SS 2012 Dr. Kai Zehmisch

Geometrische Analysis

Übungsblatt 8

Aufgabe 1. Sei $(\beta_{\nu})_{\nu \in \mathbb{N}}$ eine Cauchy-Folge von k-Formen mit Norm gleich 1. Sei β eine weitere k-Form, so daß $(\beta_{\nu}, \varphi) \longrightarrow (\beta, \varphi)$ für $\nu \to \infty$ und für alle k-Formen φ . Zeigen Sie $\beta_{\nu} \longrightarrow \beta$. Hinweis: Zeigen Sie zuerst $\|\beta\| = 1$. Betrachten Sie dazu $(\beta_{\nu}, \beta_{\mu})$.

Aufgabe 2. Sei M eine kompakte orientierte Riemannsche Mannigfaltigkeit.

(a) Folgeren Sie direkt aus dem Zerlegungssatz von Hodge, daß

(a1)
$$\Omega^k(M) = d\delta\Omega^k(M) \oplus \delta d\Omega^k(M) \oplus \mathcal{H}^k$$

(a2)
$$\Omega^k(M) = d\Omega^{k-1}(M) \oplus \delta\Omega^{k+1}(M) \oplus \mathcal{H}^k$$

(a3)
$$Z^k(M) = B^k(M) \oplus \mathcal{H}^k$$

orthogonale Zerlegungen sind. Folgeren Sie aus (a3) die Isomorphie der Abbildung:

$$\mathcal{H}^k(M) \longrightarrow H^k_{\mathrm{dR}}(M)$$
 $\omega \longmapsto [\omega]$

- (b) Zeigen Sie, daß die Projektion H auf den harmonischen Anteil von $\Omega^k(M)$ und P = 1 H beschränkt und zueinander orthogonal sind.
- (c) Der Greensche Operator

$$G := \left(\Delta \mid_{(\mathcal{H}^k)^{\perp}}\right)^{-1} \circ P \colon \Omega^k(M) \longrightarrow (\mathcal{H}^k)^{\perp}$$

ist wohldefiniert, beschränkt und symmetrisch, bildet beschränkte Folgen in Folgen mit Cauchy-Teilfolgen ab und kommutiert mit d, δ , Δ und *. Jede deRham-Kohomologieklasse $[\omega]$ ist eindeutig durch

$$\omega = d\delta G\omega + H\omega$$

gegeben.

Aufgabe 3. Berechnen Sie den Laplace-Operator (für 0- und 1-Formen) für eine beliebige Riemannsche Metrik auf \mathbb{R} .

Aufgabe 4. (Fundamentallemma der Variationsrechnung) Seien Ω eine offene Teilmenge im \mathbb{R}^n und $f \in L^2(\Omega)$. Gelte $\int_{\Omega} f \varphi dx = 0$ für alle $\varphi \in C_0^{\infty}(\Omega)$. Zeigen Sie unter Verwendung der Dichtheit von $C_0^{\infty}(\Omega)$ in $L^2(\Omega)$, daß f = 0 fast überall. Gilt eine analoge Aussage für $f \in L^1_{\text{loc}}(\Omega)$?

Bonusaufgabe. Definieren und berechnen Sie die Symbole des äußeren Ableitungs- und des Koableitungsoperators. Sind diese elliptisch?