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Lecture 1

We start by recalling that the tropical variety of an affine variety equipped with
an embedding can be constructed as the image of the set of all valuations on its
coordinate ring. This means that if we are given a source of valuations we can
create and study portions of the tropicalization. For G-varieties and other related
spaces, the representation theory of a connected reductive group G provides a mech-
anism to create portions of tropical varieties and study them with an established
combinatorial language.

1. Valuations and tropical geometry

Let V be an algebraic variety over k an algebraically closed, trivially valued field,
and suppose that V is the zero locus of an ideal I ⊂ k[x] for x = {x1, . . . , xn}. One
indicator that the tropical variety of V is capturing useful information is that it
can be constructed in several apparently different ways. For example, from [MS15,
Theorem 3.2.3] we see the Gröbner theoretic point of view (the initial ideal inw(I)
w ∈ Trop(I) contains no monomials) connected with valuations on the coordinate
ring k[V ] associated to the K points of V for k ⊂ K a valued field extension. The
following (see [Pay09]) provides another perspective on the valuative description of
a tropical variety.

Remark 1.1. For these lectures we use the convention that valuations are sub-
additive: v(f+g) ≤MAX{v(f), v(g)} to conform with conventions of the dominant
weight ordering in the dominant weights of a reductive group.

Proposition 1.2. Let I ⊂ k[x] be a prime ideal which cuts out a variety V ⊂ An,
and let V an be the set of valuations v : k[V ] \ {0} → R which restrict to the trivial
valuation on k. Then the map evx : V an → Rn, evx(v) = (v(x1), . . . , v(xn)) surjects
onto the tropical variety Trop(I) ⊂ Rn.

The notation V an for the set of valuations is a reference to the fact that this is the
underlying set of the Berkovich Analytification of V (see [Pay09]). The topology on
V an is the coarsest topology which makes the evaluation functions evf : V an → R,
evf (v) = v(f); f ∈ k[V ] continuous.

The space V an defies description outside of restricted cases (ie dim(V ) = 1).
However, when the variety V comes equipped with a distinguished class of valua-
tions, 1.2 implies that every tropicalization of V sees a part of such a class. This is
the case with varieties equipped with a reductive group action, and other varieties
closely related to the representation theory of G.

1
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2. Notation

(1) G- a connected, reductive group over k,

(2) T - a maximal torus of G,

(3) U - a maximal unipotent subgroup of G.

(4) B- a Borel subgroup of G, recall that for compatible choices B = TU ,

(5) Λ = Hom(T,Gm)- the lattice of weights (associated to the choice of T ),

(6) Λ+- the monoid of dominant weights (associated to the choice of B),

(7) V (λ), λ ∈ Λ+- the irreducible representation associated to λ,

(8) g- the Lie algebra of G,

(9) h- the Lie algebra of T ,

(10) n- the (nilpotent) Lie algebra of U ,

(11) R- the roots (weights which appear in adjoint representation on g),

(12) R- the root lattice (generated by R),

(13) R+- positive roots (associated to the choice B),

(14) ∆- Weyl chamber, the convex hull of Λ+ ⊂ Hom(T,Gm),

(15) ∆∨ ⊂ Hom(Gm, T )⊗R- dual Weyl chamber (coweights which pair to non-
negative real numbers with positive roots).
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3. A motivating example

The Grassmannian Gr2(n) of 2-planes in an n-dimensional space, it’s projective
coordinate ring R2,n, and the tropical variety T (n) = Trop(I2,n) of the ideal which
vanishes on the Plücker generators pij ∈ R2,n, 1 ≤ i < j ≤ n are very well under-
stood (see [SS04]). Nevertheless, there is something to be gained by revisiting what
we know about these objects from the point of view of representation theory. The
Grassmannian case will provide a useful example of how representation theory of
a reductive group G can influence the structure of the tropical varieties of spaces
related to G. Some of what follows will appear in joint work with Jessie Yang [YM],
see also [Man11].

The Grassmannian Gr2(n) is a flag variety for GLn, and the associated Pĺ’ucker

algebra R2,n is the projective coordinate ring associated to the Pĺ’ucker line bun-
dle Lω∗2 , so it has a natural homogeneous grading R2,n =

⊕
m≥0 V (mω2), where

V (mω2) is the irreducible GLn representation associated to the dominant weight
mω2 = (m,m, 0, . . . , 0). However, there is another interpretation of R2,n in terms
of the representation theory of SL2. A classical result of representation theory
states that R2,n is the algebra of SL2 invariants inside the coordinate ring k[M2×n]
of the space of 2 × n matrices. In particular R2,n ⊂ k[M2×n] is generated by
the 2 × 2 minors of a 2 × n matrix of indeterminants: {x1i, x2,i, 1 ≤ i ≤ n},
pij = x1,ix2,j − x1,jx2,i.

Changing perspective slightly, we may view M2×n as the n−fold product A2 ×
A2. The i-th copy of A2 has coordinate ring a polynomial ring on two variables:
k[x1,i, x2,i]. The group SL2 naturally acts on k[x1,i, x2,i], so its coordinate ring
has an isotypical decomposition into the irreducible representations of SL2. Hap-
pily, for k[x1,i, x2,i], this decomposition is both multiplicity-free, and contains each
irreducible representation of SL2 exactly once.

(1) k[x1,i, x2,i] ∼=
⊕
m≥0

Symm(k2).

Here we may think of Symm(k2) as the monomials of total degree m in x1,i, x2,i. We
will write V (m) = Symm(k2) for the m-th irreducible. As consequence, we obtain
the following descriptions of k[M2×n] and R2,n in terms of the representation theory
of SL2:

(2) k[M2×n] =
⊕

r∈Zn≥0

V (r1)⊗ . . .⊗ V (rn),

(3) R2,n = k[M2×n]SL2 =
⊕

r∈Zn≥0

[V (r1)⊗ . . .⊗ V (rn)]SL2 .

Immediately we see some structure. For one, R2,n is multigraded by Zn, and
the component associated to r ∈ Zn≥0 has representation theoretic meaning: it is

the space of invariant vectors [V (r1)⊗ . . .⊗V (rn)]SL2 . This grading coincides with
the homogeneous grading on R2,n induced by the action of the diagonal matrices
T ⊂ GLn.

Example 3.1. Suppose n = 3, then we are dealing with 3−fold tensor products
[V (i)⊗V (j)⊗V (k)]SL2 . The Clebsch-Gordon rule states that this space is either k
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or 0, and the former occurs precisely when i+j+k ∈ 2Z and i, j, k form the sides of
a triangle. It follows that R2,3 is a multiplicity-free under the grading by Z3, so it is
an affine semigroup algebra. The affine semigroup of integral (i, j, k) which satisfy
the Clebsch-Gordon condition is generated freely by (1, 1, 0), (0, 1, 1), (1, 0, 1) [Pop
Quiz: which tensor products of representations are these?]. This is the coordinate

ring of
∧2

(k3), the affine cone over Gr2(3).

Before we go further with R2,n, let’s review two rules for representations of a
reductive group. Any irreducible V (n) has a dual V (n)∗, which is canonically
isomorphic to V (n) itself in the SL2 case (this does not always happen). For any
pair of representations HomG(V,W ) = HomG(V (0), V ∗ ⊗ W ), where V (0) ∼= k
is the trivial representation; this is an instance of Hom − ⊗ adjunction. The
space HomG(V (0), V ∗ ⊗W ) is the space of invariants [V ∗ ⊗W ]G. For any pair of
irreducibles, HomG(V,W ) is 0 unless V = W , so we see that there is an invariant
in a 2−fold tensor product of irreducible representations is if and only if we are
considering V ∗ ⊗ V .

Now we will use properties of the category Rep(SL2) of finite dimensional SL2

representations to tease out some more structure from R2,n. For now let’s pick one
graded component [V (r1)⊗ . . .⊗V (rn)]SL2 ⊂ R2,n. We choose one additional piece
of information, a trivalent tree T with n leaves labelled 1, . . . , n.

We will play a game with T and the space [V (r1)⊗ . . .⊗V (rn)]SL2 which begins
by labelling the edge i-th connected to the i-th leaf of T with the integer ri. Next
we pick any two labelled edges which share a common vertex, say ri and rj , and
we look at the tensor product V (ri)⊗V (rj). The Clebsch-Gordon rule in Example
3.1 says that this tensor product has a multiplicity-free decomposition:

(4) V (ri)⊗ V (rj) =
⊕
s≥0

[V (s)⊗ V (ri)⊗ V (rj)]
SL2 ⊗ V (s).

You should be sure to understand this expression, and do an example (say V (4)⊗
V (7)); note that the triangle inequality ensures that only a finite number of sum-
mands contribute. Also, let’s double check that indeed [V (s)⊗V (ri)⊗V (rj)]

SL2 =
HomSL2

(V (s), V (ri)⊗ V (rj)), so each summand corresponds to a map (unique up
to scalar!) V (s)→ V (ri)⊗V (rj). The product V (ri)⊗V (rj) appears in the tensor
product V (r1)⊗ . . .⊗ V (rn), so we get the following expression:

(5) [V (r1)⊗ . . .⊗ V (rn)]SL2 =

⊕
s≥0

[V (s)⊗ V (ri)⊗ V (rj)]
SL2 ⊗ [V (s)⊗ . . . ¯V (ri) . . . ¯V (rj) . . .⊗ V (rn)]SL2 .

We can imagine that we have replaced T with labels r1, . . . , rn with a finite
collection of labellings of T , where we put an appropriate s on the edge connected
to the edges labelled ri, rj whenever [V (s)⊗ V (ri)⊗ V (rj)]

SL2 6= 0. Note that for
each of these, if we “forget” i, j we have a tree with n − 1 labelled leaves, and we
can continue with this game. Let’s pretend we did, here’s the result:

Proposition 3.2. There is direct sum decomposition [V (r1) ⊗ . . . ⊗ V (rn)]SL2 =⊕
sWT (s, r), where each WT (s, r) is 1−dimensional space, and corresponds to a

labelling of the edges E(T ) of T by s in a way such that any time three edges e, f, g
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meet at a vertex, their labels s(e), s(f), s(g) satisfy the Clebsch-Gordon condition.
In particular, WT (s, r) =

⊗
v∈V (T )[V (s(e))⊗ V (s(f))⊗ V (s(g))]SL2 .

Remark 3.3. This proposition allows us to compute the dimension of [V (r1) ⊗
. . .⊗ V (rn)]SL2 as the set of labellings s satisfying the Clebsch-Gordon conditions
at every vertex of T ; these are the lattice points in a polytope PT (r), see Figure 3.

2

2 2 2 2

2

X YZ

A notable feature of this decomposition is that the product WT (s, r)WT (s′, r′) is
a subspace of the sum

⊕
s′′≺s+s′WT (s′′, r + r′), where ≺ indicates that each entry

in s′′ is smaller than the sum of entries in s + s′. This is a hint that the tensor
product decomposition for SL2 has uncovered a useful algebraic, and ultimately
tropical structure in R2,n. To uncover this structure, we build R2,n in a different
way which depends on T from the start.

