Arbeitsauftrag

1) Im Innern einer Spule der Windungszahl 300 und der Länge 70 cm wird bei verschiedenen Stromstärken I die magnetische Flussdichte B gemessen:

Bestimmen Sie die magnetische Feldkonstante.

- 2) Bestimmen Sie die magnetische Flussdichte für folgende Spulen:
 - a) Windungszahl n = 340, Länge $l = 70 \,\mathrm{cm}$ und Stromstärke $I = 3 \,\mathrm{A}$,
 - b) n = 715, l = 23 cm und I = 2,3 A,
 - c) n = 8550, $l = 52 \,\mathrm{mm}$ und $I = 120 \,\mathrm{mA}$.
- 3) Im Feld einer Spule (Windungszahl n=500, Länge $l=0.6\,\mathrm{m}$) wird bei einer Stromstärke $I=1.2\,\mathrm{A}$ mit Eisenfüllung die Flussdichte $B=75\,\mathrm{mT}$ gemessen. Bestimmen Sie die Permeabilitätszahl μ_r von Eisen.

Arbeitsauftrag — Lösungen

1) Die magnetische Feldkonstante μ_0 ist die Proportionalitätskonstante zwischen B und $\frac{In}{I}$, also

$$\mu_0 = \frac{Bl}{In} = \frac{B}{I} \cdot \frac{0.7 \,\mathrm{m}}{300} \,.$$

Dies ergibt folgende Werte:

$\frac{I}{A}$	1,0	1,5	2,1	2,4	3,0
$\frac{B}{10^{-4} \mathrm{T}}$	5,5	8,4	11,8	13,4	16,9
$\frac{\mu_0}{10^{-6}\mathrm{Vs/Am}}$	1,283	1,307	1,311	1,303	1,314

Der Durschschnittswert beträgt damit

$$\mu_0 = \frac{1}{5}(1,283 + 1,307 + 1,311 + 1,303 + 1,314) \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}} = 1,304 \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}}$$

- 2) a) $B = \mu_0 \frac{In}{l} = 1,257 \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}} \cdot \frac{3 \text{ A} \cdot 340}{0.7 \text{ m}} = 1,83 \cdot 10^{-3} \text{ T},$ b) $B = \mu_0 \frac{In}{l} = 1,257 \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}} \cdot \frac{2,3 \text{ A} \cdot 715}{0.23 \text{ m}} = 8,99 \cdot 10^{-3} \text{ T},$ c) $B = \mu_0 \frac{In}{l} = 1,257 \cdot 10^{-6} \frac{\text{Vs}}{\text{Am}} \cdot \frac{0,12 \text{ A} \cdot 8550}{0,052 \text{ m}} = 24,8 \cdot 10^{-3} \text{ T},$
- 3) Die Permeabilitätszahl μ_r des Materials in einer Spule ist das Verhältnis der Flussdichte B (mit Material) zur Flussdichte B_0 im Vakuum:

$$\mu_r = \frac{B}{B_0} = \frac{B}{\mu_0 In/l} = \frac{75 \,\text{mT}}{1,257 \cdot 10^{-6} \,\frac{\text{Tm}}{\text{A}} \cdot 1,2 \,\text{A} \cdot 500/0,6 \,\text{m}} = 59,67$$