SS 2012 Dr. Kai Zehmisch

Geometrische Analysis

Übungsblatt 3

Aufgabe 1. Eine Derivation D auf einer reellen Algebra F ist eine lineare Abbildung $D: F \to F$, welche der Leibniz-Regel D(fg) = D(f)g + fD(g) für alle $f, g \in F$ genügt.

- (a) Hat F ein Einselement 1, so gilt $D(c \cdot 1) = 0$ für alle $c \in \mathbb{R}$.
- (b) Die Menge aller Derivationen $\mathcal{D}(F)$ auf F ist in natürlicher Weise ein reeller Vektorraum.
- (c) Die **Lie-Klammer** [.,.]: $\mathcal{D}(F) \times \mathcal{D}(F) \to \mathcal{D}(F)$ ist eine Abbildung, die gegebenen Derivationen $D_1, D_2 \in \mathcal{D}(F)$ eine Abbildung $[D_1, D_2]$: $F \to F$ gemäß

$$[D_1, D_2](f) := D_1(D_2(f)) - D_2(D_1(f))$$

zuordnet.

- (c1) [.,.] ist bilinear und antisymmetrisch.
- (c2) $[D_1, D_2]$ ist in der Tat eine Derivation auf F.
- (c3) Für jede Derivation $D \in \mathcal{D}(F)$ ist

$$[D, .]: \mathcal{D}(F) \to \mathcal{D}(F)$$

eine Derivation auf $(\mathcal{D}(F), [.,.])$, d.h. es gilt die sogenannte **Jacobi-Identität**.

- (c4) Hat die so entstandene **Lie-Algebra** eine Eins?
- (c5) Ist F kommutativ, dann definiert (fD)(g) := fD(g), $f, g \in F$, eine skalare Multiplikation $F \times \mathcal{D}(F) \to \mathcal{D}(F)$, so daß $\mathcal{D}(F)$ die Struktur eines F-Moduls bekommt.

Aufgabe 2. Sei Q eine n-dimensionale Mannigfaltigkeit. Die Liouvillesche Form oder auch kanonische 1-Form λ auf T^*Q sei wie folgt definiert: Der Wert der 1-Form λ an einem Fußpunkt $u \in T^*Q$ sei $\lambda_u = u \circ T\pi$, wobei $T\pi$ das Differential der kanonischen Projektion $\pi: T^*Q \to Q$ bezeichne.

- (a) Zeigen Sie, daß die Liouvillesche Form λ eindeutig durch folgende Bedingung charakterisiert ist: Für jede 1-Form τ auf Q (also jeden Schnitt τ im Bündel $T^*Q \to Q$) gilt: $\tau = \tau^*\lambda$.
- (b) Führt man lokale Koordinaten (q_1, \ldots, q_n) auf Q und duale Koordinaten (p_1, \ldots, p_n) auf den Fasern von T^*Q ein, so erhält man: $\lambda = \sum_{j=1}^n p_j dq_j$.

Aufgabe 3. Ein Zusammenhang auf einer Mannigfaltigkeit M ist eine \mathbb{R} -bilineare Abbildung

$$\nabla \colon \Gamma(TM) \times \Gamma(TM) \quad \longrightarrow \qquad \Gamma(TM)$$

$$(X,Y) \qquad \longmapsto \qquad \nabla(X,Y) = \nabla_X Y$$

die den folgenden Bedingungen genügt:

- (i) ∇ ist **tensoriell** im ersten Argument, d.h. $\nabla_{fX}Y = f\nabla_XY$ für alle $f \in C^{\infty}(M)$ und $X, Y \in \Gamma(TM)$.
- (ii) ∇ genügt der Leibniz-Regel im zweiten Argument, d.h. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ für alle $f \in C^{\infty}(M)$ und $X, Y \in \Gamma(TM)$.

Zeigen Sie,

(a) daß die Zuordnung

$$\left(\sum_{j=1}^{n} a_j \frac{\partial}{\partial x_j}, \sum_{k=1}^{n} b_k \frac{\partial}{\partial x_k}\right) \longmapsto \sum_{j,k=1}^{n} a_j \frac{\partial b_k}{\partial x_j} \frac{\partial}{\partial x_k}$$

einen Zusammenhang auf \mathbb{R}^n definiert und

(b) daß jede Mannigfaltigkeit einen Zusammenhang hat.

Aufgabe 4. Jeder Geschwindigkeitsvektor einer Kurve in einer glatten Mannigfaltigkeit M kann als Tangentialvektor an M aufgefaßt werden. Jeder Tangentialvektor in T_pM ist Geschwindigkeitsvektor einer glatten Kurve duch den Punkt $p \in M$.