Seminar, Kurzzusammenfassung April - Mai

June 13, 2018

Sei A eine endlichdimensionale Algebra über einem Körper K. Ziel: die Struktur der Kategorie mod A zu verstehen.

Beispiel: Die Gruppenalgebra einer endlichen Gruppe über einem Körper, zum Beispiel $\mathbb{C}[S_3]$ oder $\mathbb{F}_2[S_2]$.

A hat eine Zerlegung als Rechtsmodul in unzerlegbare Untermoduln

$$A = P_1 \oplus P_2 \oplus \ldots \oplus P_m$$
.

Bemerkung: Betrachte die Algebra A als Rechtsmodul ber A. Dann entsprechen Rechtsuntermoduln der Algebra A in natürlicher Weise den Rechtsidealen in A.

Das Einselement kann man entsprechend zerlegen in

$$1 = e_1 + e_2 + \ldots + e_m \quad \text{mit } e_i \in P_i.$$

Die e_i sind alle idempotente Elemente, die paarweise orthogonal zueinander sind (Buch, Seite 18). Genauer, $\{e_1, \ldots, e_m\}$ ist ein vollständige Menge primitiver, orthogonaler Idempotenter, und

$$P_i = e_i A$$
.

Beispiel: $\mathbb{C}[S_3]$ ist eine halbeinfache Algebra und hat eine Zerlegung in die direkte Summe von irreduziblen Darstellungen zu den Partitionen von 3 (siehe Buch über Darstellungstheorie der symmetrischen Gruppe): (3), (2,1), (1,1,1). Dabei sind $V_{(3)}$ und $V_{(1,1,1)}$ eindimensional, $V_{(2,1)}$ ist 2 dimensional, entsprechend ist

$$\mathbb{C}[S_3] = V_{(3)} \oplus V_{(2,1)} \oplus V_{(2,1)} \oplus V_{(1,1,1)}.$$

Ein vollständiges System von primitiven, orthogonalen Idempotenten hat also 4 idempotente Elemente: $\{e_{(3)}, e_{(2,1),1}, e_{(2,1),2}, e_{(1,1,1)}\}.$

Beispiel: $\mathbb{F}_2[S_2]$ ist von Dimension 2 über \mathbb{F}_2 mit Basis $\{1, s\}$, und enthält insgesamt 4 Elemente: $\mathbb{F}_2[S_2] = \{0, 1, s, 1 + s\}$. Da $0^2 = 0$, $1^2 = 1$, $s^2 = 1$, $(1 + s)^2 = 1 + 2s + 1 = 0$, sind in $\mathbb{F}_2[S_2]$ nur die beiden Elemente 0 und 1 idempotent. $\mathbb{F}_2[S_2]$ ist, als Rechtsmodul, somit unzerlegbar.

Definition: Sei $\{e_1, \ldots, e_m\}$ ist ein vollständiges System von primitiven, orthogonalen Idempotenten für A. Dann heißt A basisch, falls $e_i A \neq e_j A$.

Beispiel: $\mathbb{C}[S_3]$ ist nicht basisch, da $e_{(2,1),1}\mathbb{C}[S_3] \simeq e_{(2,1),2}\mathbb{C}[S_3]$. Dagegen ist $\mathbb{F}_2[S_2]$ basisch.

Definition: Sei $\{e_1, \ldots, e_m\}$ ist ein vollständiges System von primitiven, orthogonalen Idempotenten für A. Sei $e_A = e_{i_1} + \ldots + e_{i_k}$ so, dass $e_{i_j} A \not\simeq e_{i_\ell} A$ für alle $j \neq \ell$, aber auch für alle $q = 1, \ldots, m$ gilt: $P_q \simeq e_{i_j} A$ für ein j. Dann nennt man

$$A^b := e_A A e_A$$

die zu A assoziierte basische Algebra.

Der für die Darstellungstheorie von A sehr wichtige Zusammenhang zwischen A und A^b wird durch das folgende Theorem herausgehoben:

Theorem: (Buch, Seite 37) mod A ist äquivalent $zu \text{mod } A^b$.

Wir haben gelernt (Buch, Seite 34):

$$A^b = e_A A e_A \simeq \operatorname{Hom}_A(e_A A, e_A A) \simeq \operatorname{End}_A(e_{i_1} A \oplus \ldots \oplus e_{i_k} A).$$

Die Linksmultiplikation $e_{i_j}A$ greift genau eine unzerlegbare Darstellung heraus. Ist A die Gruppenalgebra über $\mathbb C$ einer endlichen Gruppe, dann ist A halbeinfach und es gilt irreduzibel = unzerlegbar. Damit folgt $\operatorname{End}_A(e_{j_\ell}A) = \mathbb C$ und $\operatorname{Hom}_A(e_{j_h}A, e_{j_\ell}A) = 0$ für $h \neq \ell$. Also, ist A halbeinfach, dann ist

$$A^b = \underbrace{\mathbb{C} \oplus \ldots \oplus \mathbb{C}}_{k}.$$

Beispiel: Für $\mathbb{C}[S_3]$ sei $e_{\mathbb{C}[S_3]} = e_{(3)} + e_{(2,1),1} + e_{(1,1,1)}$, damit ist $\mathbb{C}[S_3]^b = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. Für $\mathbb{F}_2[S_2]$ gilt $\mathbb{F}_2[S_2]^b = \mathbb{F}_2[S_2]$.