Place a direction on each edge in T (this choice won’t matter). We’re going to
build R2,n as the coordinate ring of a kind of quiver variety. let L(T ) be edges of
T which are connected to leaves, and F (T ) be the non-leaf edges, and let

(6) MT =
∏

e∈L(T )

A2 ×
∏

f∈F (T )

SL2.

We’re going to act on this space with a group defined by the non-leaf vertices
V (T ):

(7) G(T ) =
∏

v∈V (T )

SL2

We use the direction to define the action of the group G(T ) on MT . The copy of
SL2 corresponding to a vertex v acts on the left of the space corresponding to any
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outgoing edge, and on the right of the space corresponding to an incoming edge.
The proof of the following is not difficult; it makes repeated use of the identity
G\\[G×X] ∼= X for any G-space X.

Proposition 3.4.

(8) R2,n
∼= k[MT ]G(T ).

By the Peter-Weyl theorem, the coordinate ring of SL2 has a multiplicity-free
decomposition (as an SL2 × SL2 space):

(9) k[SL2] =
⊕
m≥0

V (m)⊗ V (m).

Pick an edge f ∈ F (T ), and think of each of these representations as sitting at
f , with the left V (m) sitting at the tail edge of the edge, and the right V (m)
sitting at the head. Recall also that k[A2] =

⊕
r≥0 V (r); think of each of these

representations sitting at a leaf-edge e ∈ L(T ). Make a choice of s, r from all of
these direct sums; this is an isotypical summand of the coordinate ring of MT ; by
taking invariants by G(T ) we exactly get the space WT (s, r).

Finally, we see how this extravagant construction of R2,n helps us understand
the tropical geometry of this algebra. Both coordinate rings k[SL2] and k[A2]
have a distinguished valuation, and therefore a distinguished ray of valuations by
taking R≥0 multiples. On k[A2] this valuation is given by homogeneous degree
deg : k[A2] \ {0} → Z, ie g ∈ V (n) is sent to n. To compute the valuation
v : k[SL2] \ {0} → Z we do almost the same thing; f ∈ V (n) ⊗ V (n) is sent to
n. Any multiple of deg is in fact still a valuation on k[A2], while only positive
multiplies are allowed for v; this is because the decomposition of k[SL2] is not a
homogeneous grading. We let ve, e ∈ E(T ) be the appropriate valuation for the
space at e.

Let CT ⊂ RE(T ) be the set of functions w : E(T ) → R which are non-negative
on F (T ). For any w ∈ CT we get a valuation vw on k[MT ] defined on a tensor
⊗e∈E(T )fe by the rule

∑
w(e)ve(fe). Since R2,n is a subalgebra of k[MT ], each

valuation vw passes to a R2,n. The following proposition tells us how to evaluate
vw on any member of WT (s, r).

Proposition 3.5. Let f ∈WT (s, r), then

(10) vw(f) =
∑
e∈L(T

w(e)r(e) +
∑

f∈F (T )

w(f)s(f).

Remark 3.6. Any choice of basis member for each WT (s, r) defines an adapted
basis for every valuation in CT . We will see what this means in the next lecture.

In other words, we “dot” the labelling w ∈ CT with the labelling data s, r. If T ′
is obtained from T by a projection π : T → T ′ which collapses one or more edges
in F (T ), we have a canonical inclusion CT ′ ⊂ CT as those weightings which are
0 on the collapsed edges, see Figure 3. By gluing the CT together over common
faces we obtain a polyhedral complex Tn called the space of phylogenetic trees.
We have shown that there is a realization of each point w ∈ Tn as a valuation
vw : R2,n \ {0} → R; it follows that this complex maps into every tropical variety
of R2,n.



TROPICAL GEOMETRY AND REPRESENTATION THEORY OF REDUCTIVE GROUPS 7

1.52

2.34

5.4

1.1

3

4.5 0

1.52

2.34

5.4

1.13

4.5

We finish this example by seeing what vw for w ∈ CT must do to a Pĺ’ucker
generator pij . The space [V (r1)⊗ . . .⊗V (rn)]SL2 containing pij is easy to describe;
it is the invariants in the product V (0) ⊗ . . . V (1) . . . V (1) . . . ⊗ V (0), where V (1)
only appears in the i-th and j-th places. Playing our game with T , we see that
since this space is 1-dimension, only one summand WT (s, r) can be non-zero; this
is precisely the s which assigns a 1 to every edge on the unique path in T betwee
i and j, and a 0 elsewhere. As a consequence vw(pij) is the sum of the weights on
this path. If we think of w as a metric on T , this sum is the “distance” between
the leaves labelled i and j.

4. The coordinate algebra of a G-variety

The SL2 and SL2×SL2-invariant valuations of A2 and SL2 played an important
role in constructing the space Tn of valuations on R2,n. Now we’ll see what kind of
valuations more general reductive groups can offer. In what follows X will be an
affine G-variety (if you like, take X to be the affine cone over a projective G variety).
In particular, the coordinate ring k[X] is an integral domain over k and comes
equipped with a rational G action. By collecting the irreducible sub-representations
with the same highest weight, we can form the isotypical decomposition of k[X]:

(11) k[X] =
⊕
λ∈Λ+

X

Wλ.

The space Wλ
∼= HomG(V (λ),k[X])⊗V (λ) is called the isotypical space of weight

λ. The set Λ+
X ⊂ Λ+ is composed of those weights for which Wλ 6= 0. If bλ ∈

Wλ, bη ∈ Wη are highest weight vectors, must have that bλbη 6= 0 is a highest
weight vector of weight λ+ η. It follows that Λ+

X is closed under addition; it’s also

easy to see that 0 ∈ Λ+
X as k ⊂W0. The lattice generated by Λ+

X is denoted ΛX .
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Example 4.1 (Affine Toric Varieties). In the fashion of toric geometry we let
N be a lattice and M = Hom(N,Z) be the dual lattice. Let σ ⊂ N ⊗ Q be a
rational polyhedral cone with dual cone σ∨ = {u | 〈u, v〉 ≥ 0 ∀v ∈ σ} ⊂ M ⊗ Q.
The algebraic torus TN = N ⊗ Gm has group of characters Hom(N ⊗ Gm,Gm)
= Hom(N,Hom(Gm,Gm)) = Hom(N,Z) = M , each of which corresponds to
an irreducible TN representation: χu : TN → Gm y k (in fact every irreducible
representation of TN is of this form). The cone σ defines the affine semigroup
algebra k[Sσ] =

⊕
u∈σ∨∩M kχu, this is the free vector space over the set of lattice

points in σ∨ equipped with multiplication χuχu′ = χu+u′ . An element t ∈ TN acts
on f =

∑
ciχui ∈ k[Sσ] by t ◦ f =

∑
χui(t)ciχui ; this makes k[Sσ] into a TN -

algebra. The variety Uσ = Spec(k[Sσ]) is then the (normal) affine toric variety
associated to the cone σ.

Example 4.2 (The Plücker algebra). Let Rm,n be global section ring of the Plücker
line bundle L(ωn−m) on the Grassmannian variety Grm(n). This algebra can be
realized as the SLm invariant subalgebra of the polynomial ring k[xij , 1 ≤ i ≤
m, 1 ≤ n ≤ n], where the xij are thought of as the entries of an m×n matrix X of
parameters, and SLm acts by left transformations. This algebra is generated by the
m ×m determinant minors pI of X, where I ⊂ [n] is a subset of size m. The pI
form a basis of the representation V (ωm) =

∧m
(kn), note that this is the irreducible

representation of GLn associated to the dominant weight ωm = (1, . . . , 1, 0, . . . 0)
(here there are exactly m 1’s). Likewise, the degree k monomials in the pI span the
irreducible representation V (kωm) of GLn with highest weight kωm. This gives us
the following isotypical decomposition of Rm,n as a GLn algebra:

(12) Rm,n =
⊕
k≥0

V (kωm).

Example 4.3 (SL2). The coordinate ring k[SL2] can be presented as the quotient
of k[x11, x21, x12, x22] by the principal ideal < x11x22 − x21x12 − 1 >. The xij are
specializations of the coordinate functions obtained from the inclusion of varieties
SL2 → M2,2. This map can viewed as an inclusion M∗2,2 = End(V (1)) ⊂ k[SL2],
where the vectors in End(V (1)) is identified with the space spanned by the entry
functions on M2,2. In particular, f = Ax11 + Bx21 + Cx12 + Dx22 ∈ End(V (1))
has value Aa+Bb+ Cc+Dd on the matrix with entries a, b, c, d.

In the same way, we have inclusions End(V (n)) ⊂ k[SL2] for every irreducible
representation V (n) = Symn(k2) of SL2. These inclusions end up being enough to
describe the whole coordinate ring, in particular we get the following decomposition:

(13) k[SL2] =
⊕
n≥0

End(Symn(k2)).

Example 4.4 (G). In general, the Peter-Weyl theorem tells us that the coordinate
ring of k[G] is the sum of the ”matrix entry” functions as a G×G variety.

Theorem 4.5 (Peter-Weyl). The coordinate ring K[G] decomposes as a multiplicty-
free sum over all dominant weights Λ:

(14) k[G] =
⊕
λ∈Λ+

End(V (λ)).
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Since V (λ∗) is the dual vector space of V (λ), we can identify the space of endomor-
phisms End(V (λ)) with V (λ∗)⊗ V (λ) with by sending f ⊗ v to the endomorphism
w → f(w) ⊗ v. For this reason, elements of k[G] can be thought of as (sums of)
entries in matrices obtained by having G act on the representations V (λ).

Example 4.6 (A2). The space A2 comes equipped with an action of SL2. The
isotypical components of k[A2] = k[x, y] with respect to this action are exactly the
irreducible representations V (n). In particular V (n) = Symn(k2) can be taken
to be the space of monomials of total degree n in the x, y. Let U ⊂ SL2 be the
set of 2 × 2 upper triangular matrices with 1’s along the diagonal. Up to right
multiplication by elements of U , the equivalence class of A ∈ SL2 is determined
by its first column, both of whose entries cannot be simultaneously 0. In this way,
SL2/U ∼= A2 \ {0}. Since A2 \ {0} ⊂ A2 differs only in codimension 2, we conclude
that k[SL2/U ] =

⊕
n≥0 V (n).

Example 4.7 (G/U). Let U ⊂ G be a maximal unipotent subgroup (take for
example the upper triangular matrices in G = GLn with 1’s along the diago-
nal). The quotient G/U is a quasi affine variety with coordinate ring k[G]U =⊕

λ∈Λ+
V (λ) ⊗ V (λ∗)U . For any irreducible representation V (λ), the space of in-

variants V (λ)U is just the line through any highest weight vector kkbλ. It follows
that kk[G/U ] =

⊕
λ∈Λ+

V (λ); ie the coordinate ring of G/U is the multiplicity-

free sum of the irreducible representations of G. We let G//U denote the spectrum
Spec(k[G/U ]). The quotient space G/U includes into G//U as a dense open subset,
and these spaces agree in codimension 2.

The algebra k[G/U ] retains a right action by a maximal torus T ⊂ G (indeed,
V (λ)U is the weight space kbλ for T ). As a consequence, k[G/U ] has a grading
by Λ+ ⊂ Λ, so that V (λ) ⊗ V (η) is mapped onto V (λ + η) by the multiplication
operation in k[G/U ]. This operation is called Cartan multiplication.

