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Introduction.

Let G be a complex symmetrizable Kac-Moody algebra. In this article we prove a
Littlewood-Richardson type rule to calculate the decomposition of the tensor product
of two simple, integrable, highest weight modules of G into irreducible components.

In the representation theory of the group GLn(C), an important tool are the Young
tableaux. The irreducible representations are in one-to-one correspondence with the
shapes of these tableaux. Let T be the subgroup of diagonal matrices in GLn(C). Then
there is a canonical way to assign a weight of T to any Young tableau such that the
sum over the weights of all tableaux of a fixed shape is the character CharV of the
corresponding GLn(C)-module V . Note that this gives not only a way to compute
the character, it gives also a possibility to describe the multiplicity of a weight in the
representation: It is the number of different tableaux of the same weight. Eventually, the
Littlewood-Richardson rule describes the decomposition of tensor products of GLn(C)-
modules purely in terms of the combinatoric of these Young tableaux.

Our main concern will be to generalize these tableaux for symmetrizable Kac-
Moody algebras. Let H be the Cartan subalgebra of G and denote by X the weight lat-
tice. In [7], section 4, Lakshmibai and Seshadri conjectured that a basis of H-eigenvectors
of Vµ can be indexed by a certain set of sequences of elements in the Weyl group. Our
new approach to this conjecture is to interpret these sequences as piecewise linear paths
π : [0, 1] → XR, where XR := X ⊗Z R. In the following, we call these paths the
Lakshmibai-Seshadri paths of shape µ (see 2.2).

More generally, we consider the set Π of all piecewise linear paths π : [0, 1] → XR

such that π(0) = 0, where we identify π and π′ if π = π′ up to a reparametrization. By
the product π := π1 ∗ π2 of two such paths we mean the concatenation of π1 and the
shifted path π1(1) + π2. For each simple root α we introduce operators eα and fα on
Π ∪ {0}: We cut π into three well-defined parts, i.e., π = π1 ∗ π2 ∗ π3. The new path
eα(π) (or fα(π)) is then either equal to 0, or it is equal to π1 ∗ sα(π2) ∗ π3. Here sα

denotes the simple reflection with respect to the root α. It follows by the construction
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that if fα(π) (respectively eα(π)) is not equal to 0, then the endpoint of the new path
is equal to π(1)− α (respectively π(1) + α).

It turns out that these operators have properties very similar to the operators
considered by Kashiwara (see [3] and [4]) on the crystal basis: For example, if eα(π) 6= 0,
then fα

(
eα(π)

)
= π and vice versa. In fact, the starting point for this article had

been the effort to understand better the connection between the crystal basis and the
generalized Young tableaux found in [10]. We prove that the set of Lakshmibai-Seshadri
paths of shape µ can be viewed as a set of paths generated by these operators:

Character formula. For a dominant weight µ let πµ : [0, 1] → XR be the straight line
connecting 0 with µ. The set Pµ of Lakshmibai-Seshadri paths of shape µ is equal to the
set of all paths π of the form

π = fα1 ◦ . . . ◦ fαs
(πµ)

where α1, . . . , αs are simple roots. Moreover, the union Pµ ∪ {0} is stable under the
operators eα for all simple roots, and Pµ provides a character formula for the module
Vµ:

CharVµ =
∑

π∈Pµ

eπ(1).

Note that (as in the case of the Young tableaux) the set of Lakshmibai-Seshadri paths
carries more information than just the character of the representation: The multiplicity
of a weight in the representation is equal to the number of different paths ending in the
weight. This possibility to “split” the multiplicities enables us to prove the following
decomposition rule:

Let π be a Lakshmibai-Seshadri path of shape µ. If λ is a dominant weight, then
we call π a λ-dominant path if the shifted image {x ∈ XR | x = λ + π(t), t ∈ [0, 1]} of
the path is contained in the dominant Weyl chamber.

Decomposition rule. The decomposition of the tensor product of two integrable, sim-
ple, highest weight modules of G is given by:

Vλ ⊗ Vµ '
⊕

π

Vλ+π(1),

where π runs over all λ-dominant Lakshmibai-Seshadri paths of shape µ.

The condition of λ-dominance can also be expressed in terms of the operators eα: π

is λ-dominant if and only if for all simple roots e
〈λ,α∨〉+1
α (π) = 0. In this terminology

the decomposition rule of Kashiwara (in terms of the crystal basis, see [3] and [4]) is
identical with our rule above.

To show how the rule can be used to prove existence results, we give a new proof of
the P-R-V conjecture. We obtain also a branching rule for the restriction of a simple G-
module to a Levi subalgebra L of G: Denote by Uν the simple L-module corresponding
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to a (for L) dominant weight, and call a path π L-dominant if its image is contained in
the dominant Weyl chamber of the root system of L.

Branching rule. The decomposition of Vµ into simple L-modules is given by

resLVµ =
⊕

π

Uπ(1),

where π runs over all L-dominant Lakshmibai-Seshadri paths of shape µ.

Further, these operators enable us to associate in a natural way a colored oriented
graph G to G: The set of vertices is Π, and we put an arrow π

α−→π′ between π and
π′ if fα(π) = π′. For π ∈ Π let G(π) be the connected component of G containing π.
We conjecture that if π(1) is a dominant weight and the image of π is contained in the
dominant Weyl chamber, then G(π) is the crystal graph of the module Vπ(1) constructed
by Kashiwara. Note, that this would imply that the graph G(π) depends only on the
endpoint π(1) and is otherwise independent of the choice of π. Moreover, the three
theorems above (Character formula, Decomposition rule and the Branching rule) could
be reformulated for the set of paths P(π) generated from π by applying successively
the operators fα. We give a short sketch in section 8 of how the three theorems can
be generalized for paths of the form π = πλ1 ∗ . . . ∗ πλr

, where λ1, . . . , λr are dominant
weights.

1. Paths and roots.

1.0. Let Π be the set of all piecewise linear paths π : [0, 1] → XR such that π(0) = 0,
modulo the equivalence relation π ∼ π′ if π = π′ up to a reparametrization. For each
simple root α we define operators eα and fα on Π ∪ {0} such that the “root-string” of
paths

. . . , e2
α(π), eα(π), π, fα(π), f2

α(π), . . .

generated by an element π ∈ Π has properties similar to the root-strings through a
weight of a G-module.

