


1 Introduction

Tropical geometry is a new subject which creates a bridge between the two is-
lands of algebraic geometry and combinatorics. It has many fascinating connec-
tions to other areas as well, as we will learn in this workshop. The aim of this
lecture and these notes is to provide the tools necessary to cross these bridges.

First, we set up the necessary definitions for studying tropical objects. We
will begin with a discussion of valuations, and then discuss some essentials from
polyhedral geometry. Then we will discuss a microcosm of tropical geometry
which provides a plethora of examples, namely tropical hypersurfaces. Then,
I will give an overview of tropical varieties and the fundamental theorem of
tropical geometry. We mostly follow [MS15]

At the end of the notes in Table 1 we summarize the main notation from
tropical geometry.

2 Valuations

Tropicalization is a process we apply to varieties over a field which are equipped
with a function called a valuation, so we begin here to start the study of tropical
geometry.

Definition 2.1. A valuation on a field K is a function v : K→ R ∪ {∞} satisfying

1. v(a) =∞ if and only if a = 0,

2. v(ab) = v(a) + v(b),

3. v(a+ b) ≥ min{v(a), v(b)}.

The image of v is denoted by Γval, and is called the value group. We denote
by R the set of all elements with nonnegative valuation. It is a local ring with
maximal ideal m given by all elements with positive valuation. The quotient ring
is denoted by k and it is called the residue field.

Example 2.2. Every field has a trivial valuation sending v(K∗) = 0.

Example 2.3. (p-adic valuation) The p-adic valuation on Q is given by a prime p,
and the valuation of a rational number
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With p - a, b and (a, b) = 1 is l − k. The local ring R is the localization of Z at
< p >, and the residue field is Fp.

Example 2.4. (Puiseaux series) The Puiseaux series are the formal power series
with rational exponents and coefficients in C:

c(t) = c1t
a1 + c2t

a2 + · · ·

for ai an increasing sequence of rational numbers which have a common de-
nominator. The valuation is given by taking v(c) = a1. The Puiseaux series are
algebraically closed.

A splitting of a valuation is a homomorphism φ : Γval → K∗ such that
v(φ(w)) = w. The element φ(w) is denoted tw, and t is called a uniformizer
for K.

Question 1. Show that the residue field of C{{t}} is C.

Question 2. What is the residue field of Q with the p-adic valuation?

3 Crash Course in Polyhedral Geometry

Polyhedral geometry is a deep and beautiful subject in discrete mathematics.
Here we just give the basics of what we will need for this workshop. See [Zie95]
for more about polyhedral geometry.

Definition 3.1. A set X ⊂ Rn is convex if for any two points in the set, the line
segment between them is also contained in the set. The convex hull conv(U) of
a subset U ⊂ Rn is the smallest convex set containing U. A polytope is a convex
set which is expressible as the convex hull of finitely many points.

A polyhedral cone C in Rn is the positive hull of a finite subset of Rn:

C = pos(v1, . . . , vr) :=

{
r∑
i=1

λivi

∣∣∣∣∣ λi ≥ 0
}
.

A polyhedron is the intersection of finitely many half spaces. Bounded poly-
hedra are polytopes: these are equivalent ways to define them.

A face of a cone C is determined by a linear functional w ∈ Rn, by selecting
the points along which the linear functional is minimized:

facew(C) = {x ∈ C | wx ≤ wy for all y ∈ C}.

A face which is not contained in any larger proper face is called a facet.
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Definition 3.2. A polyhedral fan is a collection F of polyhedral cones such that
every face of a cone is in the fan, and the intersection of any two cones in the fan
is a face of each. For some examples and nonexamples, see Figure 1.

(a) These keep you cool in the tropics. (b) “I’m not a fan.”

Figure 1: Examples and nonexamples of polyhedral fans.

Definition 3.3. A polyhedral complex Is a collection Σ of polyhedra such that if
P ∈ Σ then every face of P is also in Σ, and if P and Q are polyhedra in Σ then
their intersection is either empty or also a face of both P and Q. See Figure 2 for
an example.

Figure 2: An example of a polyhedral complex.

The support |Σ| of Σ is the union of all of the faces of Σ.
There is one last thing we will need from polyhedral geometry, and that is the

notion of a regular subdivision.

Definition 3.4. Let v1, . . . , vr be an ordered list of vectors in Rn. We fix a weight
vector w = (w1, . . . , wr) in Rr assigning a weight to each vector. Consider the
polytope in Rn+1 defined by P = conv((v1, w1), . . . , (vn, wn)). The regular subdi-
vision of v1, . . . , vr is the polyhedral complex on the points v1, . . . , vr whose faces
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are the faces of P which are “visible from beneath the polytope”. More preceisely,
the faces σ are the sets for which there exists c ∈ Rn with c · vi = wi for i ∈ σ and
c · vi < wi for i 6∈ σ.