Example 4.8 (G/B). Let Lλ∗ be the line bundle on G/B associated to the B-
character λ∗ ∈ Λ+. The global section space H0(G/N,Lλ∗) is isomorphic to V (λ)
as a G-representation. It follows that the graded section ring RLλ∗ is the multiplicity
free sum

⊕
N≥0 V (Nλ). In particular the multiplication operation in this ring maps

V (Nλ) ⊗ V (Mλ) onto V (N + Mλ); this must be Cartan multiplication. As a
consequence, RmathcalLλ∗ is realized as a Λ-graded subalgebra of k[G/U ] for any λ.

Example 4.9 (Matrices). Let Mm×n be the space of m × n matrices with m ≤
n. This space has an action by the group GLm × GLn, where GLm acts by row
transformations on the left and GLn acts by column transformations on the right.
Let Π+(m) ⊂ Λ+(m) be the subset of those dominant GLm weights with all positive
components. In particular λ ∈ Π+(m) is a tuple (λ1, . . . , λm) where 0 ≤ λm ≤
. . . ≤ λ1. Notice that each weight in Π+(m) also defines a dominant weight of
GLn. With these definitions, we have:

(15) k[Mm×n] =
⊕

λ∈Π+(m)

Vm(λ)∗ ⊗ Vn(λ),

where Vn(λ) and Vm(λ) are the GLn, resp. GLm representations associated to λ.
In the transposed situation we have k[Mn×m] =

⊕
λ∈Π+(m) Vn(λ)∗ ⊗ Vm(λ).

Recall the dominant weight ordering on Λ+, where λ ≺ η if and only if η−λ is a
positive sum of positive roots. If we take two irreducible representations V (λ), V (η),
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we can consider the irreducible decomposition of the tensor product V (λ)⊗V (η) =⊕
Tλ,ηµ ⊗ V (µ). For any weight in one of the V (µ) in this decomposition, we must

have µ ≺ λ+ η.
Now fix two isotypical components Wλ,Wη ⊂ k[X] and consider the product

WλWη = m(Wλ ⊗ Wη) ⊂ k[X]. The multiplication map m : k[X] ⊗ k[X] →
k[X] must be a map of G-representations, so WλWη must be isomorphic to a
subrepresentation of Wλ⊗Wη; this implies that WλWη ⊂

⊕
µ≺λ+ηWµ. When Wµ

appears in WλWη for λ, η ∈ Λ+
X we say that the weight λ + η − µ ∈ R (here R

is the root lattice) is a tail of X. Likewise, the cone CX generated by the tails in
ΛX ⊗Q is called the tail cone of X.

A normal affine G-variety is said to be a spherical variety if it has a dense, open
B-orbit, where B ⊂ G is a Borel subgroup. A torus T is its own Borel subgroup, so
we can conclude that any toric variety is a spherical variety for T . The isotypical
components of the coordinate ring k[X] of an affine spherical variety are always
multiplicity-free, that is, each Wλ ⊂ k[X] is a single copy of V (λ). All of the
examples we have discussed are spherical varieties.

5. G-valuations

A G-valuation on an affine G-variety X is a valuation v : k(X)\{0} → R that is
invariant under the action of G. The set of G-valuations on k(X) is denoted VX ; we
will see that VX comes with a polyhedral structure. For the basics of G-valuations
and spherical varieties we refer to the book of Timashev, [Tim11, Chapter 4]. In
what follows k(X)(B) denotes the monoid of B-eigenfunctions in k(X) (caution:
this is not the field of B-invariant rational functions). The following proposition is
due to Knop [Kno]:

Proposition 5.1. Any G-valuation v ∈ VX is determined by its restriction to
k(X)(B).

For any G-variety, the dual Weyl chamber ∆∨ defines a cone of G-valuations on
k[X]. Taking h ∈ ∆∨, the valuation vh : k[X] \ {0} → R satisfies vh(fλ) = h(λ) for
any fλ ∈ Wλ, and vh(

∑
fλ) = MAX{h(λ) | fλ 6= 0}. The restriction of vh to the

subfield k(X)B ⊂ k(X) of B-invariant rational functions is the trivial valuation.
For the remainder of this section we will make the (extreme) assumption that

X is an affine spherical variety, as this both simplifies matters and handles all of
the classes of tropical variety that we will discuss. Note in this case k(X)B = k.
Any f ∈ k(X)(B) has an associated weight λ(f) ∈ ΛX , and the function λ :
k(X)(B) → ΛX is a map of groups. We’ve assumed that X is spherical, so it has
an open B-orbit, this implies that the kernel of λ is k∗; this gives an identification
ΛX ∼= k(X)(B)/k∗.

Any G-valuation v : k[X] \ {0} → Q over k defines a linear map on k(X)(B)
by restriction, and therefore a linear function ρ(v) : ΛX → Q. This leads to the
following description of G-valuations on an affine spherical variety due to Luna and
Vust, [LV].

Theorem 5.2 (Luna, Vust). The map ρ : VX → Hom(ΛX ,Q) is 1 − 1, and the
image is a convex polyhedral cone which contains ∆∨.

In particular, for f ∈ k(X)(B) and v ∈ VX , the value v(f) is computed by the
pairing 〈ρ(v), λ(f)〉. For f ∈ k[X] with isotypical decomposition f =

∑
fη we then

have:
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(16) v(f) = MAX{〈ρ(v), η〉 | fη 6= 0}.

Brion [Bri] and Knop [Kno] tell us more about the geometry of the cone VX .

Theorem 5.3 (Brion, Knop). The set VX is a simplicial cone in Hom(ΛX ,Q).
Furthermore, there is a finite set β1, . . . , β` ∈ ΛX ⊗Q such that:

(1) VX = {v ∈ Hom(ΛX ,Q) | 〈v, βi〉 ≤ 0 ∀i = 1, . . . , `},
(2) β1, . . . , β` define a root system, and VX is the fundamental domain for the

action of the associated Weyl group WX .

The set β1, . . . , β` is call the spherical root system of X. It can be shown that
the tail cone CX is generated over R≥0 by the βi, and moreover that CX = (VX)∨.
The Weyl group WX is called the little Weyl group of X.

Remark 5.4. The cone VX is a generalization of the vector space N ⊗ R, which
indexes TN -valuations on a toric variety Y (Σ) with fan Σ ⊂ N⊗Q, and contains the
tropicalizations of very affine varieties X ⊂ Y (Σ). This analogy leads to spherical
tropicalization, see [Vog], [KMa].

Example 5.5 (G). The weights Λ+
G can be identified with Λ+, and the correspond-

ing description of the tail cone CG contains λ− η for all η ≺ λ. It follows that VG
can be identified with the dual Weyl chamber ∆∨.

Remark 5.6. A version of the description of VX for spherical varieties remains true
for general G-varieties. If we fix v0 : k(X)B \ {0} → Q a valuation on the subfield
of B-invariant rational functions, and consider the collection V0 of G-invariant
valuations whose restriction to k(X)B coincides with v0. Pick v1 ∈ V0 and define
ρ(v) : V0 → Hom(Λ,Q) as ρ(v)(λ) = v(fλ) − v1(fλ), where fλ ∈ k(X)(B). This is
independent of our choice of eigenfunction, and identifies V0 with a simplicial cone
in the Q-vector space Hom(ΛX ,Q). In particular, any vh : k(X) \ {0} → Q for
h ∈ ∆∨ restricts to the trivial valuation on k(X)B . For general X, the set VX can
be realized as a polyhedral subcomplex of an infinite union of half-spaces (over all
non-trivial v0) along a common hyperplane (containing valuations whose restriction
to k(X)B is trivial), see [Tim11, Chapter 20].

6. Branching Problems, branching varieties, branching cones

Let φ : H → G be a map of connected, reductive groups over k. The branching
problem associated to φ amounts to describing the functor φ∗ : Rep(G)→ Rep(H)
given by pulling back G-representations along φ. Due to the semi-simplicity of
Rep(H) and Rep(G) the functor φ∗ is determined by what it does to irreducible
representations of G:

(17) φ∗(V (λ)) =
⊕

η∈Λ+(H)

HomH(V (η), φ∗(V (λ)))⊗ V (η).

In this way, φ∗ is computed from the branching spaces HomH(V (η), φ∗(V (λ)))
composed of the H representation maps from irreducibles of H into irreducibles
of G. From now on we will drop the φ∗ and write HomH(V (η), V (λ)) when the
pullback functor is clear from context.
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Example 6.1. [GLn−1 ⊂ GLn] Let GLn−1 ⊂ GLn be the upper diagonal inclu-
sion. The branching space HomGLn−1(V (η), V (λ)) is always either k or 0. It has
dimension 1 if and only if the weights η, λ interlace:

(18) λn ≥ ηn−1 ≥ λn−1 ≥ . . . ≥ η1 ≥ λ1.

Example 6.2 (SL2 ⊂ SL2 × SL2). The branching problem for the diagonal in-
clusion SL2 ⊂ SL2 × SL2 requires us to find HomSL2

(V (i), V (j) ⊗ V (k)) for all
i, j, k. Recall that HomSL2(V (i), V (j)⊗V (k)) = [V (i)⊗V (j)⊗V (k)]SL2 , and that
the latter spaces are described by the polyhedral Clebsch-Gordon rule.

Example 6.3. [G ⊂ G×G] Describing HomG(V (λ), V (η)⊗ V (µ)) requires us to
understand [V (λ∗)⊗V (η)⊗V (µ)]G. In the case SLn, this space has a combinatorial
description given by the Littlewood-Richardson rule. In fact, [BZ01a] give a way to
construct a number of polyhedral rules for every G. One such rule, equivalent to
the Littlewood-Richardson rule, is given by the Berenstein-Zelevinsky triangles:

1

1

1

1

1

1

1

1

This is a picture of a Berenstein-Zelevinsky pattern. Each vertex is assigned a
positive integer in a way that pairs of pairs of vertices across a common hexagon
from each other have equal sum. By choosing the clockwise orientation, we can read
the list of sums of pairs: a1, . . . , ar, b1, . . . , br, c1, . . . , cr along each of the three
edges. Let α =

∑
aiωi, β =

∑
biωi, γ =

∑
ciωi, where ωi is the i-th fundamental

weight of SLr+1. Each triangle with boundary α, β, γ labels a unique invariant in
[V (α)⊗ V (β)⊗ V (γ)]SLr+1 .

As is the case with many important vector spaces in representation theory,
branching spaces HomH(V (η), V (λ)) can be studied by considering the appropri-
ate algebra. Consider the coordinate algebra of the variety H/UH ×G/UG, where
UH , UG are choices of maximal unipotent subgroups. This space is spherical as a
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H×G space, and in fact carries a right action by a maximal torus TH×TG ⊂ H×G.
Accordingly, the coordinate ring k[H/UH × G/UH ] is graded by Λ+(H) × Λ+(G)
with isotypical components V (η)⊗ V (λ) for all dominant η, λ.

