A plactic algebra for semisimple Lie algebras

P. Littelmann^{*}

December 17, 2005

1 Introduction

A plactic algebra can be thought of as a (non-commutative) model for the representation ring of a semisimple Lie algebra \mathfrak{g} . This algebra was introduced by Lascoux and Schützenberger in [13], [18] in order to study the representation theory of $GL_n(\mathbb{C})$ and S_n . This new tool enabled them for example to give the first rigouros proof of the Littlewood-Richardson rule to determine the decomposition of tensor products into direct sums of irreducible representations. Using a case by case analysis, such a plactic algebra has been constructed also for some other simple groups, see [1], [8], [19], [20], [21].

Recently, two constructions of isomorphic plactic algebras have been given for symmetrisable Kac-Moody algebras. From the point of view of quantum groups, this algebra is the algebra of crystal bases ([5], [6], [7], [16], [17], [19]). The second construction realizes this algebra as the algebra \mathbb{ZP} of equivalence classes of paths in the space $X_{\mathbb{Q}}$ of rational weights ([5], [14], [15]).

For simplicity, assume that G is a simple, simply connected algebraic group. To give a description of \mathbb{ZP} which is more in the spirit of the original work of Lascoux and Schützenberger, let $V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_r}$ be a faithful representation and let \mathbb{D} be the associated set of L-S paths, i.e. \mathbb{D} is a basis of the corresponding model of V in \mathbb{ZP} . Let $\mathbb{Z}\{\mathbb{D}\}$ be the free associative algebra generated by \mathbb{D} . If $\lambda = \sum a_{\omega}\omega$ is a dominant weight, then let $|\lambda|$ denote the sum $\sum a_{\omega}$. The canonical projection which maps a monomial to the concatenation:

 $\psi: \mathbb{Z}\{\mathbb{D}\} \to \mathbb{Z}\mathcal{P}, \quad d_1 \cdots d_s \mapsto [d_1 * \ldots * d_s]$

is surjective. For $N \in \mathbb{N}$ denote by $\mathbf{R}_N \subset \operatorname{Ker} \psi$ the set

$$\mathbf{R}_N := \{ d_1 \cdots d_s - c_1 \cdots c_r \mid \psi(d_1 \cdots d_s) = \psi(c_1 \cdots c_r), \ r, s \le N \}.$$

Main Theorem A Fix $m_V \in \mathbb{N}$ such that for every fundamental weight ω of G there exists an injection $V_{\omega} \hookrightarrow V^{\otimes m_{\omega}}$ for some $m_{\omega} \leq m_V$. Let $I \subset \mathbb{Z}\{\mathbb{D}\}$ be the two-sided ideal generated by

^{*}This research has been partially supported by the Schweizerischer Nationalfonds

 \mathbf{R}_N for $N = m_V \max\{7, |\lambda_1|, \dots, |\lambda_t|\}$. The canonical map $\mathbb{Z}\{\mathbb{D}\} \to \mathbb{Z}\mathcal{P}$ induces an isomorphism $\mathbb{Z}\{\mathbb{D}\}/I \simeq \mathbb{Z}\mathcal{P}$.

The theorem is a consequence of the case where $V = \oplus V_{\omega}$ is the sum of all fundamental representations. To describe Ker ψ in this case, one introduces the notion of a *standard Young tableau* (sections 7, 8). For every pair $(d, d') \in \mathbb{D} \times \mathbb{D}$ such that $d \cdot d'$ is not a standard Young tableau, let $d_1, \ldots, d_r \in \mathbb{D}$ be such that $d_1 \cdots d_r$ is the unique standard tableau with $\psi(d_1 \cdots d_r) = \psi(d \cdot d')$, and denote by **R** the corresponding set of "plactic Plücker relations":

 $\mathbf{R} := \{ d \cdot d' - d_1 \cdots d_r \mid d \cdot d' \text{ is not a standard Young tableau} \} \subset \operatorname{Ker} \psi.$

Main Theorem B Ker ψ is the two-sided ideal J generated by **R**.

We also use this opportunity to extend the Demazure type character formula [14] to standard monomials (Corollary 4). The generating system R_N , $N = m_V \max\{7, |\lambda|, \ldots, |\mu|\}$, for Ker ψ given by Theorem A is in general not a minimal system. Using the algebra of root operators \mathcal{A} , we prove for the following cases (the enumeration of the fundamental weights is as in [2]):

Main Theorem C Ker ψ is generated by

a) \mathbf{R}_3 for $(Spin_{2n+1}, V_{\omega_n})$, $(Spin_{2n}, V_{\omega_{n-1}} \oplus V_{\omega_n})$, and $(\mathbf{G}_2, V_{\omega_1})$.

b) \mathbf{R}_3 and the relation: 12...n = trivial path, for (SL_n, V_{ω_1}) . Further, \mathbb{ZP} is the plactic algebra defined by Lascoux and Schützenberger.

c) \mathbf{R}_3 and the relations: $\pi - \phi_i(\pi), \pi \in \mathcal{A}[12...i(-i)], \text{ for } (Sp_{2n}, V_{\omega_1})$. Here ϕ_i is the isomorphism $\mathcal{A}[12...i(-i)] \to \mathcal{A}[12...(i-1)]$ for i = 3, ..., n.