1.1. Let π1, π2 ∈ Π be two paths. By the product π := π1 ∗ π2 we mean the path
defined by

π(t) :=
{

π1(2t), if 0 ≤ t ≤ 1/2;
π1(1) + π2(2t− 1), if 1/2 ≤ t ≤ 1.

For a simple root α let sα(π) be the path given by sα(π)(t) := sα(π(t)).

1.2. Fix a simple root α. According to the behavior of the function

hα : [0, 1] → R, t 7→ 〈π(t), α∨〉

we cut a path π ∈ Π into three parts: Choose the minimal integer

Q := min(Im hα ∩ Z) ≤ 0
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attained by hα, and let q := min{t ∈ [0, 1] | hα(t) = Q} be the smallest real number
such that Q is attained at q. If Q ≤ −1, then let y < q be such that:

hα(y) = Q + 1 and Q < hα(t) < Q + 1 for y < t < q.

Denote by π1, π2 and π3 the paths in Π defined by

π1(t) := π(ty); π2(t) := π
(
y + t(q − y)

)
− π(y); π3(t) := π

(
q + t(1− q)

)
− π(q)

for t ∈ [0, 1]. By the definition of the πi we have π = π1 ∗ π2 ∗ π3.

Definition. If Q = 0, then let eα(π) be equal to 0. path. If Q < 0, then let eα(π) be
equal to π1 ∗ sα(π2) ∗ π3.

Example. In the figure below we give an example in the rank two case. The part of
the new path eα(π) different from π is drawn as a dashed line.

1.3. The definition of the operator fα is similar. Let p ∈ [0, 1] be maximal such that
hα(p) = Q, and denote by P the integral part of hα(1)−Q. If P ≥ 1, then let x > p be
such that:

hα(x) = Q + 1 and Q < hα(t) < Q + 1 for p < t < x.

Denote by π1, π2 and π3 the paths in Π defined by

π1(t) := π(tp); π2(t) := π
(
p + t(x− p)

)
− π(p); π3(t) := π

(
x + t(1− x)

)
− π(x)

for t ∈ [0, 1]. By the definition of the πi we have π = π1 ∗ π2 ∗ π3.

Definition. If P = 0, then let fα(π) be equal to 0. If P > 0, then let fα(π) be equal
to π1 ∗ sα(π2) ∗ π3.

Example. Suppose G is of type A2 and Vµ is the adjoint representation. If we start
with the path πµ : t 7→ tµ, then the paths obtained from πµ by applying the operators
fα and eα to πµ, are either of the form πβ(t) := tβ, where β is an arbitrary root, or of
the form

πi(t) :=
{
−tα, for 0 ≤ t ≤ 1/2;
(t− 1)α, for 1/2 ≤ t ≤ 1,
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where α is a simple root. So if λ is a dominant weight, then the decomposition rule
states that a representation Vν occurs in the tensor product Vλ⊗Vµ if and only if either
ν = λ + β for some root β, or ν = λ is such that ν − (α/2) is a point in the dominant
Weyl chamber for some simple root α.

1.4. The following properties are obvious by the definition of the operators:

Lemma. a) If ν(π) is a weight, then P + Q = 〈ν(π), α∨〉.
b) If eα(π) 6= 0, then ν(eα(π)) = ν(π)+α, and if fα(π) 6= 0, then ν(fα(π)) = ν(π)−α.
c) Let ρ ∈ X be such that 〈ρ, γ〉 = 1 for all simple roots γ. Then eγ(π) = 0 for

all simple roots if and only if the shifted path ρ + π is completely contained in the
interior of the dominant Weyl chamber. ♦

1.5. The formulas in a) and b) above show already a certain resemblance with well-
known formulas in the representation theory of the group SL2(C). In fact, in the next
proposition we show that the action of the operators eα and fα on the set Π ∪ {0}
is similar to the action of the operators Kashiwara considers on the crystal basis of
SL2(C)-modules.

Proposition. Let π ∈ Π be a path and let α be a simple root.
a) en

α(π) = 0 if and only if n > −Q, and fn
α (π) = 0 if and only if n > P .

b) If π′ 6= 0 is a second path, then ea(π) = π′ if and only if fα(π′) = π.

Proof. We give the proof only for the action of fα, the proof for eα is analogue. Suppose
that π′ = fα(π). For π let Q,P, p and x be as in 1.3. The minimal integer attained by
the function h′α : t 7→ 〈π′(t), α∨〉 is then Q− 1, and the smallest real number such that
this value is attained is x. Further, by the definition of π′ = fα(π), the next smaller real
number such that h′ attains the value Q is p. But this implies eα(fα(π)) = π. Finally,
since

〈π′(1), α∨〉 − (Q− 1) = 〈π(1)− α, α∨〉 − (Q− 1) = P − 1,

this proves a) by induction on P . ♦

1.6. Fix a weight η ∈ X and denote by Π(η) the subset of paths π in Π of weight
ν(π) = η. For j ∈ Z consider the map Φj : Π(η) → Π(η − jα) defined by π 7→ f j

α(π)
for j ≥ 0 and π 7→ e−j

α (π) for j ≤ 0. As an immediate consequence of Lemma 1.4 and
Proposition 1.5 one obtains:

Corollary. Set m := 〈η, α∨〉. If m ≥ 0, then Φj is injective for 0 ≤ j ≤ m, and if
m ≤ 0, then Φj is injective for m ≤ j ≤ 0. ♦

2. Lakshmibai-Seshadri paths.

2.0. In the following let Vλ be the simple highest weight module corresponding to a
dominant weight λ, and let W be the Weyl group of G. In this section we introduce the
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notion of a W -path of shape λ. The Lakshmibai-Seshadri paths can then be described
as W -paths satisfying certain integrality conditions. The definition given here is just a
“translation” of the definition in [7] into the language of paths.