The map φ : H → G enables us to define a diagonal H action on H/UH ×G/UG
by acting on the left of H and the left of G through φ. We let R(φ) = k[H/UH ×
G/UG]H be the invariants with respect to this action; this is the branching algebra
associated to φ. The branching algebra retains the right action by TH×TG, defining
the following decomposition as a Λ+(H)× Λ+(G)-graded algebra:

(19) R(φ) =
⊕

η∈Λ+(H),λ∈Λ+(G)

HomH(V (η), V (λ))

Here we have identified HomH(V (η), V (λ)) with the invariant space [V (η∗) ⊗
V (λ)]H . The GIT quotient Spec[R(φ)] = H\\[H//UH × G//UG] = B(φ) is called
the branching variety associated to φ. See [Man16], [HMM], [HJL+09] for more on
the structure of branching varieties.

Remark 6.4. Instead of taking unipotent quotients in the definition of branching
variety we could have taken Borel quotients resulting in a GIT quotient of the
product of flag varieties H/BH ×G/BG. Such a construction requires the choice of
an H−linearized line bundle on H/BH×G/BG, for example Lη�Lλ. The resulting
projective branching variety Bη,λ(φ) is also an interesting object. For generic η, λ
it is in fact a Mori dream space with Cox ring R(φ).

Example 6.5 (B(n− 1, n)). Let B(n− 1, n) be the branching variety of the upper
diagonal inclusion GLn−1 ⊂ GLn. The branching rule in example 6.1 can be used to
show that the associated branching algebra is a polynomial ring on 2n−1 variables,
where one of the variables is allowed to be inverted. As a consequence, B(n−1, n) ∼=
Gm × A2n−2.

Example 6.6 (Pn(SL2)). We have in fact already met the branching algebra of the
diagonal inclusion SL2 ⊂ SLn−1

2 , it is the Plücker algebra R2,n. We let Pn(SL2)
denote the associated branching variety.

Example 6.7 (Pn(G)). This branching problem amounts to describing the n-fold
tensor product invariants for irreducible representations of G. In Example 6.3 we
saw that the case n = 3 has a polyhedral counting rule, this hints at some beautiful
tropical geometry.

The space B(n, n + 1) is a toric variety, accordingly the branching problem
associated to the inclusion GLn ⊂ GLn+ 1 is essentially combinatorial. This is
part of a broader theme, where the more combinatorial structures (e.g. tropical,
toric) we can attach to R(φ), the more equipment we have to understand the
branching problem associated to φ.

Now consider a factorization φ = ψ ◦ π of the map φ : H → G in the category of
reductive groups, where ψ : H → L, π : L→ G for L a connected, reductive group.
Using the identity X ∼= G\\[G×X] for the diagonal action of G on G×X for any
G-variety X, we can conclude:

(20) B(φ) = H × L\\[H/UH × L×G/UG],
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(21) R(φ) = [k[H]UH ⊗ k[L]⊗ k[G]UG ]H×L.

The description of R(φ) as an H×L invariant algebra corresponds to an iterated
decomposition of branching spaces, where first we branch V (λ) over π and then we
branching the resulting irreducibles over ψ:

(22) HomH(V (η), V (λ)) =
⊕

µ∈Λ+(L)

HomH(V (η), V (µ))⊗HomL(V (µ), V (λ)).

Through the factorization φ = ψ ◦ π each of the cones ∆∨H ,∆
∨
L,∆

∨
G define valu-

ations on R(φ). In fact, the vector spaces Λ∨H ⊗R ⊃ ∆∨H and Λ∨G ⊗R ⊃ ∆∨G define
valuations, since k[H/UH ] and k[G/UG] are in fact homogeneously graded by the
actions of TH and TG. For the following see [HMM].

Proposition 6.8. Each point in the cone ∆(ψ, π) = [Λ∨H ⊗ R] × ∆∨L × [Λ∨H ⊗ R]
defines a valuation on the branching algebra R(φ). If (h1, h2, h3) ∈ ∆(ψ, π) with
associated valuation vh1,h2,h3

and f ∈ HomH(V (η), V (µ)) ⊗ HomL(V (µ), V (λ))
then vh1,h2,h3(f) = h1(η) + h2(µ) + h3(λ).

Proposition 6.8 can be extended to any finite factorization φ = ψ1 ◦ . . . ◦ ψk
in the expected way; this should remind us of the construction of the cone CT
of valuations on the Plücker algebra R2,n. In particular, for any such factoriza-
tion there is a corresponding cone ∆(ψ̄) of valuations, and these can be computed
on elements of R(φ) by evaluating weights on coweights. Furthermore, the cone
∆(ψ1, . . . , ψj , ψj+1, . . . , ψk) naturally contains ∆(ψ1, . . . , ψj ◦ ψj+1, . . . , ψk) as the
face where the ∆∨Li coweight is chosen to be 0. In this way, a small diagram of
factorizations of φ corresponds to a polyhedral complex of valuations on R(φ).

Example 6.9. Go back to Section 3 to see an instance of one of these complexes:
the space of metric trees Tn built from the cones CT . A tree T gives a factorization
of the inclusion SL2 ⊂ SLn−1

2 by the following rule. Place a copy of SL2 on each
edge of T , and start at the edge connected to the vertex labelled 1. We’ll put the
unique orientation on T which makes 1 a source and all other leaves sinks. Now
each trivalent vertex has an incoming copy of SL2 and two or more outgoing copies
of SL2; each time we see this we make the associated diagonal inclusion. The
result can be turned into a factorization of SL2 ⊂ SLn−1

2 . For SL2, ∆∨ = R≥0
and Λ∨ ⊗ R ∼= R, as a consequence the associated cone is CT .

Example 6.10 (Tubings of Dynkin diagrams). Let G be simple and simply-connected.
It is well-known that each such G corresponds to a Dynkin diagram. Dynkin dia-
grams represent the simple roots of the Lie algebra Lie(G) = g along with the angles
between pairs. Collections of simple roots in turn correspond to distinguished sub-
groups of G. For example, for a collection S of simple roots there is an associated
Levi subgroup LS ⊂ G of semi-simple type given by the corresponding sub-Dynkin
diagram. In this way, a chain of Levi subgroups LS1 ⊂ . . . ⊂ LSk ⊂ G can be
represented by a tubing of the Dynkin diagram of G, see Figure 6.10.

We can let 1 ⊂ G be the bottom of this inclusion. We know there must then be
a corresponding cone of valuations in the branching algebra k[G/U ], and likewise
in any subalgebra, e.g. the projective coordinate ring of a flag variety. When we
carry out this operation for type An, we can recover the space T +

n of metric trees
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whose leaves are cyclically ordered 1, . . . , n, see Figure 6.10. This applies to any
flag variety of type A, not just the Grassmannian Gr2(n); and we recover the full
space Tn by moving T +

n around by the action of the Weyl group Sn. Similarly, we
see that the space T +

n can be realized as a set of valuations on any flag variety of
types B,C,G, and F , and the underlying graph of these Dynkin diagrams are all
chains. However, we do not recover Tn as a set of valuations on the flag varieties of
these groups as their Weyl groups are different (ie we get different spaces of metric
trees).

1
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For more on this example see [Man12].
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Lecture 2

In this lecture we continue with the theme of relating portions of tropical varieties
to combinatorial objects derived from representation theory. We will need another
tool to construct these sets: the connection between higher rank valuations and
cones of rank 1 valuations. Varieties equipped with an action by a reductive group G
come with a distinguished class of higher rank valuations come from the associated
action of the Lie Algebra. I will describe this construction and several associated
connections between tropical geometry and branching problems in representation
theory.

7. A motivating Example II

First we return to the Plücker algebra R2,n for some more inspiration. Recall
that if we are given a trivalent tree T we obtain a cone of valuations CT on R2,n

along with a direct sum decomposition of R2,n as a k vector space:

(23) R2,n =
⊕

s,r∈ST

WT (s, r),

where s, r ∈ ZE(T ) are an integral labelling of the edges of T (recall that r =
(r1, . . . , rn) labels the leaf-edges L(T )). The set ST is collection of all labellings
(s, r) of the edges of T which satisfy the Clebsch-Gordon conditions at every non-
leaf vertex of T . It is straightforward to check that ST is an affine semigroup;
in fact it is the set of lattice points in a polyhedron PT ⊂ RE(T ) defined by the
imposing the triangle inequalities at each non-leaf vertex of T . Furthermore, ST
is saturated (ie if mω ∈ ST for some m ∈ Z≥0, then ω ∈ ST ) with respect to

the lattice LT ⊂ ZE(T ) defined by imposing the even-sum portion of the Clebsch-
Gordon conditions at each trivalent vertex of T . It follows that the s which make
this work for a given r are the lattice points in a polytope PT (r).

All of this is interesting becauseR2,n is not quite graded by ST , but it is very close
to being so: indeed WT (s, r)WT (s′, r′) ⊂

⊕
s′′≺s+s′WT (s′′, r+r′). Here ≺ indicates

that each entry of s′′ is smaller than the sum of the corresponding entries in s + s′.
Furthermore, it is possible to show that the component WT (s + s′, r + r′) is never
0. When (s, r) ∈ ST , the 1−dimension space WT (s, r) defines an SL2 invariant
in the tensor product V (r1) ⊗ . . . ⊗ V (rn). Each tree T provides a different tool
to count the dimensions of the tensor product invariant spaces of SL2, and these
trees are encoded into the tropical objects CT ⊂ Tn. Tropical geometry provides
an organizing tool for combinatorial results in representation theory.

Returning to the multiplication operation in R2,n, we consider a valuation vp :
R2,n \{0} → R for p an interior point of CT ; ie p labels every edge e ∈ E(T ) with a
non-zero number p(e). The valuation vp defines a filtration F p on R2,n, where F p≤d
is the k vector space of all f ∈ R2,n with vp(f) ≤ d. A key observation is that each
space F pd is a direct sum of the spaces WT (s, r). For now we pick a basis member
bT ,s,r ∈WT (s, r) for each space.

(24) F p≤d =
⊕

vp(bT ,s,r)≤d

WT (s, r)
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We say that the basis BT = {bT ,s,r | (s, r) ∈ ST } is adapted to vp for all p ∈ CT .
The associated graded algebra grp(R2,n) is the algebra

⊕
F p≤d/F

p
<d. The following

results are now possible from the factWT (s, r)WT (s′, r′) ⊂
⊕

s′′≺s+s′WT (s′′, r+r′).

Proposition 7.1. For any p in the interior of CT we have:

(1) the associated graded algebra grp(R2,n) is isomorphic to the affine semi-
group algebra k[ST ],

(2) the equivalence classes of the BT in grp(R2,n) form a basis and certain sub-
sets of BT solve our tensor product counting problem,

(3) the equivalence classes of the Plücker generators p̄ij ∈ k[ST ] are an alge-
braic generating set.

We say that the Plücker generators pij , 1 ≤ i < j ≤ n form a Khovanskii basis
of R2,n with respect to every point p ∈ CT . As a consequence, the ideal JT which
presents the affine semigroup algebra k[ST ] as a quotient by the generators p̄ij is
the initial ideal ind(p)(I2,n) of the Plücker ideal I2,n:

(25) JT = ind(p)(I2,n).

Here d(p) is the vector (. . . vp(pij), . . .); ie the list of distances between pairs of
leaves of T .