The following bounds for the other exceptional groups can possibly be reduced by a more careful case by case analysis: Ker ψ is generated by \mathbf{R}_6 for $(\mathbf{F}_4, V_{\omega_4})$ and $(\mathbf{E}_6, V_{\omega_1} \oplus V_{\omega_6})$, by \mathbf{R}_9 for $(\mathbf{E}_6, V_{\omega_1})$, \mathbf{R}_{10} for $(\mathbf{E}_7, V_{\omega_7})$, and \mathbf{R}_{11} for $(\mathbf{E}_8, V_{\omega_8})$.

The author would like to thank C. De Concini and C. Procesi for useful discussions, and the Scuola Normale Superiore di Pisa for its hospitality.

2 The paths

Let X be the weight lattice of a symmetrizable Kac-Moody algebra **g**. Write $X_{\mathbb{Q}}$ for $X \otimes_{\mathbb{Z}} \mathbb{Q}$, and let $[0,1]_{\mathbb{Q}}$ be the set of rational numbers t such that $0 \leq t \leq 1$. Denote by Π the set of all piecewise linear paths $\pi : [0,1]_{\mathbb{Q}} \to X_{\mathbb{Q}}$ such that $\pi(0) = 0$ and $\pi(1) \in X$. We consider two paths π_1, π_2 as identical if there exists a piecewise linear, nondecreasing, surjective, continuous map $\phi : [0,1]_{\mathbb{Q}} \to [0,1]_{\mathbb{Q}}$ such that $\pi_1 = \pi_2 \circ \phi$. Let $\mathbb{Z}\Pi$ be the free \mathbb{Z} -module with basis Π . By $\pi := \pi_1 * \pi_2$ we mean the concatenation of the paths, i.e. π is the path defined by

$$\pi(t) := \begin{cases} \pi_1(2t), & \text{if } 0 \le t \le 1/2; \\ \pi_1(1) + \pi_2(2t - 1), & \text{if } 1/2 \le t \le 1. \end{cases}$$

The concatenation gives $\mathbb{Z}\Pi$ the structure of an associative algebra where the neutral element is the trivial path $\theta(t) := 0$ for all $t \in [0, 1]_{\mathbb{Q}}$.

3 The root operators

The aim of this section is to recall the definition of the root operators (see [15]). Fix a simple root α , and for $\pi \in \Pi$ let $s_{\alpha}(\pi)$ be defined by $s_{\alpha}(\pi)(t) := s_{\alpha}(\pi(t))$. Denote by h_{α} the function $h_{\alpha} : [0,1]_{\mathbb{Q}} \to \mathbb{Q}, t \mapsto \langle \pi(t), \alpha^{\vee} \rangle$, and let m be the minimal value attained by h_{α} . If $m \leq -1$, then fix t_1 minimal such that $h_{\alpha}(t_1) = m$ and let t_0 be minimal such that $h_{\alpha}(t) = m+1$. Choose $t_0 = s_0 < s_1 < \ldots < s_r = t_1$ such that either

a) $h_{\alpha}(s_{i-1}) = h_{\alpha}(s_i)$ and $h_{\alpha}(t) \ge h_{\alpha}(s_{i-1})$ for $t \in [s_{i-1}, s_i]_{\mathbb{Q}}$;

or b) h_{α} is strictly decreasing on $[s_{i-1}, s_i]_{\mathbb{Q}}$.

Set $s_{-1} := 0$ and $s_{r+1} := 1$, then $\pi = \pi_0 * \pi_1 * \ldots * \pi_{r+1}$ where π_i is defined by

$$\pi_i(t) := \pi((s_{i-1} + t(s_i - s_{i-1})) - \pi(s_{i-1}), \quad i = 0, \dots, r+1.$$

Definition 1 If m > -1, then $e_{\alpha}\pi := 0$, else $e_{\alpha}\pi := \pi_0 * \eta_1 * \ldots * \eta_r * \pi_{r+1}$, where $\eta_i := \pi_i$ if h_{α} satisfies condition a) on $[s_{i-1}, s_i]_{\mathbb{Q}}$, and $\eta_i := s_{\alpha}(\pi_i)$ if not.

The definition of f_{α} is similar. Fix t_0 maximal such that $h_{\alpha}(t_0) = m$. If $h_{\alpha}(1) - m \ge 1$, then let t_1 be maximal such that $h_{\alpha}(t) = m + 1$ and choose $t_0 = s_0 < s_1 < \ldots < s_r = t_1$ such that either

a) $h_{\alpha}(s_i) = h_{\alpha}(s_{i-1})$ and $h_{\alpha}(t) \ge h_{\alpha}(s_{i-1})$ for $t \in [s_{i-1}, s_i]_{\mathbb{Q}}$;

or b) or h_{α} is strictly increasing on $[s_{i-1}, s_i]_{\mathbb{Q}}$.

Definition 2 Let the π_i be as above. If $h_{\alpha}(1) - m < 1$, then $f_{\alpha}\pi := 0$. Otherwise $f_{\alpha}\pi := \pi_0 * \eta_1 * \ldots * \eta_r * \pi_{r+1}$, where $\eta_i := \pi_i$ if h_{α} is on $[s_{i-1}, s_i]_{\mathbb{Q}}$ as in a), and $\eta_i := s_{\alpha}(\pi_i)$ if not.

