The Caldero-Chapoton formula as a dimer partition function
 joint work with İlke Çanakçı and Alastair King

Matthew Pressland

Universität Stuttgart
Tropical Geometry Meets Representation Theory, Universität zu Köln

Setting

- Fix integers $1 \leq k \leq n$. We study the Grassmannian G_{k}^{n} of k-subspaces of \mathbb{C}^{n}, and the coordinate ring $\mathbb{C}\left[\hat{G}_{k}^{n}\right]$ of its affine cone.
- The 'standard' generators of $\mathbb{C}\left[\hat{G}_{k}^{n}\right]$ are Plücker coordinates Δ_{I} for $I \in\binom{n}{k}=\{I \subseteq\{1, \ldots, n\}:|I|=k\}$.
- By work of Scott, $\mathbb{C}\left[\hat{G}_{k}^{n}\right]$ has a cluster algebra structure, in which all Δ_{I} are cluster variables.
- This cluster algebra is categorified by Jensen, King and Su: more details to follow.
- One way of connecting the cluster algebra and its categorification is via dimer models, certain bipartite 'graphs' drawn in a disk: again, more details to follow.
- The dimer models help to translate between combinatorics and representation theory-this will be a theme.

Twisted Plücker coordinates

- For each $I \in\binom{n}{k}$, there is a cluster monomial $\vec{\Delta}_{I} \in \mathbb{C}\left[\hat{G}_{k}^{n}\right]$; a twisted Plücker coordinate.
- A dimer model D determines a 'cluster' of Plücker coordinates, in which we can express $\vec{\Delta}_{I}$ as a Laurent polynomial, computable in two ways.
- Marsh and Scott compute this Laurent polynomial combinatorially from D-this expresses $\vec{\Delta}_{I}$ as a 'dimer partition function'.
- Alternatively, the Caldero-Chapoton cluster character computes the Laurent polynomial homologically from a 'maximal rigid' object T_{D} in the JKS cluster category.
- The relationship between D and T_{D} is explained by work of Baur, King and Marsh.

Dimer models

- Take a disc with marked points $1, \ldots, n$ on its boundary.
- A dimer D is a bipartite graph in the interior of the disc, together with n 'half-edges' connecting black nodes to the marked points on the boundary.
- Require that zig-zag paths (turn right at black nodes, left and white nodes) connect i to $i-k$ modulo n-the collection of these paths is a 'Postnikov diagram', and is equivalent data to D.
- Labelling each tile to the right of $i \rightsquigarrow i-k$ by i yields a set $\mathcal{C}(D) \subseteq\binom{n}{k}$ of labels, and a cluster $\left\{\Delta_{I}: I \in \mathcal{C}(D)\right\}$ of $\mathbb{C}\left[\hat{G}_{k}^{n}\right]$.
- Get algebra A_{D} by taking quiver dual to graph (vertices in faces, arrows across edges with the black node on the left), and relations $p_{\alpha}^{+}=p_{\alpha}^{-}$ whenever there are paths p_{α}^{+}and p_{α}^{-}completing an arrow α to a cycle around a black $(+)$ and white $(-)$ node.

Example

Figure: A dimer model for $n=5, k=2$.

The JKS category

- The algebra A_{D} is free of finite rank over a central subalgebra $Z \cong \mathbb{C}[t]]$.
- Let e be the sum of vertex idempotents at the boundary tiles, and $B=e A e$; this algebra is also free of finite rank over Z.

Theorem (Jensen-King-Su)

The category $\mathrm{CM}(B)$ of Cohen-Macaulay B-modules (those free of finite rank over Z) categorifies the cluster algebra $\mathbb{C}\left[\hat{G}_{k}^{n}\right]$. In particular, there is a bijection between rigid objects of $\operatorname{CM}(B)$ (up to isomorphism) and cluster monomials.

Theorem (Baur-King-Marsh)

The algebra B depends only on k and n (and not on D) up to isomorphism. The B-module $T_{D}:=e A_{D}$ is a maximal rigid object in $\mathrm{CM}(B)$, and $\operatorname{End}_{B}\left(T_{D}\right)^{\mathrm{op}} \cong A_{D}$.

Finding $\vec{\Delta}_{I}$ in $\mathrm{CM}(B)$

- Since $\vec{\Delta}_{I}$ is a cluster monomial, it has a corresponding rigid object in $\operatorname{CM}(B)$, which we want to find.
- Let M_{I} be the rigid (indecomposable) object corresponding to the Plücker coordinate Δ_{I}, and P_{i} that corresponding to the Plücker coordinate $\Delta_{\{i, \cdots, i+k-1\}}$.
- All of these modules can be explicitly described, and the P_{i} are the indecomposable projective B-modules.