2.1. In XR let C(λ) be the convex hull of the orbit W ·λ. We consider pairs of sequences
representing a path in XR:

Let Wλ be the stabilizer of λ, and let “≤” be the Bruhat order on W/Wλ. Suppose
• τ : τ1 > τ2 > . . . > τr is a sequence of linearly ordered cosets in W/Wλ and
• a : a0 := 0 < a1 < . . . < ar := 1 is a sequence of rational numbers.

We call the pair π = (τ , a) a rational W -path of shape λ. We identify π with the path
π : [0, 1] → XR given by

π(t) :=
j−1∑
i=1

(ai − ai−1)τi(λ) + (t− aj−1)τj(λ) for aj−1 ≤ t ≤ aj .

The endpoint π(1) of the path is called the weight ν(π) of π.

2.2. Recall that a weight µ in X is a weight of Vλ if and only if µ ∈ C(λ) and λ− µ is
a sum of positive roots (see [2], 11.3). Since the τi are linearly ordered, the differences
τi+1(λ)− τi(λ) are sums of positive roots. Note that

λ− ν(π) = λ−
r∑

i=1

(
ai − ai−1

)
τi(λ) =

(
λ− τr(λ)

)
+

r−1∑
i=1

ai

(
τi+1(λ)− τi(λ)

)
,

so if the ai are chosen such that the ai(τi+1(λ)− τi(λ)) are still in the root lattice, then
ν(π) is a weight of Vλ. To ensure that ν(π) is a weight of Vλ, we introduce now the
notion of an a-chain. Note that the condition below is stronger than just demanding
that the ai(τi+1(λ) − τi(λ)) are in the root lattice. We use the usual notation l(·) for
the length function on W/Wλ and β∨ for the coroot of a positive real root β:

Let τ > σ be two elements of W/Wλ and let 0 < a < 1 be a rational number. By an
a-chain for the pair (τ, σ) we mean a sequence of cosets in W/Wλ:

κ0 := τ > κ1 := sβ1τ > κ2 := sβ2sβ1τ > . . . > κs := sβs · . . . · sβ1τ = σ,

where β1, . . . , βs are positive real roots such that for all i = 1, . . . , s:

l(κi) = l(κi−1)− 1 and a〈κi(λ), β∨i 〉 ∈ Z.

The last condition can be expressed as follows: Each summand in

a
(
τ(λ)− σ(λ)

)
=

s−1∑
i=0

a
(
κi(λ)− κi−1(λ)

)
=

s∑
i=1

a〈κi(λ), β∨i 〉βi
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is an element in the root lattice. This is obviously stronger than just to demand that
a
(
τ(λ)− σ(λ)

)
is an element of the root lattice.

Definition. A rational W -path π of shape λ is called a Lakshmibai-Seshadri path, if
for all i = 1, . . . , r − 1 there exists an ai-chain for the pair (τi, τi+1).

Remark. If π = (τ , a) is a rational W -path of shape λ, then there exists an n ≥ 1 such
that π is a Lakshmibai-Seshadri path of shape nλ.

3. Some integrality properties.

3.0. To prove that the set of Lakshmibai-Seshadri paths is stable under the action of
eα and fα, we need to derive criterions under which conditions we can replace certain
entries τi by sατi in π = (τ , a) such that the new path π′ is a Lakshmibai-Seshadri path.
We begin with two simple observations:

Lemma 3.1. Let π = (τ , a) be a Lakshmibai-Seshadri path of shape λ.

a) The W -path π′ := (τi, . . . , τl; 0, ai, . . . , al−1, 1) is a Lakshmibai-Seshadri path for
any pair (i, l), 1 ≤ i ≤ l ≤ r.

b) Suppose G is finite dimensional and w0 is the longest word in W . The W -path
π′ := (w0τr, . . . ,w0τ1; 1 − ar, . . . , 1 − a0) is a Lakshmibai-Seshadri path, and the
weight ν(π′) is equal to w0(ν(π)). ♦

Lemma 3.2. Let τ = κ0 > . . . > κs = σ be an a-chain such that s > 1.

a) If sατ < τ but sακl ≥ κl for some l, then sατ > σ, and there exists an a-chain for
the pair (sατ, σ).

b) If sασ > σ but sακl ≤ κl for some l, then τ > sασ, and there exists an a-chain for
the pair (τ, sασ).

Proof. The proofs of a) and b) are similar, so we give only the proof of a). In the finite
dimensional case it is in fact easy to see that b) follows from a) by Lemma 3.1.

Assume that κ, ξ ∈ W/Wλ are such that κ > ξ and l(κ) = l(ξ) + 1. Let β be a
positive real root such that sβκ = ξ. If sακ < κ, then either sακ = ξ, or sαξ < ξ.
Further, if we set γ = sα(β) in the last case, then

sγ(sακ) = (sαξ) and 〈κ(λ), β∨〉 = 〈sακ(λ), γ∨〉.

These considerations show that there exists an k ≤ l such that sακk−1 = κk, and the
chain sατ = sακ0 > . . . > sακk−1 > κk+1 > . . . > κs = σ is an a-chain for (sατ, σ). ♦

Lemma 3.3. Let τ = κ0 > . . . > κs = σ be an a-chain.

a) If sατ < τ but sακl ≥ κl for some l, then a〈τ(λ), α∨〉 and a〈σ(λ), α∨〉 are integers.

b) If sασ > σ but sακl ≤ κl for some l, then a〈σ(λ), α∨〉 and a〈σ(λ), α∨〉 are integers.
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Proof. We give only the proof for a). If sατ = σ, then a) is true by the definition of
an a-chain. Else consider the Lakshmibai-Seshadri paths (Lemma 3.2):

π1 := (τ, σ; 0, a, 1) and π2 := (sατ, σ; 0, a, 1)

of shape λ. Since the difference ν(π1)− ν(π2) = a〈τ(λ), α∨〉α is an element of the root
lattice (see 2.2), this proves a〈τ(λ), α∨〉 ∈ Z. But ν(π1) = aτ(λ) + (1 − a)σ(λ) is a
weight, which implies also a〈σ(λ), α∨〉 ∈ Z. ♦

3.4. For a fixed simple root α let hα : [0, 1] → R be the function t 7→ 〈π(t), α∨〉.

Lemma. Let τi = κ0 > . . . > κs = τi+1 be an ai-chain for the pair (τi, τi+1).
a) If sατi < τi but sακl ≥ κl for some l, then hα(ai) ∈ Z.
b) If sατi+1 > τi+1 but sακl ≤ κl for some l, then hα(ai) ∈ Z.