Remark 1 It is easy to see that if $e_{\alpha}\pi \neq 0$, then $(e_{\alpha}\pi)(1) = \pi(1) + \alpha$ and $f_{\alpha}e_{\alpha}\pi = \pi$, and if $f_{\alpha}\pi \neq 0$, then $(f_{\alpha}\pi)(1) = \pi(1) - \alpha$ and $e_{\alpha}f_{\alpha}\pi = \pi$.

4 The path model of a representation

We recall the main results in [14], [15]. Denote by $\mathcal{A} \subset \operatorname{End}_{\mathbb{Z}} \mathbb{Z}\Pi$ the subalgebra generated by the root operators e_{α} and f_{α} . Let Π^+ be the set of paths π such that the image is contained in the dominant Weyl chamber and denote by M_{π} the \mathcal{A} -module $\mathcal{A}\pi$. Clearly, $B_{\pi} := M_{\pi} \cap \Pi$ is a \mathbb{Z} -basis of M_{π} . **Theorem 1** i) If $\pi(1) = \pi'(1)$ for $\pi, \pi' \in \Pi^+$, then the \mathcal{A} -modules M_{π} and $M_{\pi'}$ are isomorphic.

- ii) If $\pi \in \Pi^+$, then Char $M_{\pi} := \sum_{\eta \in B_{\pi}} e^{\eta(1)}$ is equal to the character Char V_{λ} of the irreducible **g**-module V_{λ} of heighest weight $\lambda := \pi(1)$.
- iii) For $\pi \in \Pi^+$ let $\eta \in M_{\pi}$ be an arbitrary path. The minimum $m_{\alpha}(\eta)$ of the function $h_{\alpha}: t \mapsto \langle \eta(t), \alpha^{\vee} \rangle$ is an integer for all simple roots, and $e_{\alpha}\eta = 0$ for all simple roots if and only if $\eta = \pi$.

Since $m_{\alpha}(\eta) \in \mathbb{Z}$ one has (see [15]) for $\eta \in M_{\pi}$ and $\eta' \in M_{\pi'}$:

$$f_{\alpha}(\eta * \eta') = \begin{cases} (f_{\alpha}\eta) * \eta', & \text{if } f_{\alpha}^{n}\eta \neq 0 \text{ but } e_{\alpha}^{n}\eta' = 0 \text{ for some } n \geq 1; \\ \eta * (f_{\alpha}\eta'), & \text{otherwise.} \end{cases}$$
$$e_{\alpha}(\eta * \eta') = \begin{cases} \eta * (e_{\alpha}\eta') & \text{if } e_{\alpha}^{n}\eta' \neq 0 \text{ but } f_{\alpha}^{n}\eta = 0 \text{ for some } n \geq 1; \\ (e_{\alpha}\eta) * \eta', & \text{otherwise.} \end{cases}$$

For $\pi_1, \pi_2 \in \Pi^+$ denote by $M_{\pi_1} * M_{\pi_2}$ the \mathbb{Z} -module spanned by the concatenations $\eta_1 * \eta_2$, where $\eta_1 \in B_{\pi_1}$ $\eta_2 \in B_{\pi_2}$. This is an \mathcal{A} -module (see [15]):

Theorem 2 Suppose $\pi_1, \pi_2 \in \Pi^+$, then $M_{\pi_1} * M_{\pi_2} = \bigoplus_{\eta} M_{\pi_1 * \eta}$, where η runs over all paths in B_{π_2} such that $\pi_1 * \eta \in \Pi^+$.

By the character formula we get immediately (see [15]):

Theorem 3 For $\pi_1, \pi_2 \in \Pi^+$ set $\lambda = \pi_1(1)$ and $\mu = \pi_2(1)$. Then $V_\lambda \otimes V_\mu$ decomposes into the direct sum $\bigoplus_{\eta} V_{\lambda+\eta(1)}$ of irreducible **g**-modules, where η runs over all paths in B_{π_2} such that $\pi_1 * \eta \in \Pi^+$.

In the following we mean by an \mathcal{A} -morphism $\bigoplus_i M_{\pi_i} \to \bigoplus_j M_{\eta_j}$ always a modul homomorphism that maps paths onto paths.

5 The plactic algebra

Denote by $\mathbb{Z}\Pi_0 := \mathcal{A}\Pi^+$ the \mathcal{A} -submodule of $\mathbb{Z}\Pi$ generated by the paths in Π^+ . Note that, by Theorem 2, $\mathbb{Z}\Pi_0$ is a subalgebra.

Definition 3 For two paths $\pi, \eta \in \mathbb{Z}\Pi_0$ let $\pi^+, \eta^+ \in \Pi^+$ be the unique paths such that $\pi \in M_{\pi^+}, \eta \in M_{\eta^+}$. We call π, η equivalent and write $\pi \sim \eta$, if $\pi^+(1) = \eta^+(1)$ and $\phi(\pi) = \eta$ under the isomorphism $\phi: M_{\pi^+} \to M_{\eta^+}$.

Set $\mathbb{ZP} := \mathbb{Z}\Pi_0 / \sim$, and for $\pi \in \mathbb{Z}\Pi_0$ let $[\pi] \in \mathbb{ZP}$ be its equivalence class. \mathbb{ZP} is an \mathcal{A} -module: $f_{\alpha}[\pi] := [f_{\alpha}\pi], e_{\alpha}[\pi] := [e_{\alpha}\pi]$, and an algebra: $[\pi_1] * [\pi_2] := [\pi_1 * \pi_2]$ (see [15]). We write M_{λ} for $\mathcal{A}[\pi] \subset \mathbb{ZP}$, where $\pi \in \Pi^+$ is an arbitrary path such that $\lambda = \pi(1)$.