We will see an example of this shortly, as this comes up frequently.

Question 3. Find all regular subdivisions of {(0, 0), (0, 1), (1, 0), (1, 1)} and give
examples of weight vectors which give these subdivisions.

Question 4. A fan or a polyhedral complex is pure of dimension d if every
maximal face has the same dimension, d. Give examples of fans which are and
are not pure.

Question 5. A pure, d-dimensional polyhedral complex in Rn is connected through
codimension 1 if for any two d dimensional cells, there is a chain of d-dimensional
cells P = P1, . . . , Ps = P ′ for which Pi and Pi+1 share a common facet Fi. Give an
example of a polyhedral complex which is not connected through codimension
1 in R2.

Question 6. Are k-skeleta of polyhedra connected through codimension 1?

4 Tropical Varieties

4.1 Hypersurfaces

Studying hypersurfaces gives us a way to study tropical geometry in a simpler
setting. Let K be an arbitrary field, with valuation (possibly the trivial valuation).
Consider the ring K[x±11 , . . . , x

±1
n ] of Laurent polynomials over K.

Definition 4.1. Given a Laurent polynomial

f =
∑
u∈Zn

cux
u,

we define its tropicalization to be the real valued function on Rn that is obtained
by replacing each cu by its valuation and preforming all additions and multipli-
cations in the tropical semiring (R,⊕,⊗):

trop(f)(w) = min
u∈Zn

(val(cu) + u ·w) .
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Classically, the variety of the Laurent polynomial f is a hypersurface in the
algebraic torus Tn = (K∗)n over the algebraic closure of K. We now define the
tropical hypersurface associated to f.

Definition 4.2. The tropical hypersurface trop(V(f)) is the set

{w ∈ Rn | the minimum in trop(f)(w) is achieved at least twice}

Example 4.3. Here we compute the tropical line, which is the classic first exam-
ple. Let f = x+ y+ 1 in the field C{{t}}. Then,

trop(f)(w) = min (0+ (1, 0) ·w, 0+ (0, 1) ·w, 0) ,
= min(w1, w2, 0).

So, where is this minimum achieved twice? We can break this down in to 3 cases.

1. w1 = 0 ≤ w2: This happens when w1 = 0 and w2 ≥ 0. So, this is the ray
pos(e2).

2. w2 = 0 ≤ w1: This happens when w2 = 0 and w1 ≥ 0. So, this is the ray
pos(e1).

3. w1 = w2 ≤ 0: This adds to our tropical variety the ray pos(−1,−1).

So, the tropical variety is pictured in Figure 3

Figure 3: The tropical line studied in Example 4.3.

There is another way to view this set in terms of initial forms.

6



Definition 4.4. Let u 7→ tu be a splitting of the valuation on K. The initial form
of f with respect to w ∈ Rn is

inw(f) =
∑

u:val(cu)+w·u=trop(f)(w)

t−val(cu)cux
u.

Then, the tropical hypersurface trop(V(f)) is the set of weight vectors w ∈ Rn
for which the initial form inw(f) is not a unit in k[x±11 , . . . , x

±1
n ].

Example 4.5. In the previous example, we can compute

in(1,0)(f) = t
0 · 1 · x0 + t0 · 1 · x(1,0) = 1+ x

in(0,1)(f) = t
0 · 1 · x0 + t0 · 1 · x(0,1) = 1+ y

in(1,0)(f) = t
0 · 1 · x(0,1) + t0 · 1 · x(1,0) = y+ x

I like to think of this as the terms of f which, when tropicalized, achieve the
minimum on that part of the tropical variety.

Theorem 4.6 (Kapranov’s Theorem). Let K be an algebraically closed field with a
nontrivial valuation. Fix a Laurent polynomial f =

∑
u∈Zn cux

u in K[x±11 , . . . , x
±1
n ]. The

following three sets are the same:

1. the tropical hypersurface trop(V(f)) in Rn,

2. the set {w ∈ Rn | inw(f) is not a monomial},

3. the closure in Rn of {(v(y1), . . . , v(yn)) | (y1, . . . , yn) ∈ V(f)}.

Furthermore, if f is irreducible and w is any point in Γnval ∩ trop(V(f)), then the set
{y ∈ V(f) | val(y) = w} is Zariski dense in V(f).

In practice, when you wish to compute a tropical hypersurface, there is a very
practical method (this is especially good in R2).