Proof. By Lemma 3.1, π1 = (τ1, . . . , τi; a0, . . . , ai−1, 1) is a Lakshmibai-Seshadri path.
Since hα(ai) = 〈π1(1), α∨〉 − (1− ai)〈τi(λ), α∨〉 is an integer by Lemma 3.3, this proves
a). The proof of b) is analogue. ♦

3.5. As in 1.2 and 1.3, let Q be the minimal integer attained by the function hα, and
let P be equal to hα(1)−Q.

Lemma. a) Q is the absolute minimum attained by the function hα.
b) P is the absolute maximum attained by the function hα(1)− hα.

Corollary. Let πλ be the Lakshmibai-Seshadri-path (1; 0, 1), where 1 is the coset of the
identity in W/Wλ. Then πλ is the unique Lakshmibai-Seshadri path of shape λ such
that eα(π) = 0 for all simple roots.

Proof of the Corollary. If π = (τ1, . . . , τr; a0, . . . , ar) is a Lakshmibai-Seshadri path,
then π = πλ if τ1 = 1. If τ1 6= 1, then let α be a simple root such that sατ1 < τ1. But
this implies 〈τ1(λ), α∨〉 < 0, so hα(a1) < 0 and hence eα(π) 6= 0 by Lemma 3.5. Since
eα(πλ) = 0 for all simple roots, this proves the corollary. ♦

Proof of the Lemma. The statement b) is a consequence of a). To prove a), note
that π is a piecewise linear path and hence hα attains its minimum in a point t = ai for
some i ≤ r. Let 0 ≤ q ≤ r be minimal such that

hα(aq) = min{hα(t) | t ∈ [0, 1]}.

In particular, we have 〈τq(λ), α∨〉 < 0 and 〈τq+1(λ), α∨〉 ≥ 0. But this implies sατq < τq

and sατq+1 ≥ τq+1, so by Lemma 3.4 we have hα(aq) ∈ Z and hence hα(aq) = Q. ♦

3.6. Let 0 ≤ p ≤ r be maximal such that hα(ap) = Q and let 0 ≤ q ≤ r be minimal
such that hα(aq) = Q.

Proposition. a) If P > 0, then there exists an integer x ≥ p such that hα is a strictly
increasing function on [ap, ax], and for any aj-chain

τj = κ0 > . . . > κs = τj+1, p < j < x,
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the chain sατj = sακ0 > . . . > sακs = sατj+1 is an aj-chain for (sατj , sατj+1). Further,
hα(t) ≥ Q + 1 for t ≥ ax.

b) If Q < 0, then there exists an integer y ≤ q such that hα is a strictly decreasing
function on [ay, aq], and for any aj-chain

τj = κ0 > . . . > κs = τj+1, y < j < q,

the chain sατj = sακ0 > . . . > sακs = sατj+1 is an aj-chain for (sατj , sατj+1). Further,
hα(t) ≥ Q + 1 for t ≤ y.

Proof. We give again only the proof of a). Let j > p be such that hα(aj) < Q+1, and
suppose for the aj-chain

τj = κ0 > . . . > κs = τj+1

there exists an l such that 〈κl(λ), α∨〉 ≤ 0 and hence sακl ≤ κl, 0 ≤ l ≤ s. We may
assume that j is maximal with these properties, so 〈τj+1(λ), α∨〉 > 0 (since P ≥ 1), and
hence sατj+1 > τj+1. But this implies hα(aj) ∈ Z by Lemma 3.4, which contradicts the
assumption that j is such that Q < hα(aj) < Q + 1. So there exists an element x ≥ p

such that hα is a strictly increasing function on [ap, ax] and hα(t) ≥ Q + 1 for t ≥ x.
The claim on the aj-chains follows as in the proof of Lemma 3.2. ♦

4. The action on the Lakshmibai-Seshadri paths.

4.0. The aim of this section is to prove that the (union of the set {0} and the) set of
Lakshmibai-Seshadri paths is stable under the operators eα and fα. We give an explicit
description (in terms of rational W -paths) of the image of a Lakshmibai-Seshadri path
π under these operators.

4.1. Let π = (τ1, . . . , τr; a0, . . . , ar) be a Lakshmibai-Seshadri path of shape λ and fix
a simple root α. As in 3.5 and 3.6 let:

· Q be the minimal integer attained by the function hα, q is minimal such that
hα(aq) = Q, p is maximal such that hα(ap) = Q, and P is equal to hα(1)−Q.

Further, choose y and x as in Proposition 3.6, i.e.:

· If Q ≤ −1, then y ≤ q is maximal such that hα(t) ≥ Q + 1 for t ≤ ay.

If P ≥ 1, then x ≥ p is minimal such that hα(t) ≥ Q + 1 for t ≥ ax.
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Proposition 4.2. a) If P > 0, then fα(π) is equal to the Lakshmibai-Seshadri path

(τ1, . . . , τp−1, sατp+1, . . . , sατx, τx+1, . . . , τr; a0, . . . , ap−1, ap+1, . . . , ar),

if hα(ax) = Q + 1 and sατp+1 = τp;

(τ1, . . . , τp, sατp+1, . . . , sατx, τx+1, . . . , τr; a0, . . . , ar),

if hα(ax) = Q + 1 and sατp+1 < τp;

(τ1, . . . , τp−1, sατp+1, . . . , sατx, τx, . . . , τr; a0, . . . , ap−1, ap+1, . . . , ax−1, a, ax, . . . , ar),

if hα(ax) > Q + 1 and sατp+1 = τp;

(τ1, . . . , τp, sατp+1, . . . , sατx, τx, . . . , τr; a0, . . . , ax−1, a, ax, . . . , ar),

if hα(ax) > Q + 1 and sατp+1 < τp;

where ax−1 < a < ax is such that hα(a) = Q + 1.
b) If Q < 0, then eα(T ) is equal to the Lakshmibai-Seshadri path