Definition 4 The algebra \mathbb{ZP} is called a plactic algebra for \mathbf{g} .

As before, set $\operatorname{Char} M_{\lambda} := \sum_{[\pi] \in M_{\lambda}} e^{\pi(1)}$. The previous results imply:

Theorem 4 The plactic algebra is a model for the representation ring of **g**. More precisely, $\mathbb{ZP} = \bigoplus_{\lambda \in X^+} M_{\lambda}$ is the sum of simple \mathcal{A} -modules, $\operatorname{Char} M_{\lambda}$ is the character $\operatorname{Char} V_{\lambda}$ of the corresponding simple **g**-module, and for $\lambda, \mu \in X^+$ one has $\operatorname{Char}(M_{\lambda} * M_{\mu}) = \operatorname{Char}(V_{\lambda} \otimes V_{\mu})$.

6 Lakshmibai-Seshadri paths

In order that we may give a description \mathbb{ZP} in terms of generators and relations, we recall the description of the basis of the \mathcal{A} -module generated by $\pi_{\lambda} : t \mapsto t\lambda$ for a dominant weight λ . These are called L-S paths (see [14]). Let W_{λ} be the stabilizer of λ , let " \leq " denote the Bruhat order on W/W_{λ} and let $l(\cdot)$ be the length function on W/W_{λ} . We identify a pair $\pi = (\underline{\tau}, \underline{a})$ of sequences:

- $\underline{\tau}: \tau_1 > \tau_2 > \ldots > \tau_r$ is a sequence of linearly ordered cosets in W/W_{λ} ,
- $\underline{a}: a_0 := 0 < a_1 < \ldots < a_r := 1$ is a sequence of rational numbers,

with the path:

$$\pi(t) := \sum_{i=1}^{j-1} (a_i - a_{i-1}) \tau_i(\lambda) + (t - a_{j-1}) \tau_j(\lambda) \text{ for } a_{j-1} \le t \le a_j.$$

Let $\tau > \sigma$ be two elements of W/W_{λ} and let 0 < a < 1 be a rational number. By an *a*-chain for (τ, σ) we mean a sequence of cosets, where β_1, \ldots, β_s are positive real roots, $l(\kappa_i) = l(\kappa_{i-1}) - 1$, $a\langle \kappa_i(\lambda), \beta_i^{\vee} \rangle \in \mathbb{Z}$ for all $i = 1, \ldots, s$ and:

$$\kappa_0 = \tau > \kappa_1 := s_{\beta_1}\tau > \kappa_2 := s_{\beta_2}s_{\beta_1}\tau > \ldots > \kappa_s := s_{\beta_s} \cdot \ldots \cdot s_{\beta_1}\tau = \sigma.$$

Definition 5 A pair $(\underline{\tau}, \underline{a})$ is called a Lakshmibai-Seshadri path (L-S path) of shape λ if, for all $1 \leq i \leq r-1$, there exists an a_i -chain for the pair (τ_i, τ_{i+1}) .

Theorem 5 [14] The set of all L-S paths $(\underline{\tau}, \underline{a})$ of shape λ is a basis for the \mathcal{A} -module $\mathcal{A}\pi_{\lambda} \subset \mathbb{Z}\Pi_{0}$ generated by the path π_{λ} .

Corollary 1 The set of all equivalence classes $[(\underline{\tau}, \underline{a})] \in \mathbb{ZP}$ of L-S paths forms a basis for \mathbb{ZP} .

In general it is quite difficult to find for two L-S paths $(\underline{\tau}_1, \underline{a}_1)$, $(\underline{\tau}_2, \underline{a}_2)$ the unique L-S path $(\underline{\tau}_3, \underline{a}_3)$ such that $[(\underline{\tau}_1, \underline{a}_1)] * [(\underline{\tau}_2, \underline{a}_2)] = [(\underline{\tau}_3, \underline{a}_3)]$ in \mathbb{ZP} .

7 L-S monomials

In this section we consider monomials of L-S paths. A combinatorial description of the "standard monomials" will be given in section refstandardmonomialsanddefiningchains.

Definition 6 Let $\lambda_1, \ldots, \lambda_k$ be dominant weights and set $\lambda = \lambda_1 + \ldots + \lambda_k$. If for all $i = 1, \ldots, k$, π_i is an L-S path of shape λ_i , then the monomial $m = \pi_1 * \ldots * \pi_k \in \mathbb{Z}\Pi_0$ is called an L-S monomial of shape λ (or $\underline{\lambda} = (\lambda_1, \ldots, \lambda_k)$).

To give a monomial basis of the plactic algebra, we introduce now the notion of standard monomials. Let m be the L-S monomial $\pi_1 * \ldots * \pi_k$:

Definition 7 *m* is called weakly standard of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_k)$, if for all $i = 1, \ldots, k - 1$, the concatenation $\pi_i * \pi_{i+1}$ is an element of $\mathcal{A}(\pi_{\lambda_i} * \pi_{\lambda_{i+1}})$. The monomial *m* is called standard of shape $\underline{\lambda}$, if $m \in \mathcal{A}(\pi_{\lambda_1} * \ldots * \pi_{\lambda_k})$.