Proposition (Geiß-Leclerc-Schröer, Çanakçı-King-P)

Let $I \in\binom{n}{k}$. Then there is a 'canonical' exact sequence

$$
0 \longrightarrow \Omega M_{I} \longrightarrow \bigoplus_{i \in I} P_{i} \longrightarrow M_{I} \longrightarrow 0,
$$

determining ΩM_{I} up to isomorphism. The module ΩM_{I} corresponds to $\vec{\Delta}_{I}$ under the bijection in the JKS theorem.

The CC formula

- Fix a dimer model D, with corresponding maximal rigid object $T_{D} \in \mathrm{CM}(B)$, and set of Plücker labels $\mathcal{C}(D)$.
- Let $F=\operatorname{Hom}_{B}\left(T_{D},-\right)$ and $G=\operatorname{Ext}_{B}^{1}\left(T_{D},-\right)$; both are functors $\mathrm{CM}(B) \rightarrow \bmod A_{D}$.
- Then the Caldero-Chapoton map (which gives the JKS bijection) is

$$
\mathrm{CC}(X)=\sum_{N \leq G X} \Delta^{\pi(F X)-\pi(N)}
$$

- Here $\pi(F X)-\pi(N) \in \mathbb{Z}^{\mathcal{C}(D)}$ is a vector computed from projective resolutions of the A_{D}-modules $F X$ and N, and we use the notation

$$
\Delta^{x}=\sum_{I \in \mathcal{C}(D)} \Delta_{I}^{x_{I}}
$$

given such a vector x.

- In particular,

$$
\vec{\Delta}_{I}=\sum_{N \leq G \Omega M_{I}} \Delta^{\pi\left(F M_{I}\right)-\pi(N)}
$$

The Marsh-Scott formula

- A perfect matching μ of D is a set of edges of D (including half-edges) such that every node of D is incident with exactly one edge of μ.
- Since D has exactly k more black nodes than white, any perfect matching must include exactly k half-edges, and the so the boundary marked points adjacent to these half-edges form a set $I(\mu) \subseteq\binom{n}{k}$.
- The Marsh-Scott formula for $\vec{\Delta}_{I}$ is then

$$
\vec{\Delta}_{I}=\sum_{\mu: I(\mu)=I} \Delta^{w t(\mu)} \quad\left(\mathrm{cf} . \mathrm{CC}: \vec{\Delta}_{I}=\sum_{N \leq G \Omega M_{I}} \Delta^{\pi\left(F M_{I}\right)-\pi(N)}\right)
$$

for a vector $w t(\mu) \in \mathbb{Z}^{\mathcal{C}}(D)$ computed combinatorially from μ.

Theorem (Canakçı-King-P: 'MS=CC')

The CC and Marsh-Scott formulae are 'the same', in the sense that there is a bijection between $\{\mu: I(\mu)=I\}$ and $\left\{N \leq G \Omega M_{I}\right\}$ with the property that $w t(\mu)=\pi\left(F M_{I}\right)-\pi(N)$ when N and μ correspond.

Perfect matching modules

- We sketch the bijection. Let μ be a perfect matching of D.
- Define an A_{D}-module \hat{N}_{μ} by placing a copy of $\mathbb{C}[t t]$ at each vertex, and having arrows act by multiplication with t if they are dual to edges in μ, and by the identity otherwise.
- Applying F to the exact sequence defining ΩM_{I} gives an exact sequence

$$
F\left(\bigoplus_{i \in I} P_{i}\right) \xrightarrow{f} F M_{I} \xrightarrow{g} G \Omega M_{I} \longrightarrow 0
$$

Theorem (Çanakçı-King-P)

The submodules of $F M_{I}$ containing im f are precisely the \hat{N}_{μ} with $I(\mu)=I$. Setting $N_{\mu}:=g \hat{N}_{\mu}$, the assignment $\mu \mapsto N_{\mu}$ is a bijection $\{\mu: I(\mu)=I\} \xrightarrow{\sim}\left\{N \leq G \Omega M_{I}\right\}$, and we have $w t(\mu)=\pi\left(F M_{I}\right)-\pi\left(N_{\mu}\right)$.

- The final part of the theorem is proved by constructing an explicit projective resolution of \hat{N}_{μ} from μ.

