WS 2010/11 Dr. Kai Zehmisch

Symplektische Geometrie und Hamiltonsche Dynamik

Übungsblatt 2

Aufgabe 1. Wir bezeichnen mit $\operatorname{Sp}(n)$ die Menge aller symplektischen $(2n \times 2n)$ -Matrizen, d.h. die Menge aller Matrizen A mit $A^*\omega_0 = \omega_0$.

- (a) Zeigen Sie, daß Sp(n) mit der Matrizenmultiplikation eine Gruppe ist.
- (b) Mit $A \in \operatorname{Sp}(n)$ ist auch $A^T \in \operatorname{Sp}(n)$, wobei A^T die transponierte Matrix von A sei. Ferner ist $J \in \operatorname{Sp}(n)$.
- (c) $A \in \operatorname{Sp}(1)$ genau dann, wenn det A = 1. Für $n \ge 2$ ist dies falsch. (Kann man dennoch etwas aussagen, wenn man eine symplektische Matrix in quadratische n-Blöcke zerlegt?)
- (d) Für das charakteristische Polynom $p(t) = \det(A t\mathbb{1})$ von $A \in \operatorname{Sp}(n)$ und für alle komplexen Zahlen $t \neq 0$ gilt $p(t) = t^{2n}p(1/t)$. (*Hinweis:* Man konjugiere geeignet mit J und forme geschickt um.) Also sind mit λ auch $1/\lambda$ und $\bar{\lambda}, 1/\bar{\lambda}$ Eigenwerte von A. (Sind diese stets verschieden voneinander? Welche Vielfachheiten haben sie? Was kann man über einen eventuellen Eigenwert ± 1 aussagen?)
- (e) Ist das Produkt $\lambda_1 \bar{\lambda}_2$ zweier Eigenwerte λ_1, λ_2 von $A \in \operatorname{Sp}(n)$ nicht 1, so stehen die entsprechenden Eigenvektoren symplektisch senkrecht aufeinander. Folgeren Sie, daß eine diagonalisierbare Matrix $A \in \operatorname{Sp}(n)$ auch symplektisch diagonalisierbar ist, d.h. daß es eine Matrix $B \in \operatorname{Sp}(n)$ gibt, so daß BAB^{-1} diagonal ist.

Aufgabe 2. Zeigen Sie, daß eine geschlossene Form, welche auf einem Sterngebiet des \mathbb{R}^n bzgl. 0 definiert sei, exakt ist, indem Sie den radialen Fluß $\varphi^t(x) = tx$ benutzen. Achtung: Das φ^t erzeugende zeitabhängige Vektorfeld X_t ist singulär für t = 0.

Aufgabe 3. Sei λ eine 1-Form auf \mathbb{R}^{2n} mit $d\lambda = \omega_0$. Dann ist die **Wirkung** einer geschlossenen Kurve γ in \mathbb{R}^{2n} gegeben durch

 $\mathcal{A}(\gamma) = \int_{\gamma} \lambda \ .$

- (a) Zeigen Sie, daß diese Definition von der speziellen Wahl von λ nicht abhängt.
- (b) Finden Sie einen volumenerhaltenden Diffeomorphismus φ auf $\mathbb{R}^4 = \mathbb{C}^2$ mit $\mathcal{A}(\varphi(\gamma)) \neq \pi$, wobei γ der Einheitskreis in $\mathbb{C} \times \{0\}$ sei.

Aufgabe 4. Sei $H: \mathbb{R}^{2n} \to \mathbb{R}$ eine Hamiltonsche Funktion. Dann gilt für das zugehörige Hamiltonsche Vektorfeld $X_H = J \nabla H$. Folgeren Sie damit, daß $\dot{x} = X_H(x)$ die Hamiltonschen Gleichungen sind. Skizzieren Sie die Flußlinien von ∇H und X_H für den ebenen harmonischen Oszillator $H(x,y) = \frac{1}{2}(x^2 + y^2)$.

Bonusaufgabe. Sei (M,ω) eine geschlossene 2n-dimensionale symplektische Mannigfaltigkeit. Zeigen Sie, daß dann $H^{2k}_{\mathrm{dR}}(M)$ nicht trivial ist für alle $k=1,\ldots,n$, wobei $H^*_{\mathrm{dR}}(M)$ die de Rhamsche Kohomologie von M bezeichne.