Proposition 4.7. Let f ∈ K[x±11 , . . . , x±1n ] be a Laurent polynomial. The tropical hyper-
surface trop(V(f)) is the (n − 1)-skeleton of the polyhedral complex dual to the regular
subdivision of the newton polytope of f induced by the weigths val(cu) on the lattice
points in Newt(f).

Example 4.8. We now compute trop(V(f)) where f = 7xy+5x+14y+49 with the
7-adic valuation. We can compute the tropicalization using the newton polytope
as in Proposition 4.7.
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Question 7. Pick a univariate polynomial f and compute trop(f). Draw its graph.
What do the “corner loci” represent? Factor your polynomial into linear factors
over the min-plus semialgebra.

Question 8. In Example 4.8, compute inw(f) for one w coming from each one-
dimensional polyhedron in trop(V(f)). Pick your favorite point x ∈ trop(V(f)).
Can you find a point x ′ such that v(x ′) = x and x ′ ∈ V(f)?

4.2 Fundamental Theorem

The Fundamental Theorem gives some equivalent ways to look at tropical vari-
eties.

Definition 4.9. Let I be an ideal in K[x±11 , . . . , x
±1
n ], and let X = V(I) be its vari-

ety in the algebraic torus Tn. Then we define the tropicalization of X, denoted
trop(X), to be: ⋂

f∈I

trop(V(f)).

A tropical variety is any subset of Rn of the form trop(X), where X is a subvariety
of Tn.

Now we wish to tropicalize arbitrary varieties, not just hypersurfaces. As
we know from Gröbner basis theory, arbitrary generating sets for ideals behave
badly under taking initial forms. As we saw above in Kapranov’s theorem, our
tropicalization will reflect the behavior of an ideal under taking initial forms for
many different orderings. This should give us the first hint that we will need a
special basis for tropicalizaiton. A tropical basis is a generating set for an ideal
which behaves nicely with respect to tropicalization.
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Definition 4.10. Let I be an ideal in K[x±11 , . . . , x
±1
n ], where K is any field with

valuation. A finite generating set T of I is called a tropical basis if

trop(V(I)) =
⋂
f∈T

trop(V(f)).

Theorem 4.11. Let K be any valued field. Every ideal in K[x±11 , . . . , x
±1
n ] has a finite

tropical basis.

Definition 4.12. Let I ⊂ K[x±11 , . . . , x±1n ] be an ideal. The initial ideal inw(I) is the
ideal in k[x±11 , . . . , x

±1
n ] generated by the initial forms inw(f) for all f ∈ I.

For generic choices of w the initial form inw(f) is a unit in k[x±11 , . . . , x
±1
n ] and

the initial ideal inw(I) is equal to the whole ring. We wish to study the weight
vectors w for which inw(I) is a proper ideal in k[x±11 , . . . , x

±1
n ].

We now generalize Kapranov’s Theorem (Theorem 4.13) to all tropical vari-
eties, and not just hypersurfaces.

Theorem 4.13 (Fundamental Theorem of Tropical Geometry). Let K be an alge-
braically closed field with a nontrivial valuation. Fix an ideal I in K[x±11 , . . . , x

±1
n ]. The

following three sets are the same:

1. the tropical variety trop(V(I)) in Rn,

2. the set {w ∈ Rn | inw(I) 6= 1},

3. the closure in Rn of {(val(y1), . . . , val(yn)) | (y1, . . . , yn) ∈ V(I)}.

Furthermore, if V(I) is irreducible and w is any point in Γnval ∩ trop(V(I)), then the set
{y ∈ V(I) | val(y) = w} is Zariski dense in V(I).

Question 9. What are some examples of ideals where tropical bases are known?

Question 10. Find an example of an ideal with two generators where the two
generators do not form a tropical basis.

5 Additional exercises

Question 11. Find a friend and each write down a polynomial in C{{t}}[x±1, y±1].
Find the tropical varieties together. Verify the fundamental theorem for these
examples.
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Question 12. Tropicalize a plane in 3 space.

Question 13. Google search “structure theorem of tropical geometry”. What
kinds of objects can tropical varieties be? What properties do they have?

Question 14. Use software (gfan, polymake, or singular) to compute some ex-
amples of tropical varieties:

1. A plane curve

2. The 3× 3 determinant of a generic matrix

3. A tropical line in 3 space

symbol description
conv(?) the convex hull of ?
Γval the value group, the image of v
inw(?) the initial form of the laurent polynomial ? with respect to w
K The big field, with valuation v
k The (little) residue field R/m
m The maximal ideal of the local ring R
pos(?) the positive hull of ?
trop(V(?)) the tropical variety of the Laurent polynomial or ideal ?
R Elements of K with non-negative valuation
v a valuation

Table 1: main notation from tropical geometry
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