(τ1, . . . , τy, sατy+1, . . . , sατq, τq+2, . . . , τr; a0, . . . , aq, aq+2, . . . , ar),

if hα(ay) = Q + 1 and sατq = τq+1;

(τ1, . . . , τy, sατy+1, . . . , sατq, τq+1, . . . , τr; a0, . . . , ar),

if hα(ay) = Q + 1 and sατq > τq+1;

(τ1, . . . , τy+1, sατy+1, . . . , sατq, τq+2, . . . , τr; a0, . . . , ay, a, ay+1, . . . , aq, aq+2, . . . , ar),

if hα(ay) > Q + 1 and sατq = τq+1;

(τ1, . . . , τy+1, sατy+1, . . . , sατq, τq+1, . . . , τr; a0, . . . , ay, a, ay+1, . . . , ar),

if hα(ay) > Q + 1 and sατq > τq+1;

where ay < a < ay+1 is such that hα(a) = Q + 1.

4.3. Proof. The rest of this section is devoted to the proof of the proposition.

To see that only the cases considered above occur, note that by the choice of p

〈τp(λ), α∨〉 ≤ 0, so sατp ≤ τp and hence sατp+1 ≤ τp. Similarly, 〈τq+1(λ), α∨〉 ≥ 0 and
hence sατq+1 ≥ τq+1, which implies sατq ≥ τq+1.

By the choice of P,Q, p, q, x, y and a, Proposition 3.6 implies that eα(π) respectively
fα(π) is the rational W -path described in the proposition. It remains to show that these
paths are Lakshmibai-Seshadri paths. Since the proofs for eα and fα are similar, we
give only the proof for fα.

Consider now the first two cases in a). Since 〈τp(λ), α〉 ≤ 0 and hence sατp ≤ τp, in
the second case there exists by Lemma 3.2 an ap-chain for the pair (τp, sατp+1). Now by
Proposition 3.6, to prove that π′ is a Lakshmibai-Seshadri path, it remains to prove (in
both cases) that there exists an ax-chain for the pair (sατx, τx+1). Consider the chain

sατx > τx = κ0 > . . . > κs = τx+1,
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where τx = κ0 > . . . > κs = τx+1 is an ax-chain for the pair (τx, τx+1). All we have to
prove is that ax〈τx(λ), α∨〉 ∈ Z. But hα(ax) = Q + 1 implies

ax〈τx(λ), α∨〉 = Q + 1− hα(ax−1) + ax−1〈τx(λ), α∨〉 = Q + 1 + 〈τx(λ)− ν(π′), α∨〉,

where π′ is the Lakshmibai-Seshadri path π′ := (τ1, . . . , τx; a0, . . . , ax−1, 1) (Lemma 3.1).
Since the right side is an integer, this proves that fα(π) is a Lakshmibai-Seshadri path.

To prove in the remaining cases that fα(π) is a Lakshmibai-Seshadri path, we
proceed as before. By Lemma 3.2 and Proposition 3.6, it is easy to see that all that
remains to prove is the existence of an a-chain for the pair (sατx, τx). So one has to
show that a〈τx(λ), α∨〉 ∈ Z. Since hα(a) = Q + 1, we know that

a〈τx(λ), α∨〉 = Q + 1− hα(ax−1) + ax−1〈τx(λ), α∨〉 = Q + 1 + 〈τx(λ)− ν(π′), α∨〉,

where π′ is as above. Since the right side is an integer, this proves that fα(π) is a
Lakshmibai-Seshadri path. ♦

5. Proof of the Character formula.

5.0. Denote by Pλ the set of Lakshmibai-Seshadri paths of shape λ. The aim of this
section is to prove the character formula presented in the introduction. The idea of
the proof is the following: Let Πint be the subset of paths in Π such that ν(π) ∈ X .
Denote by Z[Πint] the free Z-module with the set Πint as basis. We define an operator
on Z[Πint] analogue to the usual Demazure operator on the group ring Z[X ], and show
that we get a Demazure type character formula for Pλ.

5.1. For a simple root α denote by Λα the linear operator on Z[Πint] defined by

Λα(π) :=


π + fα(π) + . . . + fn

α (π), if n := 〈ν(π), α∨〉 ≥ 0;
0, if 〈ν(π), α∨〉 = −1;
−eα(π)− . . .− e−n−1

α (π), if n := 〈ν(π), α∨〉 ≤ −2;

By the character ν(m) of an element m = a1π1 + . . .+asπs in Z[Πint] we mean the sum
a1e

ν(π1) + . . . + ase
ν(πs) in the group ring Z[X ].

Let ρ ∈ X be such that 〈ρ, α∨〉 = 1 for all simple roots α. In the following we
denote by Λα also the usual Demazure operator on Z[X ]:

Λα(eµ) :=
eµ+ρ − esα(µ+ρ)

1− e−α
e−ρ

One checks easily that ν
(
Λα(π)

)
= Λα(eν(π)).

5.2. Denote by φ : Pλ → W/Wλ the map defined by φ(π) = φ
(
(τ , a)

)
:= τ1, and for

τ ∈ W/Wλ set
Pλ,τ := {π ∈ Pλ | φ(π) ≤ τ}.

Let πλ := (1; 0, 1) be the unique W -path in Pλ such that eα(πλ) = 0 for all simple roots
(see Corollary 3.5).
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Theorem. For any reduced decomposition τ = sα1 · . . . · sαr we have the following
equalities in Z[Πint] respectively Z[X ]:

Λα1 ◦ · · · ◦ Λαr
(πλ) =

∑
π∈Pλ,τ

π and Λα1 ◦ · · · ◦ Λαr
(eλ) =

∑
π∈Pλ,τ

eν(π).

5.3. The proof of the theorem will be given in 5.5. For a fixed root α and a Lakshmibai-
Seshadri path π let Q, q and p be as in 3.5 and 3.6, so Q is the minimal integer attained
by the function hα, q is minimal such that π(aq) = Q and p is maximal such that
π(ap) = Q.

