WS 2010/11 Dr. Kai Zehmisch

Symplektische Geometrie und Hamiltonsche Dynamik

Übungsblatt 1

Aufgabe 1. Sei ω eine antisymmetrische Bilinearform auf dem reellen 2n-dimensionalen Vektorraum $V, n \in \mathbb{N}$. Zeigen Sie, daß die folgenden Bedingungen äquivalent sind:

- (a) ω ist nicht entartet, d.h. für alle nicht verschwindenden Vektoren $u \in V$ gibt es einen Vektor $v \in V$ mit $\omega(u, v) \neq 0$.
- (b) Die Abbildung $I: V \to V^*$, die jedem Vektor v die Linearform $I(v) = \omega(v, .)$ zuordnet, ist ein Vektorraumisomorphismus. Dabei bezeichnen wir mit V^* den Dualraum von V.
- (c) Die *n*-te äußere Potenz $\omega^n = \omega \wedge \ldots \wedge \omega$, aufgefaßt als 2n-Multilinearform, verschwindet nicht.

Aufgabe 2. Sei (V, ω) ein 2n-dimensionaler symplektischer Vektorraum und E ein linearer Unterraum. Das symplektische orthogonale Komplement E^{ω} sei die Menge aller derjenigen Vektoren $v \in V$, so daß die Linearform $\omega(v, .)$ auf dem Unterraum E verschwindet. Zeigen Sie:

- (a) E^{ω} ist ebenfalls ein linearer Unterraum.
- (b) Es gilt die Dimensionsformel: dim $E + \dim E^{\omega} = 2n$.
- (c) Mit $F = E^{\omega}$ gilt $F^{\omega} = E$.

Aufgabe 3. Sei (V, ω) ein 2n-dimensionaler symplektischer Vektorraum und E ein linearer Unterraum. Zeigen Sie:

- (a) E (resp. E^{ω}) ist isotrop genau dann, wenn E^{ω} (resp. E) koisotrop ist.
- (b) Jede Hyperebene ist koisotrop.
- (c) E ist isotrop genau dann, wenn $\omega_{|E}$ verschwindet, wobei $\omega_{|E}$ die Bilinearform ω eingeschränkt auf E bezeichne. Insbesondere ist E genau dann Lagrangesch, wenn dim E = n und $\omega_{|E} = 0$.
- (d) E ist symplektisch genau dann, wenn E^{ω} symplektisch ist. Ferner ist dies äquivalent zu $E \oplus E^{\omega} = V$.
- (e) E ist symplektisch genau dann, wenn die Bilinearform $\omega_{|E}$ nicht entartet ist.

Aufgabe 4. Sei (V, ω) ein 2n-dimensionaler symplektischer Vektorraum und A eine lineare Abbildung $V \to V$. Zeigen Sie, daß A ein symplektischer Isomorphismus auf (V, ω) genau dann ist, wenn der Graph $\Gamma_A = \{(v, Av) \mid v \in V\}$ ein Lagrangescher Unterraum des symplektischen Vektorraumes $(V \times V, \Omega)$ mit $\Omega = (-\omega) \oplus \omega$ ist.

Bonusaufgabe. Sei E ein n-dimensionaler Vektorraum. Zeigen Sie, daß

$$\Omega((u,\alpha),(v,\beta)) = \beta(u) - \alpha(v)$$

eine symplektische Form auf $E \oplus E^*$ definiert. Ist ferner E ein Lagrangescher Unteraum von (V, ω) , so sind (V, ω) und $(E \oplus E^*, \Omega)$ symplektomorph.