For all $1 \leq i, j \leq k$ fix \mathcal{A} -isomorphisms $\phi_{i,j} : \mathcal{A}\pi_{\lambda_i} * \mathcal{A}\pi_{\lambda_j} \to \mathcal{A}\pi_{\lambda_j} * \mathcal{A}\pi_{\lambda_i}$. Set $M := \bigoplus_{\sigma \in S_k} \mathcal{A}\pi_{\lambda_{\sigma(1)}} * \ldots * \mathcal{A}\pi_{\lambda_{\sigma(k)}}$, and denote by $\tau_i : M \to M$ the \mathcal{A} -isomorphism defined by

 $\tau_i(\pi_1 * \dots * \pi_i * \pi_{i+1} * \dots * \pi_k) := \pi_1 * \dots * \phi_{\sigma(i),\sigma(i+1)}(\pi_i * \pi_{i+1}) * \dots * \pi_k$

for $\pi_1 * \ldots * \pi_k \in \mathcal{A}\pi_{\lambda_{\sigma(1)}} * \ldots * \mathcal{A}\pi_{\lambda_{\sigma(k)}} \subset M$. Note that for any choice of $\phi_{l,n}$ one has: $\phi_{l,n}(\pi_{\lambda_l} * \pi_{\lambda_n}) = \pi_{\lambda_n} * \pi_{\lambda_l}$. So if *m* is a weakly standard monomial, then $\tau_i(m)$ is independent of the choice of the $\phi_{l,n}$ for all *i*.

Theorem 6 For every element $\sigma \in S_k$ choose a reduced decomposition $\sigma = s_{i_1} \cdots s_{i_t}$, and let $m = \pi_1 * \ldots * \pi_k \in A\pi_{\lambda_1} * \ldots * A\pi_{\lambda_k}$ be an L-S monomial. Then m is a standard monomial if and only if for all $\sigma \in S_k$ the L-S monomial $\tau_{i_1} \circ \ldots \circ \tau_{i_t}(m)$ is a weakly standard L-S monomial.

Proof. Note first that if an L-S monomial m is a (weakly) standard monomial, then all paths in the \mathcal{A} -module $\mathcal{A}m$ generated by m are (weakly) standard monomials. Since the τ_i are \mathcal{A} isomorphisms, it is sufficient to prove the theorem for monomials with the property $e_{\alpha}m = 0$ for all simple roots. The only standard monomial with this property is $m = \pi_{\lambda_1} * \ldots * \pi_{\lambda_k}$. Since $\tau_{i_1} \circ \ldots \circ \tau_{i_t}(m) = \pi_{\lambda_{\sigma^{-1}(1)}} * \ldots * \pi_{\lambda_{\sigma^{-1}(k)}}$ is a weakly standard monomial for all $\sigma \in S_k$, this proves one direction of the theorem.

Suppose now *m* is such that $\tau_{i_1} \circ \ldots \circ \tau_{i_t}(m)$ is a weakly standard monomial for all $\sigma \in S_k$. If k = 2, then all weakly standard monomials are standard. By induction one can assume that $m = \pi_{\lambda_1} * \ldots * \pi_{\lambda_{k-1}} * \pi_k$. Suppose $\pi_k \neq \pi_{\lambda_k}$. Since $\pi_{\lambda_{k-1}} * \pi_k$ is standard, we know by Remark 1 and Theorem 1:

$$\pi_{\lambda_{k-1}} * \pi_k = f_{\alpha_1} \dots f_{\alpha_q} (\pi_{\lambda_{k-1}} * \pi_{\lambda_k}) = \pi_{\lambda_{k-1}} * (f_{\alpha_1} \dots f_{\alpha_q} \pi_{\lambda_k})$$

for some simple roots. By section 4, this is only possible if $\langle \lambda_{k-1}, \alpha_j^{\vee} \rangle = 0$ for all $1 \leq j \leq q$. By assumption, the monomial $\pi_{\lambda_{\sigma(1)}} * \ldots * \pi_{\lambda_{\sigma(k-1)}} * \pi_k$ is weakly standard for all $\sigma \in S_{k-1}$. This shows that $\langle \lambda_l, \alpha_j^{\vee} \rangle = 0$ for all $1 \leq j \leq q$ and $1 \leq l \leq k-1$. But this implies that $e_{\alpha_1}m = \pi_{\lambda_1} * \ldots * \pi_{\lambda_{k-1}} * (e_{\alpha_1}\pi_k) \neq 0$, contradicting the assumption. So $\pi_k = \pi_{\lambda_k}$, which finishes, the proof.

8 Young tableaux

Fix an enumeration $\omega_1, \ldots, \omega_n$ of the fundamental weights of **g**. A Young tableau is an L-S monomial that follows the chosen enumeration:

Definition 8 A Young tableau of shape $\lambda = \sum_{i=1}^{n} a_i \omega_i$ is an L-S monomial $T = \pi * \ldots * \eta$ such that the first a_1 paths are of shape ω_1 , the next a_2 are of shape ω_2 , etc. The tableau is called (weakly) standard if the monomial is (weakly) standard.

We have by the definition of standard tableaux for \mathbf{g} semisimple:

Proposition 1 The classes [T] of the standard Young tableaux form a basis for the plactic algebra \mathbb{ZP} .