Lemma. a) If sαφ(π) < φ(π), then eα(π) 6= 0.
b) If fα(π) 6= 0, then either φ(fα(π)) = φ(π), or φ(fα(π)) = sαφ(π) > φ(π) and

eα(π) = 0.
c) If eα(π) 6= 0, then either φ(eα(π)) = φ(π), or φ(eα(π)) = sαφ(π) < φ(π) and

e2
α(π) = 0.

Proof. By Proposition 4.2 we have φ(fα(π)) 6= φ(π) if and only if p = 0. And in this
case we have φ(fα(π)) = sαφ(π) > φ(π). Further, p = 0 implies q = 0 and hence Q = 0,
so eα(π) = 0, which proves b). It is now easy to see that c) is an immediate consequence
of b) by Proposition 1.5.

To prove a) note that sαφ(π) < φ(π) implies for φ(π) = τ1 that 〈τ1(λ)α〉 < 0. It
follows that hα(a1) < 0 and hence Q ≤ −1, so eα(π) 6= 0. ♦

5.4. Let π be a Lakshmibai-Seshadri path of shape λ such that eα(π) = 0. Denote by
Sα(π) the string

Sα(π) := {π, fα(π), . . . , f 〈ν(π),α∨〉(π)}

in Pλ generated by π under the operators fα and eα. The following result is an easy
consequence of Lemma 5.3 and the definition of Λα:

Lemma. For τ ∈ W/Wλ the intersection Sα(π)∩Pλ,τ is either empty, or Sα(π) ⊂ Pλ,τ ,
or Sα(π) ∩ Pλ,τ = π . Further,∑

π′∈Sα(π)

π′ = Λa(π) = Λα ◦ Λα(π).

♦

5.5. Proof of the theorem. We proceed by induction over l(τ). If l(τ) = 0, then
Pλ,1 = {(1; 0, 1)}, which proves the theorem in this case.

Suppose now l(τ) > 0 and choose a simple root α such that sατ < τ . By Lemma 5.3
and Lemma 5.4, the set Pλ,sατ has a decomposition P0 ∪ P+ such that P0 is the union
of strings Sα(π) for some π ∈ Pλ,sατ , and Sα(π) ∩ Pλ,sατ = π for π ∈ P+.
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Now if π′ ∈ Pλ,τ is such that π′ 6∈ Pλ,sατ , then by Lemma 5.3 there exists an
element π ∈ Pλ,sατ such that eα(π) = 0 and π′ ∈ Sα(π). It follows now by Lemma 5.3
and Lemma 5.4 that

Λα

( ∑
π∈Pλ,sατ

π
)

=
∑

π∈P0

π ∪
∑

π∈P+

Λα(π) =
∑

π∈Pλ,τ

π,

which proves the theorem. ♦

5.6. Proof of the Character formula. Proposition 4.2 shows that the set of Lakshmi-
bai-Seshadri paths is stable under the operators eα and fα for all simple roots. Since
πλ is the only Lakshmibai-Seshadri path such that φ(π) = 1, Lemma 5.3 a) and Propo-
sition 1.5 imply that the Lakshmibai-Seshadri paths are of the required form.

It follows by Demazure’s character formula (see [12]) and Theorem 5.2 that the
sum

∑
π eν(π) over all π ∈ Pλ is the character CharVλ of the simple G-module Vλ. ♦

6. Proof of the decomposition formulas.

6.0. The proof of the formulas is based on the Brauer-Klimyk decomposition formula
(see [1], §24, Exercise 9, or [5] for the finite dimensional case), which we recall in the
following. Using the Character formula and the operators eα and fα, we show that the
contributions in the formula, which do not correspond to λ-dominant paths, cancel each
other.

6.1. For η ∈ X let m(η) be the dimension of the weight space (Vµ)η in Vµ, and denote
by n(ν) the multiplicity of Vν in the tensor product Vλ ⊗ Vµ. The equality

CharVλ · CharVµ =
∑

ν∈X+

n(ν) Char Vν

implies by Weyl’s character formula (see [2], §10)):

(∑
σ∈W sgn σeσ(λ+ρ)∑

σ∈W sgn σeσ(ρ)

)(∑
η∈X

m(η)eη
)

=
∑

ν∈X+

n(ν)
(∑

σ∈W sgn σeσ(ν+ρ)∑
σ∈W sgn σeσ(ρ)

)
.

If we multiply the equality above by the denominator of Weyl’s character formula, then
we get by the W -invariance of CharVµ:

∑
σ∈W

sgn σ
∑
η∈X

m(η)eσ(λ+ρ+η) =
∑

ν∈X+

n(ν)
∑
σ∈W

sgn σeσ(ν+ρ).
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Now note that ν + ρ is a strictly dominant weight. So to determine the n(ν) we have
only to compare the coefficients on both sides of the strictly dominant weights. We get
the following decomposition formula (Brauer-Klimyk):

For η ∈ X let {λ+η} and p(λ, η) be defined as follows: If there exists a real root β such
that 〈λ + η + ρ, β∨〉 = 0, then set p(λ, η) := 0 and {λ + η} := 0. Else let σ ∈ W be the
unique element such that {λ + η} := σ(λ + η + ρ)− ρ is a dominant weight, and we set
p(λ, η) := sgnσ. Then∑

η∈X
p(λ, η)m(η)e{λ+η}+ρ =

∑
ν∈X+

n(ν)eν+ρ.

Using the Character formula we can reformulate this equality as:∑
π∈Pµ

p(λ, ν(π))CharV{λ+ν(π)} =
∑

ν∈X+

n(ν) Char Vν . (∗)

6.2. Proof of the decomposition rule. If π is a λ-dominant W -path, then ν(π) is
a dominant weight and hence {λ + ν(π)} = λ + ν(π) and p(λ, ν(π)) = 1. So to prove
the decomposition formula it remains to show that the contributions on the left side of
(∗) coming from not λ-dominant W -paths cancel each other. To do this, we show that
this set is the disjoint union of very special subsets.