Zurück zum allgemeinen Fall, wir wollen einer basischen Algebra eine Köcher zuordnen. Zuerst bestimmen wir die Knoten. Sei $e_A = e_{i_1} + \ldots + e_{i_k}$ wie oben, es gilt also $e_{i_j}A \not\simeq e_{i_\ell}A$ für alle $j \neq \ell$, aber auch für alle $q = 1, \ldots, m$ gilt: $P_q \simeq e_{i_j}A$ für ein j, somit ist $A^b := e_A A e_A$ die zu A assoziierte basische Algebra. Dann bilden die $\{e_{i_1}, \ldots, e_{i_k}\}$ ein vollständiges System von primitiven orthogonalen Idempotenten für A^b . Der zur basischen Algebra A^b assozierte Köcher hat also genau k Knoten.

Beispiel: Der Köcher zu $\mathbb{C}[S_3]^b$ hat drei Knoten, der zu $\mathbb{F}_2[S_2]$ hat nur einen Knoten.

Es sei angemerkt, dass bei der Konstruktion des Köchers im Buch angenommen wird, dass die basische Algebra zusammenhängend ist, d.h., es gibt keine nicht-triviale Zerlegung $I \cup J$ der Menge $\{i_1, \ldots, i_k\}$ so daß $e_i A^b e_j = e_j A^b e_i = 0$ für $i \in I$ und $j \in J$. Das ist aber für die Konstruktion der Knoten des Körpers nicht wichtig. Angenommen, es gibt

eine solche Zerlegung $I \cup J$ der Menge $\{i_1, \ldots, i_k\}$ so daß $e_i A^b e_j = e_j A^b e_i = 0$ für $i \in I$ und $j \in J$. Dann bedeutet es nur, dass es zwischen den Knoten zu den e_i , $i \in I$, und den Knoten zu den e_j , $j \in J$, im Köcher keine Pfeile gibt.

Zu den Pfeilen im Köcher zu A^b : Zwischen dem Knoten zu e_{i_h} und dem Knoten zu e_{i_ℓ} ist die Anzahl der Pfeile gleich der Dimension des Raumes $e_{i_h}(radA^b/rad^2A^b)e_{i_\ell}$. Übersetzt in Homomorphismen zeigt die Konstruktion, dass es zu jedem Basiselement einen A^b -Homomorphismus von $e_{i_h}A$ nach $e_{i_\ell}A$ gibt, aber das ist auch ein A-Homomorphismus, denn (Buch Seite 34)

$$A^b = e_A A e_A \simeq \operatorname{Hom}_A(e_A A, e_A A) \simeq \operatorname{End}_A(e_{i_1} A \oplus \ldots \oplus e_{i_k} A).$$

Ist A halbeinfach, so gibt es für $i_h \neq i_\ell$ keine Homomorphismen (außer dem trivialen), also gibt es keine Pfeile! Die Algebra A^b ist also in diesem Fall nicht zusammenhängend, und man kann A^b zerlegen in seine zusammenhängenden Unteralgebren. Zur Erinnerung: Wir haben eine Zerlegung

$$\{i_1,\ldots,i_k\} = \{i_1\} \cup \{i_2\} \cup \ldots \cup \{i_k\}$$

mit $e_{i_h}A^be_{i_\ell}=e_{i_\ell}A^be_{i_h}=0$ für $i_\ell \neq i_h$, also $A^b=e_AAe_A=e_{i_1}A^be_{i_1}\oplus\ldots\oplus e_{i_k}A^be_{i_k}$, und der Köcher zu A^b ist die disjunkte Vereinigung der Köcher zu den $e_{i_h}A^be_{i_h}$. Nun ist $e_{i_h}A^be_{i_h}=\mathbb{C}$, der zugehörige Köcher ist nur ein Punkt, ohne Pfeile, denn Rad $e_{i_h}A^be_{i_h}=0$. **Beispiel:** Im Fall der Algebra $\mathbb{C}[S_3]$ hat der Köcher zur zugehörigen basischen Algebra

• • •

also 3 Knoten und KEINE Pfeile:

Im Fall von $\mathbb{F}_2[S_2]$ wissen wir $(1+s)^2=0$, das Radikal ist also $\mathbb{F}_2 \cdot (1+s)$. Man bekommt somit einen Pfeil an den Köcher, eine Schleife:

$$\alpha \hookrightarrow a$$

Das Ideal \mathcal{I} in $\mathbb{F}Q$ erzeugt von α^2 ist zulässig, und die Abbildung $\alpha \mapsto (1+s)$, $\epsilon_a \mapsto 1$, induziert einen Isomorphismus zwischen $\mathbb{F}Q/\mathcal{I}$ und $\mathbb{F}_2[S_2]^b = \mathbb{F}_2[S_2]$.

Zur Erinnerung: Das Ziel ist nicht A zu rekonstruieren, sondern $\operatorname{mod} A$! Und diese Methoden liefern: $\operatorname{mod} A$ ist äquivalent zu $\operatorname{mod} A^b = \operatorname{mod} \mathbb{F}Q/\mathcal{I}$!