9 Main Theorem B

We assume in this section that **g** is semisimple. Fix an enumeration $\omega_1, \ldots, \omega_n$ of the fundamental weights. Let B_i be the set of all L-S paths of shape ω_i , and denote by B the union $\bigcup_{i=1}^{n} B_i$. The free associative algebra $\mathbb{Z}\{B\}$ generated by B can be naturally considered as the \mathcal{A} stable subalgebra of $\mathbb{Z}\Pi_0$ generated by B, so it makes sense to talk also about (weakly) standard monomials, tableaux, (weakly) standard tableaux etc. in $\mathbb{Z}\{B\}$. The canonical map

$$\psi: \mathbb{Z}\{B\} \to \mathbb{Z}\mathcal{P}, \quad b_1 \cdot \ldots \cdot b_N \mapsto [b_1] \ast \ldots \ast [b_N],$$

is surjective (Proposition reftableaucor). Let $\mathbf{R} \subset \operatorname{Ker} \psi$ be the following set of Plücker type relations for all $b_1, b_2 \in \mathbf{B}$ such that $b_1 \cdot b_2$ is not a standard tableau:

$$\mathbf{R} := \{ b_1 \cdot b_2 - T \mid T \text{ standard tableau, } [T] = [b_1 * b_2] \}.$$

Main Theorem B.Let $J \subset \mathbb{Z}\{B\}$ be the two-sided ideal generated by **R**. The canonical map $\mathbb{Z}\{B\} \to \mathbb{Z}\mathcal{P}$ induces an isomorphism $\mathbb{Z}\{B\}/J \simeq \mathbb{Z}\mathcal{P}$.

Proof. One has to show that an arbitrary monomial $b_1 \cdots b_k$ in $\mathbb{Z}\{B\}$ is equivalent modulo J to a standard monomial. Note first that one can "reorder" the factors of a monomial modulo J:

We know that $\mathcal{A}\pi_{\omega} * \mathcal{A}\pi_{\omega'}$ is isomorphic to $\mathcal{A}\pi_{\omega'} * \mathcal{A}\pi_{\omega}$ as an \mathcal{A} -module. Let $b_1 \in \mathsf{B}_{\omega}$ and let $b_2 \in \mathsf{B}_{\omega'}$. Then $b_1 \cdot b_2$ is either a standard tableau T, or it is equivalent to a standard tableau T by a relation in \mathbf{R} . By the isomorphism, there exist (not necessarily uniquely determined) $d_1 \in \mathsf{B}_{\omega}$ and $d_2 \in \mathsf{B}_{\omega'}$, such that $d_2 \cdot d_1$ is either equal to T or equivalent to T by a relation in \mathbf{R} .

This correspondence can be extended in an \mathcal{A} -equivariant way to an isomorphism $\phi_{\omega,\omega'}$: $\mathcal{A}\pi_{\omega} \cdot \mathcal{A}\pi_{\omega'} \to \mathcal{A}\pi_{\omega'} \cdot \mathcal{A}\pi_{\omega}$ such that $b \cdot b' - \phi_{\omega,\omega'}(b \cdot b') \in J$ for all $b \in B_{\omega}, b' \in B_{\omega'}$. So $b_1 \cdot b_2 \equiv d_2 \cdot d_1 \mod J$ for some $d_1 \in B_{\omega}, d_2 \in B_{\omega'}$.

Hence one can assume that $m = b_1 \cdots b_k$ is (modulo J) a tableau of shape λ . Let " \leq " be the usual partial order on the weights. If m is not standard, by Theorem 6, there exists a "reordering" $m' = b'_1 \cdots b'_k$ such that $m' \equiv m \pmod{J}$, m' is an L-S monomial of the same shape λ (but not necessarily a tableau), but $b'_i \cdot b'_{i+1}$ is not a standard monomial for some $1 \leq i \leq k-1$. Replacing $b'_i \cdot b'_{i+1}$ by the corresponding standard tableau T in m', after reordering the factors we get a new tableau m'' of shape λ' such that $m'' \equiv m \pmod{J}$. But since $b'_i * b'_{i+1} \in \mathcal{A}\pi_\omega * \mathcal{A}\pi_{\omega'}$ is not a standard monomial, the shape of T is strictly smaller then the shape $\omega + \omega'$ of $b'_i \cdot b'_{i+1}$. So $\lambda' < \lambda$, and after repeating the procedure a finite number of times, this algorithm yields a standard Young tableau m'' such that $m'' \equiv m \pmod{J}$.

10 Main Theorem A

To give a presentation of the plactic algebra which is more in the original style of the work of Lascoux and Schützenberger, suppose $G = G_1 \times \ldots \times G_r$ is the product of simple, simply connected algebraic groups and with Lie algebra **g**. Let $V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_t}$ be a faithful representation of G and denote by $D = B_{\lambda_1} \cup \ldots \cup B_{\lambda_t}$ the union of all L-S paths of shape $\lambda_1, \ldots, \lambda_t$. Let $\mathbb{Z}\{D\}$ be the free associative algebra generated by D. The canonical map

$$\psi: \mathbb{Z}\{D\} \to \mathbb{Z}\mathcal{P}, \quad d_1 \cdot \ldots \cdot d_s \mapsto [d_1] * \ldots * [d_s],$$

is obviously surjective. Fix $m_V \in \mathbb{N}$ such that for every fundamental weight ω there exists an $m_{\omega} \leq m_V$ and an injection $V_{\omega} \hookrightarrow V^{\otimes m_{\omega}}$.