8. Khovanskii bases

Now we will learn more about the elements of tropical geometry and combinato-
rial commutative algebra which made the theory of the Plücker algebra work. We
refer to [KMb] for much of what follows. Let A be a k-domain, let v : A \ {0} → Q
be a valuation which is trivial over k, and let the S(A, v) = {q | ∃f, v(f) = q}
denote the value semigroup of v. For any q ∈ Q we can define the subspace
Fq = {f | v(f) ≤ q} ⊂ A. This is a vector space over k. Similarly we can de-
fine F<q to be the subspace of regular functions with value strictly less than q.
Clearly if q < r then Fq ⊂ F<r is a (possibly not proper) subspace. The associated
graded algebra is defined to be the graded algebra grv(A) =

⊕
q∈Q Fq/F<q, notice

that this is also a k algebra.
If q is not a value of v then Fq/F<q ∼= 0, so we can take this sum to be over

the value semigroup of v: grv(A) =
⊕

q∈S(A,v) Fq/F<q. For any f ∈ A we can

make the initial form f̄ ∈ grv(A) with respect to v by taking the equivalence class
f̄ ∈ Fv(f)/F<v(f). The map which assigns elements in A to their equivalence classes

respects multiplication: f̄g = f̄ ḡ.

Definition 8.1. A subset B ⊂ A is called a Khovanskii basis with respect to v if
the equivalence classes B̄ ⊂ grv(A) generate grv(A) as a k-algebra.

Suppose that A is positively graded, ie A =
⊕

n≥0An; this is a simplifying
assumption which holds for many of the algebras we consider. Suppose additionally
that A possesses a finite Khovanskii basis {b1, . . . , bn} = B ⊂ A with respect to
v. We let π : k[x] → A be the associated map from a polynomial ring so that
π(xi) = bi, and I = ker(π). Finally, let evB(v) = (v(b1), . . . , v(bn)) ∈ Qn be the
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vector of weights defined by v. The following summarizes some of the results in
[KMb] which relates v and grv(A) to the tropical geometry of the ideal I.

Proposition 8.2 (classification of valuations with Khovanskii basis B). Let v, B
be as above, then:

(1) There is a cone Cv in the tropical variety Trop(I) so that evB(v) ∈ Cv and
grv(A) ∼= k[x]/inu(I) for any u in the interior of Cv

(2) In particular, inu(I) is a prime ideal, for any u ∈ Cv.

(3) For any u ∈ Cv there is a valuation vu : A\{0} → Q with Khovanskii basis
B so that evB(vu) = u.

(4) A valuation v′ has Khovanskii basis B if and only if v′ = vu for some
u ∈ Trop(I) with inu(I) a prime ideal.

When C ⊂ Trop(I) is Cv for some valuation with Khovanskii basis B, we say
that C is a prime cone of Trop(I) and we let inC(I) denote the initial ideal inu(I).
The valuation vu : A \ {0} → Q for u ∈ C is called the weight valuation associated
to u; it can be computed by the following formula:

(26) vu(f) = MAX{〈α,u〉 | ∃p(x) =
∑

Cβxβ ∈ k[x], Cα 6= 0, π(p) = f}.

In a moment we will see how this formula can be simplified to a finite expression
for any f ∈ A.

Definition 8.3. We say that B ⊂ A is an adapted basis with respect to v if it is
a k vector space basis of A with the additional property that the set B ∩ Fq is a k
vector space basis for any q ∈ S(A, v). See [KMb, ].

The lineality space Lin(J) of an ideal J ⊂ k[x] is the set of weights w ∈ Qn
such that inw(J) = J . It can be shown that Lin(J) is a Q-vector subspace of Qn.
We let NC = Lin(inC(I)).

Proposition 8.4. Let C ⊂ Trop(I) be a prime cone, with corresponding lineality
space NC . We have:

(1) there is a basis B ⊂ A composed of certain monomials in the B which is
adapted to each vu for u ∈ C,

(2) for any vu for u ∈ C, if f =
∑
Cαbα is the linear expression in the basis

B, vu(f) = MAX{〈α,u〉 | Cα 6= 0},

(3) for any u,w ∈ C and bα ∈ B, vu+w(bα) = vu(bα) + vw(bα), ie any element
of B defines a linear function on C.

Definition 8.5. For a Q-vector space N let PL(N,Q) denote the semialgebra of
piecewise linear functions on N with values in Q under the operations F⊗G = F+G
and F ⊕G = MAX{f, g}.

For a cone σ ⊂ N ⊗ Q, a function v : A \ {0} → PL(N,Q) is σ-valuation if it
satisfies v(fg) = v(f) + v(g), v(f + g) ≥ MAX{v(f), v(g)} (computed pointwise)
when restricted to σ.
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We let MC be the dual vector space of NC above. As we have seen, any bα ∈ B
defines a linear function `α : C → Q; we extend this function to all of MC . Now
we let vC(f) ∈ PL(NC ,Q) be the function vC(f) = MAX{`α | f =

∑
Cαbα}.

The function vC(f) is piecewise-linear, by construction vC is a C-valuation, and
vC(f)[u] = vu(f) for any u ∈ C and f ∈ A.

Definition 8.6. The value semigroup S(A, vC) ⊂ M is taken to be the image of
B under the map vC defined above.

Note that vC(bαbβ)[u] = vu(bαbβ) = vu(bα)+vu(bβ) = 〈vC(bα),u〉+〈vC(bα),u〉,
so S(A, vC) is actually a semigroup. [Caution: bα+β is not necessarily in B, however
〈α+ β,u〉 equals the the top term of vC(bαbβ)[u] for every u ∈ C].

Remark 8.7. This construction can be repeated with R in place of Q. With this
modification, any f ∈ A defines a continuous map vC(f) : C → R. It follows that
for any prime cone C the construction above defines a continuous map Φ : C → Uan,
where Uan is the analytification of U = Spec(A) from the previous lecture.

Remark 8.8. If dim(C) = dimQ(NC) is the Krull dimension of A, the assignment
vC : B → S(A, vC) is 1 − 1. This will be related to constructions involving higher
rank valuations shortly. If A has representation theoretic meaning, S(A, vC) can
be a useful discrete object.

Remark 8.9. For any affine spherical variety X over k, the valuation cone VX
can be mapped into an appropriate prime cone C. One observes that for any
G-valuation w : k[X] \ {0} → Q, grw(k[X]) is finitely generated, and all of the
associated graded algebras have grv(k[X])) for v in the interior of VX as a common
associated graded algebra. It follows that a Khovanskii basis of an interior v is a
Khovanskii basis B ⊂ k[X] for any valuation in VX . Let I be the defining ideal
of this Khovanskii basis. The assignment v → evB(v) ∈ Trop(I) then maps VX
linearly into some prime cone C.

Remark 8.10. Following [KMb, ], various partial compactifications of U ⊂ X can
be constructed from choices of integral points in a prime cone C and the dual lattice
inside M . This construction recovers the wonderful compactification when G is a
simple of adjoint form.

Remark 8.11. In [KMb] a flat family E → Y (C) is defined over a toric variety
associated to C with general fiber U and special fibers the spectra of the various
associated graded algebras defined by the valuations in C. When U = G a reductive
group, and C is the cone ∆∨, this family recovers the Vinberg enveloping monoid
S(G) of G, see [HMM].

9. Revisiting branching algebras

A number of the features we saw in the case of the Plücker algebra R2,n carry
over to the cones ∆(ψ̄) of valuations on the branching algebra R(φ) corresponding
to a factorization φ : ψk ◦ · · · ◦ ψ0.

H
ψ0−−−−→ L1

ψ2−−−−→ . . .
ψk−1−−−−→ Lk

ψk−−−−→ G

In analogy with the spaces WT (s, r), let W (µ̄) = HomH(V (µ0), V (µ1)) ⊗ · · · ⊗
HomLk(V (µk), V (µk+1)) for a tuple of dominant weights µ̄ with µi ∈ Λ+(Li).
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Similarly to the semigroup ST , we let S(ψ̄) ⊂
∏

Λ+(Li) be the set of µ̄ with W (µ̄) 6=
0. We summarize the properties of these objects in the following proposition.

Proposition 9.1. Let φ = ψ1 ◦ · · · ◦ ψk be a factorization of φ : H → G, and let
R(φ) be the corresponding branching algebra, then the following must hold:

(1) There is a direct sum decomposition R(φ) =
⊕

µ̄∈S(ψ̄)W (µ̄) as a k vector
space.

(2) For any W (λ̄),W (η̄) we have W (λ̄)W (η̄) ⊂
⊕

µ̄≺λ̄+η̄W (µ̄), where ≺ is the

dominant weight ordering in
∏

Λ+(Li). Moreover, the top component in
W (η̄ + λ̄) is always nonzero.

(3) For any point h ∈ ∆(ψ̄), the associated graded algebra grh(R(φ)) is finitely
generated, and the decomposition grh(R(φ)) =

⊕
µ̄∈S(ψ̄)W (µ̄) is a grading.

In particular, any choice of basis for each space W (µ̄) defines a basis of
R(φ) adapted to each valuation vh.

For a general point h ∈ ∆(ψ̄), the associated graded algebra grh(R(φ)) has a
description in terms of the horosherical contractions (see [Pop87]) of the groups
L1, . . . , Lk. For a reductive group G, we can consider a general point h ∈ ∆∨. The
spectrum Gc of the graded algebra grh(k[G]) of the G × G valuation vh has an
explicit description as a GIT quotient:

(27) Gc = T\\[G//U × U\\G],

where T acts on the right of G//U and the left of U\\G by a certain action, see
[HMM]. The coordinate ring k[Gc] has an identical isotypical decomposition with
that of G, but it inherits an extra T action.

Proposition 9.2. For a general point h ∈ ∆(ψ̄), the associated graded algebra
grj(R(φ)) is isomorphic to the following invariant ring:

(28) grh(R(φ)) = [k[H/UH ]⊗ . . .⊗ k[Lci ]⊗ . . .⊗ k[G/UG]]H×...×Lk .

Roughly, grh(R(φ)) is formed in the same way build R(φ) from the maps ψ̄, only
with Lci in place of Li.

It follows that every valuation corresponding to a point in ∆(ψ̄) has a finite
Khovanskii basis. This means that there exists some way to identify S(ψ̄) with one
of the value semigroups S(A, vC) from the previous section.

Remark 9.3. Following the previous section, there is a compactification X(ψ̄) ⊃
B(φ) by a combinatorial normal crossings divisor associated to every choice of
factorization of φ. Presumably the boundary of this compactification is interesting
and contains some representation theoretic data.

Remark 9.4. We can think of any chain of inclusions H1 ⊂ . . . ⊂ Hk ⊂ G as a
factorization of 1 → G. The branching algebra of the latter is k[G/U ]; so each
such inclusion defines a cone of valuations on k[G/U ]. These valuations are all
T -homogeneous, so they pass to the projective coordinate rings of the flag varieties
G/B.
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Example 9.5. We consider the factorization 1→ GL1 → GL2 → . . .→ GLn−1 →
GLn of the inclusion of the identity into GLn by upper diagonal inclusions. We’ve
seen that each step of this factorization GLk → GLk−1 has a simple branching
algebra composed of interlacing patterns. Putting the pieces together from above
yields a cone of valuations isomorphic to ∆∨1 × . . . × ∆∨n on k[GLn/U ], where
∆∨i is the dual Weyl chamber of GLi. The value semigroup Sn attached to this
construction is then the semigroup of integral Gel’Fand-Zetlin patterns. A general
choice from the valuation cone realizes k[Sn] as an associated graded algebra of
k[GLn/U ]. This recovers the Gel’fand-Zetlin toric degenerations of flag varieties
of type A.

