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Setting

Fix integers 1  k  n. We study the Grassmannian G

n

k

of k-subspaces
of Cn, and the coordinate ring C[Ĝn

k

] of its affine cone.

The ‘standard’ generators of C[Ĝn

k

] are Plücker coordinates �
I

for
I 2

�
n

k

�
= {I ✓ {1, . . . , n} : |I| = k}.

By work of Scott, C[Ĝn

k

] has a cluster algebra structure, in which all
�

I

are cluster variables.
This cluster algebra is categorified by Jensen, King and Su: more details
to follow.
One way of connecting the cluster algebra and its categorification is via
dimer models, certain bipartite ‘graphs’ drawn in a disk: again, more
details to follow.
The dimer models help to translate between combinatorics and
representation theory—this will be a theme.
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Twisted Plücker coordinates

For each I 2
�
n

k

�
, there is a cluster monomial ~�

I

2 C[Ĝn

k

]; a twisted

Plücker coordinate.
A dimer model D determines a ‘cluster’ of Plücker coordinates, in which
we can express ~�

I

as a Laurent polynomial, computable in two ways.
Marsh and Scott compute this Laurent polynomial combinatorially from
D—this expresses ~�

I

as a ‘dimer partition function’.
Alternatively, the Caldero–Chapoton cluster character computes the
Laurent polynomial homologically from a ‘maximal rigid’ object T

D

in
the JKS cluster category.
The relationship between D and T

D

is explained by work of Baur, King
and Marsh.

~�
I

ÇKP
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D
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Dimer models

Take a disc with marked points 1, . . . , n on its boundary.
A dimer D is a bipartite graph in the interior of the disc, together with
n ‘half-edges’ connecting black nodes to the marked points on the
boundary.
Require that zig-zag paths (turn right at black nodes, left and white
nodes) connect i to i� k modulo n—the collection of these paths is a
‘Postnikov diagram’, and is equivalent data to D.
Labelling each tile to the right of i i� k by i yields a set
C(D) ✓

�
n

k

�
of labels, and a cluster {�

I

: I 2 C(D)} of C[Ĝn

k

].
Get algebra A

D

by taking quiver dual to graph (vertices in faces, arrows
across edges with the black node on the left), and relations p

+

↵

= p

�
↵

whenever there are paths p

+

↵

and p

�
↵

completing an arrow ↵ to a cycle
around a black (+) and white (�) node.
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Example

Figure: A dimer model for n = 5, k = 2.
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The JKS category

The algebra A

D

is free of finite rank over a central subalgebra
Z

⇠= C[[t]].
Let e be the sum of vertex idempotents at the boundary tiles, and
B = eAe; this algebra is also free of finite rank over Z.

Theorem (Jensen–King–Su)

The category CM(B) of Cohen–Macaulay B-modules (those free of finite

rank over Z) categorifies the cluster algebra C[Ĝn

k

]. In particular, there is a

bijection between rigid objects of CM(B) (up to isomorphism) and cluster

monomials.

Theorem (Baur–King–Marsh)

The algebra B depends only on k and n (and not on D) up to isomorphism.

The B-module T

D

:= eA

D

is a maximal rigid object in CM(B), and

End
B

(T
D

)op ⇠= A

D

.
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Finding

~�
I

in CM(B)

Since ~�
I

is a cluster monomial, it has a corresponding rigid object in
CM(B), which we want to find.
Let M

I

be the rigid (indecomposable) object corresponding to the
Plücker coordinate �

I

, and P

i

that corresponding to the Plücker
coordinate �{i,··· ,i+k�1}.
All of these modules can be explicitly described, and the P

i

are the
indecomposable projective B-modules.

Proposition (Geiß–Leclerc–Schröer, Çanakçı–King–P)

Let I 2
�
n

k

�
. Then there is a ‘canonical’ exact sequence

0 ⌦M
I

L
i2I Pi

M

I

0,

determining ⌦M
I

up to isomorphism. The module ⌦M
I

corresponds to

~�
I

under the bijection in the JKS theorem.
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The CC formula

Fix a dimer model D, with corresponding maximal rigid object
T

D

2 CM(B), and set of Plücker labels C(D).
Let F = Hom

B

(T
D

,�) and G = Ext1
B

(T
D

,�); both are functors
CM(B) ! modA

D

.
Then the Caldero–Chapoton map (which gives the JKS bijection) is

CC(X) =
X

NGX

�⇡(FX)�⇡(N)

Here ⇡(FX)� ⇡(N) 2 ZC(D) is a vector computed from projective
resolutions of the A

D

-modules FX and N , and we use the notation

�x =
X

I2C(D)

�xI
I

given such a vector x.
In particular,

~�
I

=
X

NG⌦MI

�⇡(FMI)�⇡(N)
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The Marsh–Scott formula

A perfect matching µ of D is a set of edges of D (including half-edges)
such that every node of D is incident with exactly one edge of µ.
Since D has exactly k more black nodes than white, any perfect
matching must include exactly k half-edges, and the so the boundary
marked points adjacent to these half-edges form a set I(µ) ✓

�
n

k

�
.

The Marsh–Scott formula for ~�
I

is then

~�
I

=
X

µ:I(µ)=I

�wt(µ)

⇣
cf. CC: ~�

I

=
X

NG⌦MI

�⇡(FMI)�⇡(N)

⌘

for a vector wt(µ) 2 ZC(D) computed combinatorially from µ.

Theorem (Çanakçı–King–P: ‘MS=CC’)

The CC and Marsh–Scott formulae are ‘the same’, in the sense that there is

a bijection between {µ : I(µ) = I} and {N  G⌦M
I

} with the property

that wt(µ) = ⇡(FM

I

)� ⇡(N) when N and µ correspond.
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Perfect matching modules

We sketch the bijection. Let µ be a perfect matching of D.
Define an A

D

-module N̂

µ

by placing a copy of C[[t]] at each vertex,
and having arrows act by multiplication with t if they are dual to edges
in µ, and by the identity otherwise.
Applying F to the exact sequence defining ⌦M

I

gives an exact
sequence

F

�L
i2I Pi

�
FM

I

G⌦M
I

0
f g

Theorem (Çanakçı–King–P)

The submodules of FM

I

containing im f are precisely the N̂

µ

with

I(µ) = I. Setting N

µ

:= gN̂

µ

, the assignment µ 7! N

µ

is a bijection

{µ : I(µ) = I} ⇠! {N  G⌦M
I

}, and we have wt(µ) = ⇡(FM

I

)� ⇡(N
µ

).

The final part of the theorem is proved by constructing an explicit
projective resolution of N̂

µ

from µ.
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