Example 1 We use the enumeration of the fundamental weights in [2]. Using [14] or the tables in [3] or the program LiE [4], one sees that:

- a) $m_V = 2 \text{ for } (Spin_{2n+1}, V_{\omega_n}), (Spin_{2n}, V_{\omega_{n-1}} \oplus V_{\omega_n}) \text{ and } (G_2, V_{\omega_1}).$
- b) $m_V = 3$ for $(\mathbf{F}_4, V_{\omega_1})$ and $(\mathbf{E}_6, V_{\omega_1} \oplus V_{\omega_6})$.
- c) $m_V = 4$ for (E_6, V_{ω_1}) and (E_7, V_{ω_7}) , $m_V = 5$ for (E_8, V_{ω_8}) .
- d) $m_V = n 1$ for $(SL_n, V_{\omega_1}), m_V = n$ for $(Sp_{2n}, V_{\omega_1}).$

Let $\mathbf{R}_N \subset \operatorname{Ker} \psi$ be the set of relations of the form

$$d_1 \cdots d_p - c_1 \cdots c_q$$
, where $1 \le p, q \le N, c_1, \dots, c_q, d_1, \dots, d_p \in D$,

and $[d_1 * d_2 * \ldots * d_p] = [c_1 * c_2 * \ldots * c_q]$ in \mathbb{ZP} . For a dominant weight $\lambda = \sum_i a_i \omega_i$ set $|\lambda| := \sum_i a_i$.

Main Theorem ALet $I \subset \mathbb{Z}{D}$ be the two-sided ideal generated by \mathbf{R}_N for

$$N = m_V \max\{7, |\lambda_1|, \dots, |\lambda_t|\}$$

The canonical map $\mathbb{Z}\{D\} \to \mathbb{Z}\mathcal{P}$ induces an isomorphism $\mathbb{Z}\{D\}/I \simeq \mathbb{Z}\mathcal{P}$.

Proof of Main Theorem A. For every fundamental weight ω fix a monomial $\eta_{\omega} = d_1 \cdots d_r$, $r \leq m_V$, such that the path $d_1 * \ldots * d_r \in \Pi^+$ and ends in ω . Denote by F the set of monomials in $\bigoplus_{\omega} \mathcal{A}\eta_{\omega}$. The algebra $\mathbb{Z}\{F\}$ is \mathcal{A} -isomorphic to $\mathbb{Z}\{B\}$ by Theorem 1, let $j : \mathbb{Z}\{F\} \to \mathbb{Z}\{D\}$ be the canonical map.

For $N = m_V \max\{7, |\lambda_1|, \ldots, |\lambda_t|\}$ let I be the two-sided ideal in $\mathbb{Z}\{D\}$ generated by \mathbf{R}_N . Since $N \ge m_V \max\{|\lambda_1|, \ldots, |\lambda_t|\}, \pi_{\lambda_i}$ is by Theorem 1 equivalent to a monomial in $\operatorname{Im} j$ modulo the ideal I. This implies that, modulo I, every monomial in $\mathbb{Z}\{D\}$ is equivalent to an element in $\operatorname{Im} j$.

In order to prove Theorem A, it is sufficient to show that the ideal $j^{-1}(I)$ satisfies the conditions of Theorem B. Call a monomial in $\mathbb{Z}{F}$ a standard tableau if the corresponding monomial in $\mathbb{Z}{B}$ is a standard tableau. Suppose now that $f, g \in F$ are such that $f \cdot g$ is not a standard tableau, and let ω, ω' be the fundamental weights such that $f \in \mathcal{A}\eta_{\omega}$ and $g \in \mathcal{A}\eta_{\omega'}$.

For a monomial $m \in \mathbb{Z}{F}$ let deg m be the degree of j(m), so deg $(f \cdot g) \leq 2m_V$. Now $[f * g] \in M_{\lambda} \subset \mathbb{Z}P$ for some dominant weight λ such that V_{λ} occurs in $V_{\omega} \otimes V_{\omega'}$. Hence the corresponding standard tableau is of degree at most $|\lambda|m_V$. To prove the theorem, one has to show that $|\lambda| \leq 7$. If ω and ω' correspond to different connected components of the Dynkin diagram, then $\lambda = \omega + \omega'$. Hence one may assume that \mathbf{g} is simple.

One knows for the classical groups that $|\lambda| \leq 3$, for **g** of type G_2 and F_4 one checks easily that $|\lambda| \leq 4$. Recall that $\lambda = \omega + \mu$ for some weight μ of $V_{\omega'}$. In the remaining cases, all roots are of the same length. Let β^{\vee} be the sum of all simple coroots, so $|\lambda| = \langle \lambda, \beta^{\vee} \rangle \leq 1 + |\langle \mu, \beta^{\vee} \rangle|$. Let β_0 be the highest root, then $|\langle \mu, \beta^{\vee} \rangle| \leq \langle \omega', \beta_0^{\vee} \rangle$ is bounded by the coefficients of the highest root as a sum of simple roots, which are ≤ 6 . So $|\lambda| \leq 7$.