µ1,1

µ2,2µ1,2

µ3,3µ2,3µ1,3

µ4,4µ3,4µ2,4µ1,4

10. Higher rank valuations and cones of valuations

Now we shift our attention to valuations of higher rank. Instead of transmitting
information from a variety into another space, higher rank valuations can capture
important combinatorial structures in their images. Higher rank valuations also
help with asymptotics of counting problems related to algebraic geometry. This
application is most prominantly on display in the developing theory of Newton-
Okounkov bodies, [LM09], [KK12].

For simplicity we will consider valuations which take values in Zr equipped with
the lexicographic ordering. As in the rank 1 case, a valuation v : A \ {0} → Zr
is a function which satisfies v(fg) = v(f) + v(g), v(f + g) ≤ MAX{v(f), v(g)},
and v(C) = 0 ∀C ∈ k \ {0}. The definitions for Khovanskii basis B ⊂ A and
adapted basis B ⊂ A can be taken verbatim from above. We let grv(A) denote
the associated graded algebra and S(A, v) = {v(f) | f ∈ A \ {0}} denote the value
semigroup of a valuation v. For a graded algebra A =

⊕
γ∈ΓAγ we say that v

is homogeneous if v(f) = MAX{v(fi) | fi ∈ Ai}; ie if the value of any f ∈ A is
achieved on one of its homogeneous components.

Definition 10.1. The Newton-Okounkov cone P (A, v) is the convex hull of S(A, v)
in Rr. If A is positively graded, the Newton-Okounkov body ∆(A, v) is the convex

hull of the set { v(f)
deg(f) | f ∈ A \ {0}}. [Caution: ∆(A, v) is usually not polyhedral!]

Remark 10.2. The value semigroup S(A, v) is comparable to the affine semigroup
S(A, vC) from Section 2. In fact, we will see that these two constructions always
coincide in a certain sense.
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We let rank(v) be the rank of the lattice generated by S(A, v), this is bounded
above by the Krull dimension of A.

Remark 10.3. If rank(v) is equal to the Krull dimension of A then the volume of
∆(A, v) recovers the degree of A; ie the first coefficient of its Hilbert polynomial,
see [KK12, ].

In general, a branching problem takes the following form: we have a domain
A (the branching algebra) which is graded by a group Γ (a lattice of dominant
weights). In this case a homogeneous maximal rank valuation v : A→ Zn can help
with a solution. Over an algebraically closed field, any maximal rank valuation must
have one dimensional leaves, this means that the vector space Fq/F<q ⊂ grv(A)
is always 1-dimensional. If v is homogeneous and if the grading support of A in Γ
generates Γ as a group, then there must be a homomorphism π : Zn → Γ so that
π(v(f)) = γ for all f ∈ Aγ .

To see this, note that we can simply send v(f) to γ; the homogeneity of v
and the valuation axioms then ensure that this map is well-defined and a group
homomorphism. Now we can recover dim(Aγ) as the number of points in the set
S(A, v)γ = {v(f) | f ∈ Aγ}. If additionally S(A, v) is a saturated semigroup, ie it
satisfies S(A, v) = P (A, v) ∩ Zn, then S(A, v)γ is the number of lattice points in a
convex set P (A, v)γ ⊂ P (A, v). Finally, if v has a finite Khovanskii basis, P (A, v)γ
is a convex polytope, and the solution to our counting problem is reduced to an
issue of linear programming.

Following this description, each valuation v with finite Khovanskii basis is poten-
tially a distinct “polyhedral counting rule” for the counting problem represented
by A. It is then useful to compare and relate these rules; this is where tropical
geometry can step in as an organizing tool.

Theorem 10.4. [[KMb]] Let A be graded by a group Γ, and suppose that Aγ is
always finite dimensional. Let v : A \ {0} → Zr be a homogeneous valuation of
rank r with finite Khovanskii basis B ⊂ A and associated ideal I, then we have the
following:

(1) there is a prime cone Cv ⊂ Trop(I) of dimension ≥ rank(v) such that
grv(A) ∼= k[x]/inu(I) for all u in the interior of Cv,

(2) for any collection M = {bu1, . . . ,ur} of rank(v) integral linearly indepen-
dent points from the interior of Cv there is a valuation vM : A \ {0} → Zr
with grv(A) ∼= grvM (A) and S(A, v) ∼= S(A, vM ),

(3) there is a basis B ⊂ A of B monomials which is simultaneously adapted to
v and every vM constructed from Cv.

In particular, Theorem 10.4 implies that all of the counting rules given by val-
uations with Khovanskii basis B ⊂ A are represented by distinct prime cones
Cv ⊂ Trop(I). Furthermore, a prime cone in Trop(I) of dimension r gives a way
to produce a valuation of rank r with prescribed associated graded algebra. In this
case S(A, v) ∼= S(A, vC) from Section 2. Also notice that if v has maximal rank
then v(B) = S(A, v), and each space Fq/F<q ⊂ grv(A) is spanned by exactly one
member of B.
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11. String valuations

We have seen that higher rank valuations can potentially resolve counting prob-
lems which manifest on multigraded algebras. Now we’ll see a way to produce
higher rank valuations from the equipment of a G action.

Let e : A→ A be a nilpotent k−linear operator. This means that for any f ∈ A,
ek(f) for k = 1, 2, . . . is eventually 0. Any such operator defines a discrete valuation
by the formula ve(f) = MAX{` | e`(f) 6= 0}. There is a similar formula which
assigns a higher rank valuation ve to a sequence e1, . . . , er of nilpotent operators.
Starting with the previous formula, we define `i to be {` | e`i(fi−1) 6= 0}, where
fi−1 is e`i−1(fi−2). Conceptulally, using e1, we “raise” f until we “hit a wall” (ie
e`1(f) = 0), then we do the same with e2 and the last non-zero function obtained
from the previous sequence. We continue this way until we are out of operators ei.

Proposition 11.1. For a sequence e = e1, . . . , er, the function ve : A \ {0} →
Zr defined by ve(f) = (`1, . . . , `r) defines a valuation on A when Zr is given the
lexicographic ordering.

We call ve the string valuation associated to the sequence e1, . . . , ek (note: this
valuation depends on the ordering of the ei).

Question 11.2. When does the valuation ve have a finite Khovanskii basis?

We use this construction with a particular set of nilpotent operators. Let g
be the Lie algebra of G with its decomposition gss = z ⊕ gss, where z is the Lie
algebra of the center and gss is the semisimple part. We fix a system of Chevallay
generators; H1, . . . ,Hr; f1, . . . , fr; e1, . . . , er ∈ gss, where r is the rank of g. The
H1, . . . ,Hr span a Cartan subalgebra hss of g, and together with z they generate
the Lie algebra h of a maximal torus T . The elements f1, . . . , fr and e1, . . . , er span
the Lie subalgebras n−, n+ of a corresponding pair of maximal unipotent subgroups
U−, U+ ⊂ G. Each triple {fi, Hi, ei} generates a copy of the Lie algebra sl2. The
essential relations of this Lie algebra are [H, fi] = −αi(H)fi, [H, ei] = αi(H)ei for
any H ∈ hss, where αi ∈ R is the corresponding root. This information is stored
in the Cartan matrix A = [aij ], where aij = αj(Hi).

Recall that the Weyl group W of g is generated by elements called simple reflec-
tions s1, . . . , sr which are in bijection with the simple roots α1, . . . , αr. There is a
length function on W, where w ∈ W is sent to the length of one of its so called
reduced word decompositions in the simple reflections. The longest word ω0 ∈ W
always has length N equal to the number of positive roots. We let R(ω0) be the
set of reduced word decompositions of ω0. Each element i ∈ R(ω0), i = (i1, . . . , iN )
corresponds to a decomposition ω0 = si1 ◦ . . . ◦ siN .

A reduced decomposition i ∈ R(ω0) corresponds to a sequence of raising oper-
ators ei = (ei1 , . . . , eiN ). Note that this sequence could have repetitions. We may
view each ei as a string of nilpotent operators on the coordinate ring k[U+] of the
unipotent subgroup corresponding to n+. Accordingly, we let vi : k[U+]\{0} → ZN
be the corresponding string valuation.

The variety U+ × T is naturally a dense open subset of U−\\G ∼= G/U , so
we obtain string valuations vi : k[G/U ] → ZN+h, where h = dim(h). These
induce string valuations on each projective coordinate ring of the flag varieties
G/P . Likewise, U+ × T × T can be realized as a dense, open subset of P3(G),
yielding a string valuation vi,3 : k[P3(G)] → ZN+2h. We note that the valuations
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on k[G/U ] and k[P3(G)] are T , resp. T 3-homogeneous. For the following we refer
the reader to [Man16] and [BZ01b].

Theorem 11.3. For each string parameter i we have the following:

(1) There are polyhedral cones Pi ⊂ RN+h, Pi,3 ⊂ RN+2h so that S(k[G/U ], vi)
= ZN+h ∩ Pi and S(k[P3(G)], vi,3) = ZN+2h ∩ Pi,3,

(2) Each value semigroup S(k[G/U ], vi), S(k[P3(G)], vi,3) is saturated and there-
fore finitely generated,

(3) k[G/U ] and k[P3(G)] possess finite Khovanskii bases with respect to these
valuations, accordingly there are maximal dimensional cones Ci and Ci,3 of
valuations on these algebras.

The emergence of prime cones is due to the main results in [KMb]. One can find
explicit inequalities for the string cones Pi and Pi,3 in [Man16] and [BZ01b]. Kaveh
[Kav15] has realized these valuations on G/U via Bott-Samuelson resolutions. A
particual choice yields a semigroup which is linearly isomorphic to the Gel’fand-
Zetlin patterns from Example 9.5. The Berenstein-Zelevinsky triangles emerge from
a particular choice of string for the variety P3(SLr).

Remark 11.4. The construction of string valuations is part of the larger story of
birational sequences developed in [FFL].

Remark 11.5. The idea of using the string parameters to degenerate the coordi-
nate algebra of a G-algebra goes back to Alexeev and Brion [AB04] and Caldero
[Cal02]. In these cases the valuations obtained are adapted to Lusztig’s dual canon-
ical basis [Lus90].

12. The Plücker algebra R3,n

There have been several developments in the tropical geometry of Grassmannian
varieties lately. Rietsch and Williams [RW] have explained how to obtain many
Newton-Okounkov bodies from their cluster structure. Each of the value semigroups
attached to their construction is finitely generated, it follows from what we’ve
seen in Section 10 that there is an associated full dimensional prime cone in the
tropicalizations corresponding to the associated Khovanskii bases. The Rietsch-
Williams construction is studied in the m = 2 and m = 3, n = 6 cases in [BFF+].