For z ∈ [0, 1] and π ∈ Π denote by πz : [0, 1] → XR the path t 7→ π(tz). We fix a
Lakshmibai-Seshadri path π = (τ , a) such that π is not λ-dominant. Choose s ∈ [0, 1]
minimal such that 〈λ, α∨〉 + hα(s) = −1. (Since π is not λ-dominant, by Lemma 3.5
such a simple root α always exists). Consider the set

Mπ := {π′ = (τ ′, a′) ∈ Pµ | ∃ z ∈ [0, 1] such that π′z = πs}.

(In other words, Mπ is the set of paths π′ in Pµ which up to a reparametrization coincide
with π between 0 and s.) All elements in Mπ are not λ-dominant and π ∈ Mπ. Further,
either Mπ = Mπ′ or Mπ ∩Mπ′ = ∅ for two not λ-dominant Lakshmibai-Seshadri paths.
So to prove the decomposition rule, it suffices to show that the contributions on the left
side of (∗) coming from elements in Mπ cancel each other.

Note that fα(Mπ) ⊂ Mπ ∪ {0}. For π′ ∈ Mπ let Q′ and P ′ be as in Lemma 3.5.
Because of the minimal choice of s we have eα(π′) ∈ Mπ as long as 〈λ, α∨〉+ Q′ ≤ −2.
By replacing π′ by eα(π′) if necessary, we may assume that 〈λ, α∨〉 + Q′ = −1. Since
〈ν(π′), α∨〉 = P ′ + Q′, this implies 〈λ + ρ + ν(π′), α∨〉 = P ′, so the set of weights

{λ + ρ + ν(π′), λ + ρ + ν
(
fα(π′)

)
, . . . , λ + ρ + ν

(
fP ′

a (π′)
)
}

is stable under sα. Because of the alternating sign on the left side in (∗), the contribu-
tions of the paths π′, fa(π′), . . . , fP ′

a (π′) cancel each other. ♦
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6.3. Proof of the branching rule. The proof is in the same spirit as the proof above,
so we may skip a few details. Let W (L) be the Weyl group of L and denote by n(ν) the
multiplicity of Uν in Vλ. We write X+(L) for the dominant weights of L, and we denote
by m(η) the dimension of the weight space (Vλ)η in Vλ. We multiply the equality

CharVλ =
∑
η∈X

m(η)eη =
∑

ν∈X+(L)

n(ν)Uν =
∑

ν∈X+(L)

n(ν)
(∑

σ∈W (L) eσ(ν+ρ)∑
σ∈W (L) eσ(ρ)

)

by the denominator of the character formula. Since CharVλ is W (L)-stable we get in
the same way as above the following formula:
Let {η} and p(L, η) be defined as follows: If there exists a real root β in the root system
of L such that 〈λ+η+ρ, β∨〉 = 0, then set p(L, η) := 0 and {η} := 0. Else let σ ∈ W (L)
be the unique element such that {η} := σ(η + ρ)− ρ is a dominant weight, and we set
p(L, η) := sgn σ. Then∑

π∈Pλ

p(L, ν(π))CharU{ν(π)} =
∑

ν∈X+(L)

n(ν)CharUν . (∗∗)

Since p(L, ν(π)) = 1 and {ν(π)} = ν(π) for an L-dominant path, it suffices to show that
the contributions in (∗∗) coming from not L-dominant paths cancel each other.

Fix a Lakshmibai-Seshadri path π = (τ , a) such that π is not L-dominant. Let
s ∈ [0, 1] be minimal such that there exists a simple root α in the root system of L for
which hα(s) = −1. Consider the set

Mπ := {π′ ∈ Pλ | ∃ z ∈ [0, 1] such that π′z = πs}.

As above, all elements in Mπ are not L-dominant and π ∈ Mπ. Further, either Mπ =
Mπ′ or Mπ ∩Mπ′ = ∅ for two not L-dominant Lakshmibai-Seshadri paths. So to prove
the branching rule it suffices to show that the contributions on the left side of (∗∗)
coming from elements in Mπ cancel each other.

The same arguments as above show that fα(Mπ) ⊂ Mπ ∪{0}, and if π′ ∈ Mπ, then
eα(π′) ∈ Mπ as long as 〈λ, α∨〉+ Q′ ≤ −2. So we may assume that 〈λ, α∨〉+ Q′ = −1.
But this implies 〈ρ + ν(π′), α∨〉 = P ′. Hence the set of weights

{ρ + ν(π), ρ + ν
(
fα(π′)

)
, . . . , ρ + ν

(
fP ′

a (π′)
)
}

is stable under sα, and the contributions in (∗∗) of the paths π′,fa(π′),. . ., fP ′

a (π′) cancel
each other. ♦

7. A new proof of the P-R-V conjecture.

7.0. Consider the tensor product Vλ ⊗ Vµ of two G-modules of highest weight λ and µ.
The Parthasaraty–Ranga-Rao–Varadarajan conjecture states that if σ, τ ∈ W are such
that ν := τ(λ) + σ(µ) is a dominant weight, then the module Vν occurs in Vλ ⊗ Vµ.
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Proofs of the conjecture have been given independently in [6] and [11]. To show
how the methods developed in this article can be used to prove existence results, we
give as an example a new proof of this conjecture.

7.1. For η ∈ X let [η] ∈ X+ be the unique dominant element in the Weyl group orbit
W · η of η.

Suppose π = (τ1, . . . , τr; a0, . . . , ar) is a Lakshmibai-Seshadri path of shape µ such
that λ + π(ai) is a dominant weight for all i = 1, . . . , r − 1. So π is not λ-dominant if
and only if λ + π(ar) is not a dominant weight.

Note that any Lakshmibai-Seshadri path of the form (τ ; 0, 1) satisfies this condition.

Proposition. There exists a λ-dominant Lakshmibai-Seshadri path π′ of shape µ such
that λ + ν(π′) = [λ + ν(π)].

Corollary. (P-R-V conjecture) If ν := τ(λ) + σ(µ) is a dominant weight, then the
module Vν occurs in Vλ ⊗ Vµ.

7.2. Proof of the Corollary. Note that τ(λ) + σ(µ) = [λ + τ−1σ(µ)]. The W -path
π := (τ−1σ; 0, 1) of shape µ is a Lakshmibai-Seshadri path, and it satisfies the condition
of Proposition 7.1 (here r = 1). The corollary follows hence by the decomposition rule.

