sei $s_n = a_0 + a_1 + ... + a_n \text{ mit } a_n \ge 0.$

- a) Zeigen Sie: (s_n) konvergiert genau dann, wenn (s_n) nach oben beschränkt ist. (Wiederholung.)
- b) Es gelte $0 \le a_n \le a'_n$ für alle n und die Reihe $s'_n = a'_0 + a'_1 + \ldots + a'_n$ der a'_n sei konvergent. (Man sagt: s'_n ist eine konvergente Majorante für s_n .)

 Zeigen Sie, dass dann auch die Reihe (s_n) konvergent ist.

4) (Quotientenkriterium)

Es sei (s_n) eine Reihe mit positiven Gliedern a_n . Wir setzen zusätzlich voraus, dass alle Quotienten aufeinanderfolgender Glieder unterhalb einer festen Zahl q < 1 liegen:

$$\frac{a_{n+1}}{a_n} \le q < 1 \quad \text{für alle } n \,. \tag{*}$$

a) Zeigen Sie

$$a_n \leq a_0 q^n$$
.

b) Folgern Sie nun mit Hilfe des Majorantenkriteriums:

$$s_n = a_0 + a_1 + \ldots + a_n = \sum_{i=0}^n a_i$$
 ist konvergent.

c) Beweisen Sie damit die Konvergenz der Reihe (0! = 1 gesetzt):

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = \sum_{i=0}^{n} \frac{1}{i!}.$$

[Ihren Grenzwert nennt man e, die Euler'sche Zahl.]

5) (Wurzelkriterium)

Es sei (s_n) eine Reihe mit positiven Gliedern a_n . Wir setzen jetzt zusätzlich voraus, dass alle Wurzeln $\sqrt[n]{a_n}$ unterhalb einer Zahl q < 1 liegen:

$$\sqrt[n]{a_n} \le q < 1$$
 für alle n . $(**)$

Folgern Sie ähnlich wie in der vorangehenden Aufgabe

$$s_n = a_0 + a_1 + \ldots + a_n = \sum_{k=0}^n a_k$$
 ist konvergent.

- 6) Überlegen Sie sich:
 - a) Im Majorantenkriterium (siehe Aufgabe 3) gilt die Konvergenzaussage für s_n auch dann, wenn die vorausgesetzte Abschätzung $0 \le a_n \le a'_n$ nur schließlich (d. h. ab einer Nummer n_0) gilt.
 - b) In den beiden vorangehenden Aufgaben bleiben die Konvergenzaussagen gültig, auch wenn die vorausgesetzten Abschätzungen (*) bzw. (**) nur $schlie\betalich$ gelten.
 - c) Die Bedingungen (*) bzw. (**) sind schließlich erfüllt, wenn gilt:

$$\lim_{n \to \infty} \frac{a_n}{a_{n-1}} < 1 \quad \text{bzw.} \quad \lim_{n \to \infty} \sqrt[n]{a_n} < 1.$$

Reihen — Lösungen

1) a) s_n ist die Summe der ersten n Glieder der Folge (a_n) . Es ist $s_1=a_1$ und $s_n=s_{n-1}+a_n$.

b) Es ist für $n \ge 2$ $s_n - s_{n-1} = a_n$, also ist s_n genau dann monoton wachsend, wenn $a_n \ge 0$ ist für alle $n \ge 2$. Entsprechend für monoton fallend.

c) Wenn $a_n \geq 0$ ist, ist s_n monoton wachsend. Also ist nach dem Monotoniekriterium s_n konvergent, wenn s_n (nach oben) beschränkt ist. Da eine konvergente Folge immer beschränkt ist, ist c) bewiesen.

d) Es sei s der Grenzwert von s_n , also auch von s_{n-1} . Dann hat $a_n = s_n - s_{n-1}$ gemäß den Grenzwertsätzen den Grenzwert s - s = 0: (a_n) ist eine Nullfolge.

e) Nach der angegebenen Idee erhalten wir die folgende Abschätzung

$$s_{2^k} \ge 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{k-1} \cdot \frac{1}{2^k} = 1 + k \cdot \frac{1}{2}.$$

Man kann nun zu jeder möglichen Schranke S ein k so wählen, dass 1+k/2 > S ist, nämlich k > 2(S-1). Für solch ein k gilt dann $s_{2^k} > S$, so dass die harmonische Reihe (s_n) nicht beschränkt ist.

Dieses Beispiel sollte vor Trugschlüssen warnen:

Warnung: Ist eine Folge s_n monoton steigend und wird der Zuwachs $s_n - s_{n-1} = a_n$ beliebig klein, so braucht s_n keineswegs zu konvergieren, vielmehr kann s_n dennoch über alle Schranken wachsen!

2) a) Es ist s_n genau die in Übungen (2) 3)c) definierte Folge.

b) Für |q| < 1 ist die geometrische Folge q^n eine Nullfolge, also folgt mit den Grenzwertsätzen aus a) die Konvergenz von s_n gegen den folgenden Grenzwert:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1} - 1}{q - 1} = \frac{-1}{q - 1} = \frac{1}{1 - q}.$$

c) Ist q = 1, so ist $s_n = n$ unbeschränkt, also nicht konvergent. Ist q = -1, so hat s_n abwechselnd die Werte 1 und 0, ist also wiederum nicht konvergent. Ist schließlich |q| > 1, so ist die Folge q^n unbeschränkt. Dann kann aber nach Aufgabe 3) d) die Folge s_n nicht konvergieren.

Zusatz: Hat die geometrische Reihe nicht das Anfangsglied 1, sondern a_0 , ist also

$$s_n = a_0 + a_0 q + a_0 q^2 + \ldots + a_0 q^n = a_0 \cdot (1 + q + q^2 + \ldots + q^n),$$

so erhält man im Falle |q| < 1 als Grenzwert

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(a_0 \cdot \frac{q^{n+1} - 1}{q - 1} \right) = a_0 \cdot \frac{-1}{q - 1} = \frac{a_0}{1 - q}.$$

3) a) Ist s_n konvergent, so auch beschränkt (Bemerkung (2.2), c)). Umgekehrt: Die Folge s_n ist wegen $s_n - s_{n-1} = a_n \ge 0$ monoton wachsend. Nach dem Monotoniekriterium ist sie dann bereits konvergent, sobald sie (nach oben) beschränkt ist. (Nach unten ist sie ohnehin beschränkt.)

3

- b) Aus $a_n \leq a'_n$ folgt unmittelbar $s_n \leq s'_n$. Da s'_n als konvergente Folge beschränkt ist, ist dann auch s_n nach oben beschränkt, also nach a) konvergent.
- 6) a) Man argumentiert etwa so: Man ändere die endlich vielen Folgenglieder der s'_n , für die die Abschätzung nicht gilt, so ab, dass die Abschätzung immer richtig ist. (Man ersetze etwa die a'_n durch a_n .) Da nur endlich viele Glieder verändert werden, bleibt die Reihe s'_n beschränkt! Also ist auch $s_n (\leq s'_n)$ beschränkt und folglich konvergent.