The Plücker algebra Rm,n can be realized as the ring of invariants in k[Mm×n]
with respect to the left action of SLm. We may think of each column of Mm×n has
a copy of Am with its standard action by SLm. Accordingly, the coordinate ring
of k[Am] has isotypical decomposition

⊕
N≥0 V (Nω1) with multiplication given by

Cartan multiplication: k[Am] ⊂ k[SLm/U ]. It follows that Rm,n is a (multi)graded
subalgebra of k[Pn(SLm)].

We can use the construction from Section 3 associated to a tree T on Pn(G).
We obtain, for each trivalent tree T a cone of valuations [∆∨]E(T ) with associated
graded algebra the coordinate ring of a quotient TE(T )\\[

∏
v∈V (T ) P3(G)]. Here we

think of each copy of P3(G) as being associated to a vertex v ∈ V (T ), with each of
its three actions by T associated to an edge leaving v. When two tori are associated
to the same edge (ie, when two vertices are connected by the same edge), we quotient
by a certain diagonal subtorus T ⊂ T 2. To complete this construction to obtain
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valuation cones of maximal dimension, it suffices to find T 3-homogeneous full rank
valuations on k[P3(G)]. These are of course provided by the string valuations from
Section 11. For the following see [Man16].

Theorem 12.1. For any space Pn(G), we get a full rank valuation with finite
Khovanskii basis, a toric degeneration, and a maximal cone of valuations associated
to any choice of the following data:

(1) a trivalent tree T with n leaves,
abstract

(2) a choice of T 3-homogeneous valuation at each vertex of T , in particular the
string valuations suffice.

We can apply this theorem to the Plücker algebra Rm,n ⊂ k[Pn(SLm)] to obtain
many degenerations and prime cones, however the Khovanskii bases of the resulting
can be wildly different. For G = SL3 the situation is more controllable, and it is
possible to realize k[P3(SL3)] as the quotient of a polynomial ring by a hypersur-
face; this yields three distinct full dimensional prime cones. The intial forms of
these cones are illustrated in the figure. Two of these prime cones are extracted
from string valuations, unlike the third. The non-string prime cone comes from a
construction related to the longest root of sl3 and the Wess-Zumino-Novikov-Witten
model of conformal field theory, see [MZ14],[Man13] for more details.

-

-

-

Any maximal rank valuation with one of these three prime cones may be placed
at the vertices of a tree T and used to induce a full rank valuation on R3,n. The
Khovanskii bases for these valuations have a nice description, they are in bijection
with subtrees T ′ ⊂ T with two properties: any leaf of T ′ is also a leaf of T ,
and for any pair of leaves `1, `2 ∈ L(T ′), the number of trivalent vertices on the
unique path from `1 to `2 is odd. This can be shown to recover the Gel’fand-Zetlin
patterns when T is a ”caterpillar” tree. The actual members of the Khovanskii
bases of these valuations are always invariants in a tensor product only involving

a 3-divisible number of copies of V (ω1), and there are no more than
∑bn3 c
i=0

(
n
3i

)
of

them.



TROPICAL GEOMETRY AND REPRESENTATION THEORY OF REDUCTIVE GROUPS 26

Remark 12.2. The material in this section has numerous ties to the cluster al-
gebra structure on the coordinate ring of Pn(G). This topic has been extremely
active. Gross, Hacking, Keel, and Kontsevich [Le16] prove that the Cluster struc-
ture on k[P3(SLr)] has a number of nice properties which allow a cluster solution
to the associated branching problem to emerge without mentioning representation
theory. They also prove a toric degeneration result which is very much in line with
what appears in Section 8. More work on these varieties and the deep relationship
between their cluster structure, tropical geometry, and associated representation
theory appears in the papers of Le [Le16], Goncharov and Shen [GS15], and Magee
[Mag].
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Lecture 3

In this lecture I will apply the techniques of the previous two lectures to several
classes of interesting varieties associated to a reductive group G. We will see how
combinatorial and polyhedral objects from representation theory emerge naturally
from the tropical geometry of these examples.

13. A motivating example III: Outerspace and character varieties

In this Section we follow [Man14]. The construction of X (Fg, G) given above
benefits from a quiver interpretation. Let Qg be the quiver with precisely one
vertex and g edges. Instead of placing a Hom-space on each edge of Qg, let’s put
in a copy of G, thought of as an G×G-variety. We’ll assign G to the unique vertex
of Qg, and have it act in the ”quiver fashion” on the edge space Gg; this means
that each incoming arrow gets a right action and each outgoing arrow gets a left
action. Notice this just means that we act on each copy of G in the edge space
by the adjoint action. When we take the affine GIT quotient by the vertex action
(with respect to the trivial character), we recover X (Fg, G).

Now, what if we do this exact same construction, only with a larger quiver?
We define G(Q) = GV (G) and M(Q) = GE(Q). the copy of G ⊂ GV (G) at a
vertex v ∈ V (Q) acts on copies of G ⊂ GE(Q) associated to the edges which
contain it; on the right for incoming edges and the left for outgoing edges. We
let X (Q,G) = G(Q)\\M(Q). Unlike the case with actual quiver varieties, it turns
out the answer only depends on the first Betti number of the chosen quiver Q, in
particular directions of arrows do not matter. For the following see [Man14] and
[FL13].

Theorem 13.1. [M; Florentino, Lawton] Let Q be a connected quiver with β1(Q) =
g, then X (Q,G) ∼= X (Fg, G).

Sketch of proof. Since G//G ∼= pt (right action) and [G × G]//G ∼= G ((right, left)
action) as G, respectively G×G spaces, we need only consider the case where every
vertex of Q has valence at least 3. Now one proves that if an edge e joins two
distinct vertices of valences r+ 1, s+ 1, then [G×G]\\[Gr ×G×Gs] ∼= G\\[Gr+s],
where the action of the first G is on the right of the Gr and the left of G, and the
action of the second G is on the right of G and the left of Gs, and the action of G
on Gr+s is on the left. This effectively “collapses” any edge with boundary having
more than 1 vertex. �

Remark 13.2. Other character varieties can be described by attaching cells to Q
and insisting that the product of any entries from the boundary of a cell is the
identity.

Now we specialize to the case G = SL2, (we will say more about general con-
nected reductive G in a moment). Recall the isotypical decomposition of the coor-
dinate ring k[SL2]:

(29) k[SL2] =
⊕
n≥0

End(V (n)).
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Recall that V (n) = Symn(k2), and that SL2×SL2 acts on each isotypical compo-
nent of k[SL2] irreducibly. Following the quiver construction above, each Q gives
an inclusion of coordinate algebras:

(30) π∗Q : k[X (Fg, SL2)]→ k[SL
E(Q)
2 ]

Each copy of SL2 comes equipped with the valuation v : k[SL2]\{0} → Z which
assigns f ∈ End(V (n)) the number n. There is an associated compactification of
SL2 ⊂ X ⊂ P4 = Proj(k[a, b, c, d, t]) which is cut out by the equation ad−bc−t2 =

0. Let X̂ be the affine cone of this compactification. The valuation v is −degD for
the divisor D ∼= P1 × P1 defined by t = 0. Note that everything in sight carries an
action of SL2×SL2. As a consequence, there is a cone of valuations on X (Fg, SL2)

which we can identify with CQ = RE(Q)
≥0 ; one copy of R≥0 for each copy of SL2.

We can imagine a point q ∈ CQ as a metric on the quiver Q (possibly with some 0
edges).

A surjective map of quivers π : Q → Q′ obtained by contracting edges in Q
corresponds to a canonical inclusion π∗ : CQ′ → CQ, obtained by sending q ∈ CQ′
to the function π∗(q)[e] = q(π(e)) if e is not contracted, and π∗(q)[e] = 0 if e
is contracted. In this way, all the faces of CQ are identified with CQ′ for some
π : Q → Q′. A quiver Q gives a cone CQ of maximal dimension (= 3g − 3) if Q
is trivalent with β1(Q) = g. We note that two quivers give the same cone if one is
obtained from the other by reversing a few arrows.

The variety X (Fg, G) has a large group of algebraic automorphisms coming from
the outer automorphism group Out(Fg) of the free group. For any ρ ∈ X (Fg, G)
and τ ∈ Out(Fg) we obtain a new representation τ ◦ ρ of Fg into G. For a fixed
quiver Q we obtain a new cone of valuations on k[X (Fg, SL2)] by precomposing each
v ∈ CQ with τ∗ : k[X (Fg, SL2)]→ k[X (Fg, SL2)]. In order to take this action into
account, we introduce markings of quivers (see [CV86], [Man14]). Fix the quiver
Qg of with β1(Qg) = g and |V (Qg)| = 1. Loosely speaking a marking π : Qg → Q
is a topological map on the associated 1−complexes of these quivers which induces
a homotopy equivalence (the marking itself is taken up to homotopy). The end of
it is that each marking induces a specific isomorphism between X (Fg, G) and the
quotient X (Q,G); the group Out(Fg) then changes acts on these isomorphisms by
changing the marking.

In [CV86], Culler and Vogtmann introduce a (very large) simplicial space Og
called outer space in order to study Out(Fg). This space is built with a simplex

of dimension 3g − 4 for every quiver marking (up to reversal of arrows). Let Ôg
be the space obtained by ”coning” over Og; that is, introduce a simplicial cone
(of dimension 3g − 3) instead of a simplex for each marking. The following is in
[Man14].

Theorem 13.3. There is a 1 − 1 map Φg : Ôg → X (Fg, SL2)an, realizing every
(possibly scaled) point of outerspace as a valuation on k[X (Fg, SL2)]. In particular,

the cell in Ôg corresponding to a marked quiver Q is mapped bijectively to CQ.

From now on we identify Ôg with its image in X (Fg, SL2).

In order to figure out how the complex Ôg maps into the tropical varieties of

X (Fg, SL2) we need to understand how the valuations in Ôg are computed on
regular functions of the character variety. Character varieties are named as such
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essentially because their coordinate functions are characters of the representations
which make up their points. For any ρ ∈ Hom(Fg, SL2) and word w ∈ Fg we can
take the trace τw(ρ) of the matrix ρ(w) ∈ SL2; this is invariant under equivalence
of representations, so it passes to a regular function τw : X (Fg, SL2) → A1. The
τw are called the traceword functions on X (Fg, SL2). It can be shown that they
span k[X (Fg, SL2)]. We are interested in computing vq(τw) for some point in the
valuation cone q ∈ CQ associated to a marked quiver Q.

b

b

b

b

1

4

3

2

a1

t1

a3

a4

t3 t5

a2 t2

t4

The marking m : Qg → Q tells us exactly how to associate w ∈ π1(Qg) with a
path m(w) ∈ Q; it turns out there is always a ”minimal” choice in a certain sense.
Using m(w) we can compute the weight ωw(e) of w at each edge e ∈ E(Q), this
is the number of times m(w) passes through e. To compute vq(τw) we ”dot” the
weights with the metric value q(e) at each edge of Q:

Proposition 13.4.

(31) vq(τw) =
∑

e∈E(Q)

ωw(e)q(e).

Remark 13.5. This rule is the non-tree analogue of the computation of the value
of a valuation in a cell of the space of phylogenetic trees CT on a Plücker monomial
in the Plücker algebra R2,n.