♦

7.3. Proof of the Proposition. For an element β =
∑

α bαα in the root lattice we
call the sum of the coefficients

∑
α bα the height ht(β) of β.

The proof of the proposition is by induction on ht
(
µ−ν(π)

)
. Note that if µ = ν(π),

then π = (1; 0, 1) and hence λ-dominant. If π is not λ-dominant, then let t ∈ [ar−1, 1]
be minimal such that

〈λ, α∨〉+ hα(t) = 0

for some simple root α, and set m := 〈λ + ν(π), α∨〉. (Note that m < 0 by the
assumptions on π.) By Corollary 1.5 we know that π′ := e−m

α π 6= 0, and by the choice
of m is λ + ν(π′) = sα(λ + ν(π)).

Moreover, by the definition of eα, we have π′ = (τ1, . . . , τr−1, sατr; a0, . . . , ar) if
t = ar−1 and π′ = (τ1, . . . , τr−1, τr, sατr; a0, . . . , ar−1, t, ar) if t > ar−1.

In both cases is ht
(
λ − ν(π′)

)
< ht

(
λ − ν(π)

)
, and π′ satisfies the assumptions of

the proposition (by the choice of t). The proof follows hence by induction. ♦

8. Some concluding remarks and conjectures.

8.0. In this section we would like sketch how to extend the results for Lakshmibai-
Seshadri paths also to paths of the type π = πλ1 ∗ . . . ∗ πλm

, where λ1, . . . , λm are
dominant weights. We make a also few remarks comparing the results in this article
with the results in [9] and the results of Kashiwara in [3] and [4]. We will not give any
technical details.
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8.1. Let λ1, . . . , λm be dominant weights and denote by λ the sequence (λ1, . . . , λm).
The endpoint of the path πλ := πλ1 ∗ . . .∗πλm

is the dominant weight λ := λ1+ . . .+λm,
and the image πλ([0, 1]) is contained in the dominant Weyl chamber.

Denote by Pλ the set of paths π ∈ Πint such that

π = fα1 ◦ . . . ◦ fαs(πλ)

for some simple roots α1, . . . , αs. It is easy to see that such a path is of the form
π = π1 ∗ . . . ∗ πm, where πi is a Lakshmibai-Seshadri path of shape λi for i = 1, . . . ,m.

In fact, using Deodhar’s Lemma and the notion of Young tableau as it has been
developed by Lakshmibai and Seshadri (see for example [7] or [8]), one can give a
precise combinatorial criterion to decide which product of this type is an element in Pλ.
Further, using similar arguments as in section 5 and 6, one can generalize the results
for Lakshmibai-Seshadri paths also to this type of paths:

Theorem. a) Pλ is stable under the operators eα and fα for all simple roots.
b) CharVλ =

∑
π∈Pλ

eπ(1).
c) If µ is a dominant weight, then Vµ ⊗ Vλ '

⊕
π Vµ+π(1), where the sum runs over

all paths π ∈ Pλ such that the image of the shifted path µ + π is contained in the
dominant Weyl chamber.

d) If L is a Levi subalgebra of G, then Vλ '
⊕

π Uπ(1), where the sum runs over all
paths π ∈ Pλ such that the image of π is contained in the dominant Weyl chamber
of the root system of L.

8.2. Suppose we are in the finite dimensional case. Fix an enumeration of the funda-
mental weights ω1, . . . , ωn. If in the situation above λ is of the form

λ = (ω1, . . . , ω1, ω2, . . . , ωm),

then a product of the form π = π1 ∗ . . .∗πm is contained in Pλ if and only if (π1, . . . , πm)
is a standard Young tableau in the sense of Lakshmibai and Seshadri (see [7] and [8]).
Further, the decomposition rules above correspond in these cases precisely to the gener-
alized Littlewood-Richardson rule proved in [9]. In particular, using the description in
[9] of the correspondence between “classical” Young tableaux and the generalization by
Lakshmibai and Seshadri, we get the Littlewood-Richardson rule for the group GLn(C)
back.

8.3. To compare the results with Kashiwara’s approach, note that we can naturally
associate a graph G to G: The set of vertices is Πint, and we put an arrow π

α−→π′

between π and π′ if fα(π) = π′ (or equivalently eα(π′) = π).

For π ∈ Πint let G(π) be the connected component of G containing π. If π is a
Lakshmibai-Seshadri path of shape λ, then the set of vertices of G(π) is just the set of
all Lakshmibai-Seshadri paths of shape λ.
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Suppose now λ is a dominant weight and π is a Lakshmibai-Seshadri path of shape
µ. For a simple root α let Qα be as in Lemma 3.5, i.e. Qα is the absolute minimum of
the function

hα : [0, 1] → R, t 7→ 〈π(t), α∨〉.

Since π is λ-dominant if and only if 〈λ, α∨〉 + 〈π(t), α∨〉 ≥ 0 for all t ∈ [0, 1] and all
simple roots α, it follows that π is λ-dominant if and only if 〈λ, α∨〉 ≥ −Qα for all
simple roots. So we get by Proposition 1.5:

π is λ-dominant ⇔ e〈λ,α∨〉+1
α (π) = 0 for all simple roots α.

In this terminology the decomposition rule in this article and in [4] are identical. This
suggests that G(πλ) is isomorphic to the crystal graph of Vλ constructed by Kashiwara.

8.4. More generally, let λ ∈ X be a dominant weight and let π ∈ Πint be such that
π(1) = λ and π([0, 1]) is contained in the dominant Weyl chamber. We conjecture
that G(π) is isomorphic to the crystal graph of the module Vλ. In particular, this
would imply that the graph G(π) depends only on the endpoint π(1) and is otherwise
independent of the choice of π. Moreover, the character formula, the decomposition rule
and the branching rule could be reformulated for the set of paths obtained by applying
successively the operators fα to π.

It has been proved in [10] that G(πλ) is the crystal graph if λ is as in 8.2 and G is
of type An, Bn, Cn, Dn, En, or G2.
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