The following theorem wraps up the properties of the valuations Ôg, see [Man14]:

Theorem 13.6.

(1) For each marked quiver Q there is a set of traceword functions τw which
form an adapted basis for each vq, q ∈ CQ.

(2) For each marked quiver Q the (finite) set of traceword functions with weight
≤ 2 on each edge of Q is a Khovanskii basis for every vq, q ∈ CQ.

Remark 13.7. We have set up a comparison between the complex Ôg and the
space of phylogenetic trees on n leaves. The latter can be realized as an actual
tropical variety of the Plücker algebra, can anything like this be proved for outer
space? A partial answer comes from considering spanned quivers; these are quivers
with β1 = g along with a choice of spanning tree T ⊂ Q, and a labelling of the edges
E(Q) \E(T ) by numbers 1, . . . , g. We obtain an associated polyhedral complex Sg
by gluing together the cones CQ associated to spanned quivers along maps which
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preserve the labelled edges. Using Theorem 13.6, we can embed Sg into the non-
negative points of the tropical tropical variety associated to the set of traceword
functions which have weight ≤ 2 along the labelled edges. It is unknown if this set
accounts for the whole (non-negative part of the) tropical variety.

If Q is trivalent and q ∈ CQ is chosen from the interior, the associated graded

algebra grq(k[X (Fg, SL2)]) is an affine semigroup algebra k[SQ]. Let LQ ⊂ ZE(Q)

be the lattice of integer points w : E(Q)→ Z with the property that w(e) +w(f) +
w(g) ∈ 2Z whenever e, f, g share a vertex. Let PQ ⊂ RE(Q) be the cone defined
by the conditions w(e) ≥ 0 ∀e ∈ E(Q), and the inequalities which ensure that
w(e), w(f), w(g) are the sides of a triangle whenever e, f, g share a vertex. In short,
we ask that the Clebsch-Gorden rule for SL2 tensor product decomposition hold at
each vertex of Q. The semigroup SQ is PQ ∩ LQ.

The normal toric variety Spec(k[SQ]) can be obtained in a pleasant way using the
construction X (Q,−) associated to the quiverQ. The singular matrices SLc2 ⊂M2,2

carry an SL2 × SL2 action, so we may feed it into the quiver construction used in
Theorem 13.1 to obtain X (Q,SLc2); this is isomorphic to Spec(k[SQ]).

The cone CQ can also be obtained by taking degrees along the divisors in a certain
combinatorial normal crossings compactification of X (Fg, SL2); this is obtained
by making the construction X (Q,X), where SL2 ⊂ X is the compactification
corresponding to the highest weight valuation v : k[SL2] → Z above. This is a

projective GIT quotient by SL
V (Q)
2 taken with respect to the outer tensor product

of line bundles �e∈E(Q)O(1) on the product XE(Q). The divisors at infinity in this
compactification are also obtained with the quiver construction. Each irreducible
component is obtained by replacing the X on one edge of Q with a copy of the
SL2 × SL2 divisor D ⊂ X.

14. X (Fg, G) for general connected reductive G

We briefly summarize some results from [Man16].
The approach to the tropical geometry of X (Fg, SL2) is to first equate this

variety with X (Q,SL2) for a marked quiver Q, and then use this relaxed context to
port the SL2×SL2-invariant tropical geometry of SL2 onto each edge of the quiver
Q. This works for a general connected reductive group G to a point. Recall that
this group also has distinguished cone of valuations isomorphic to the dual Weyl
chamber ∆∨. Associated to this cone we also have a G×G compactification G ⊂ X
by a combinatorial normal crossings divisor obtained by adding one divisor for each
simple positive root at infinity (this is the wonderful compactification if G is the
adjoint form of a simple Lie algebra g). We will list the benefits and drawbacks of
this construction.

(1) Any point in the cone CQ,G = (∆∨)E(Q) defines a valuation on k[X (Fg, G)]
with finite Khovanskii basis,

(2) The associated graded algebra of a point taken from the interior of CQ,G is
the coordinate ring of k[X (Q,Gc)], where Gc is the horospherical contrac-
tion of G; in particular a new action by TE(Q) is gained by passing to the
associated graded algebra.
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(3) There is an associated compactification X (Q,X) with combinatorial nor-
mal crossings divisors obtained by applying projective GIT.

(4) Unfortunately, the space X (Q,Gc) is not toric, so the cone CQ,G does not
define a full dimensional cone of valuations on X (Fg, G).

In order to complete the cones CQ,G to full dimension we will take a closer look
at the space X (Q,Gc). Recall that the contraction Gc is isomorphic to the GIT
quotient T\\[G\\U ×U//G] as a G×G variety. This implies that we can construct
X (Q,Gc) in a different way by exchanging the G quotients at the vertices for T
quotients on the edges. First we take a product of the spaces P3(G)V (G), which as
the structure of a (T × T )E(Q) variety (one action for every edge leaving a vertex).
Let TQ be the image of the embedding TE(Q) → (T ×T )E(Q), where T ⊂ T ×T acts
with characters given by weights on the left (incoming direction) and dual weights
on the right (outgoing direction). We have:

(32) X (Q,Gc) ∼= TQ\\P3(G)E(Q).

Now we can use T 3-homogeneous valuations on each copy of k[P3(G)] to obtain
a toric associated graded algebra of X (Q,Gc); and therefore also of X (Fg, G). We
summarize the necessary choices below, see [Man16].

Theorem 14.1. For each choice of the following data:

(1) a marked quiver Q,

(2) a T 3 homogeneous maximal rank valuation wv on P3(G) with finite Kho-
vanskii basis for each vertex v ∈ V (Q) (e.g. a string valuation),

there is

(1) a maximal dimension cone CQ,G ⊂ CQ,w,G of valuations on k[X (Fg, G)]
with a common adapted basis and finite Khovanskii basis,

(2) a toric degeneration of X (Fg, G) to an affine toric variety k[SQ,w,G]. This
toric variety is normal if all the wv are string valuations,

(3) a compactification X (Q,w, G) of X (Fg, G) by a combinatorial normal cross-
ings divisor.

For G = SLr we can choose the string valuation at each vertex which gives
the Berenstein-Zelevinsky triangles when applied to k[P3(G)]. The resulting value
semigroup is composed of the Berenstein-Zelevinsky quilts. Berenstein Zelevinsky
quilts are made by stitching together Berenstein Zelevinsky triangles along shared
edges over the quiver Q.

Remark 14.2. The compactifications X (Q,w, G) associated to choices of string
valuations should be interesting spaces.

15. quiver varieties

Now we turn our attention to one more type of variety built from a quiver Q: a
quiver variety. Recall that an edge e ∈ Q has a distinguished tail δ1(e) and a head
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δ2(e). We define the following group and space associated to a quiver Q with no
leaves equipped with a rank function r : V (Q)→ Z≥0:

(33) G(Q, r) =
∏

v∈V (Q)

GLr(v), M(Q, r) =
∏

e∈E(Q)

Mr(δ1(e))×r(δ2(e)).

The action of G(Q, r) on M(Q, r) is given by having GLr(δ1(e)) act on the left
of Mr(δ1(e))×r(δ2(e)) and GLr(δ2(e)) act on the right. We choose an additional piece

of information: an assignment of character dets(v) : GLr(v) → Gm to each vertex;
these are assembled into a character χs : G(Q, r) → Gm. The quiver variety
X (Q, r, s) is defined to be the GIT quotient:

(34) X (Q, r, s) = G(Q, r)\\χsM(Q, r).

The variety X (Q, r, s) is obtained by taking Proj of the graded ring RQ,r,s whose N -

th graded component is the space of invariantsRQ,r,s(N) = [CχNs ⊗k[M(Q, r)]]G(Q,r).
Now we recall the isotypical decomposition of Mm×n:

(35) k[Mm×n] =
⊕

λ∈Π+(min(m,n))

V (λ)∗ ⊗ V (λ).

Here λ is a dominant weight of the general linear group attached to the smaller
of m,n, which can likewise be regarded as a dominant weight of the larger of m,n.
Our goal is to construct degenerations of RQ,r,s(N) to affine semigroup algebras
by finding valuations on this ring, as we have done with other spaces. In analogy
with the case of character varieties X (Fg, G), notice that we can start by replacing
each space of matrices Mm×n in the description of X (Q, r, s) with its horospherical
contraction M c

m,n. As this contraction turns the dominant weight decomposition
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of k[Mm×n] into a grading, the result is a certain subalgebra of the torus quotient
of GLm/Um ×GLn/Un:

(36) k[M c
m×n] ⊂ k[GLm/Um ×GLn/Un]Tm,n .

Also in analogy with the character variety case, this reduces the problem to
understanding a certain torus quotient. We fix a character dets(v) : GLr(v) → Gm
and consider the following projective GIT quotient:

(37) Ps(v),nv (GLr(v)) = GLr(v)\\s(v)[GLr(v)/Ur(v) × . . .×GLr(v)/Ur(v)].

Here nv is the number of edges containing the vertex v in Q. This quotient slightly
differs from Pn(G), but it’s close enough that we can make use of the methods
we’ve built for such problems. We can also realize Ps(v),nv (GLr(v)) as a quotient
with respect to the trivial character of GLr(v) by making use of a “shifting trick:’ ’

(38) Ps(v),nv (GLr(v)) = GLr(v)\\0[Gm(s(v))×GLr(v)/Ur(v)× . . .×GLr(v)/Ur(v)].

HereGLr(v) acts on Gm(s(v)) ∼= Gm through the character det−s(v). The coordinate

ring k[Ps(v),nv (GLr(v))] can now be naturally realized as a Tnv+1-homogeneous
subalgebra of k[Pnv+1(GLr(v))]. This means that we can use all of our branching
and string valuation techniques on k[Ps(v),nv (GLr(v))], because these all respect the
torus action.

Lemma 15.1. For every choice of trivalent tree T with nv + 1 leaves and choice of
strings iw at the vertices of T , we obtain a Tnv+1-homogeneous toric degeneration
of k[Ps(v),nv (GLr(v))].

Now we act as in the character variety case and sew this degenerated spaces
together into a degeneration of X (Q, r, s). This relies on realizing the “horospherical
contraction” of X (Q, r, s) (where we contract each edge space Mr(δ1(e))×r(δ2(e))) as
a torus quotient of the spaces Ps(v),nv (GLr(v)), and works in the same way as the
character variety case.

Theorem 15.2. For every choice of the following data:

(1) trivalent trees Tv with nv leaves,

(2) strings i(w) at each vertex w of a Tv,

we obtain

(1) a degeneration of X (Q, r, s) to a projective toric variety,

(2) a maximal dimension cone of valuations on RQ,r,s which all share a com-
mon finite Khovanskii basis.



TROPICAL GEOMETRY AND REPRESENTATION THEORY OF REDUCTIVE GROUPS 34

References

[AB04] Valery Alexeev and Michel Brion. Toric degenerations of spherical varieties. Selecta
Math. (N.S.), 10(4):453–478, 2004.

[BFF+] Lara Bossinger, Xin Fang, Ghislain Fourier, Milena Hering, and Martina Lanini. Toric

degenerations of gr(2,n) and gr(3,6) via plabic graphs. arXiv:1612.03838[math.AG].
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