For $\lambda = \sum_{\omega} a_{\omega} \omega$ set deg $\lambda := \sum_{\omega} a_{\omega} \deg \eta_{\omega}$. The proof shows in fact:

Corollary 2 Suppose V is a sum of fundamental representations. For two arbitrary fundamental weights ω, ω' let $N(\omega, \omega')$ be the maximum of the degrees deg λ for all λ such that $M_{\lambda} \subset M_{\omega} * M_{\omega'}$, and let N be the maximum of the $N(\omega, \omega')$. Then Ker ψ is the two-sided ideal generated by \mathbf{R}_N .

11 Standard monomials and defining chains

We develop in this section a combinatorial description of standard monomials and standard tableaux using the ideas in [10], [11], and [12]. Another aim is to say for a standard monomial

m a few words about the unique L-S path π such that $[m] = [\pi]$ in \mathbb{ZP} . In this section let **g** be again an arbitrary symmetrizable Kac-Moody algebra.

Theorem 7 An L-S monomial $m = \pi_1 * \ldots * \pi_p$ is standard of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_p)$ if and only if there exists a defining chain for m, i.e. for $\pi_1 = (\tau_1, \ldots, \tau_r; a_0, \ldots, a_r), \ldots, \pi_p =$ $(\tau_s, \ldots, \tau_K; b_s, \ldots, b_K)$: there exist elements $w_1, \ldots, w_K \in W$ such that $w_1 \ge w_2 \ge \ldots \ge w_K$, and

$$w_1 \equiv \tau_1, \ldots, w_r \equiv \tau_r \mod W_{\lambda_1}; \ldots; w_s \equiv \tau_s, \ldots, w_K \equiv \tau_K \mod W_{\lambda_p}$$

Proof. We first show that the span of the monomials with a defining chain is stable under the operator f_{α} . The proof for e_{α} is similar. Let $C(m) := (\tau_1, \ldots, \tau_r, \ldots, \tau_s, \ldots, \tau_K)$ be the list of Weyl group cosets corresponding to m and let (w_1, \ldots, w_K) be a corresponding defining chain. For $\tau_i \in C(m)$ let λ_i be the associated dominant weight. By [14], $C(f_{\alpha}(m))$ is of the form

$$(\ldots, \tau_i, s_\alpha \tau_{i+1}, \ldots, s_\alpha \tau_j, \tau_{j+1}, \ldots)$$
 or $(\ldots, \tau_i, s_\alpha \tau_{i+1}, \ldots, s_\alpha \tau_j, \tau_j, \ldots)$.

Further, either $s_{\alpha}\tau_{l} \equiv \tau_{l} \mod W_{\lambda_{l}}$ for all $l = 1, \ldots, i$ or there exists an $k \leq i$ such that $s_{\alpha}\tau_{k} < \tau_{k} \mod W_{\lambda_{k}}$ and $s_{\alpha}\tau_{l} = \tau_{l} \mod W_{\lambda_{l}}$ for all $l = k + 1, \ldots, i$.

If $i \geq 1$, then we can assume $s_{\alpha}w_i < w_i$: In the first case, if $s_{\alpha}w_1 > w_1$, then we may replace w_1 by $s_{\alpha}w_1$: This is still a lift for τ_1 , and $s_{\alpha}w_1 > w_1 \geq w_2$. So we may assume that $s_{\alpha}w_l < w_l$ for $l = 1, \ldots, m$ for some $m \leq i$. Suppose now m < i and $s_{\alpha}w_{m+1} > w_{m+1}$. Since $s_{\alpha}w_{m+1}$ is a lift for τ_{m+1} and $s_{\alpha}w_m < w_m$, $w_{m+1} \leq w_m$ implies $s_{\alpha}w_{m+1} \leq w_m$. So one can replace w_{m+1} by $s_{\alpha}w_{m+1}$ in the defining chain. In the second case, we have anyway $s_{\alpha}w_k < w_k$, so, by induction, we may assume $s_{\alpha}w_l < w_l$ for $l = k, \ldots, m$ for some $m \leq i$. The same arguments as above show that if m < i and $s_{\alpha}w_{m+1} > w_{m+1}$, then one can replace w_{m+1} by $s_{\alpha}w_{m+1}$ in the defining chain.

But now the same arguments $(s_{\alpha}w_i < w_i \text{ and } w_{i+1} \leq w_i \Rightarrow s_{\alpha}w_{i+1} \leq w_i)$ show that one of the following is a defining chain for $f_{\alpha}(m)$:

$$(\ldots, w_i, s_\alpha w_{i+1}, \ldots, s_\alpha w_j, w_{j+1}, \ldots)$$
 or $(\ldots, w_i, s_\alpha w_{i+1}, \ldots, s_\alpha w_j, w_j, \ldots)$.

These arguments show that the module of paths with a defining chain is stable under the root operators. If τ_i is congruent to the coset of the neutral element for all i = 1, ..., N, then the monomial is equal to $\pi_{\lambda} * ... * \pi_{\mu}$. Suppose now $m \neq \pi_{\lambda} * ... * \pi_{\mu}$, and fix *i* minimal such that $\tau_i \neq id$, and let α be a simple root such that $s_{\alpha}\tau_i < \tau_i$. Recall that this equivalent to saying that, for the dominant weight λ_i one has $\langle \tau_i(\lambda_i), \alpha^{\vee} \rangle < 0$. The condition also implies that $s_{\alpha}w_i < w_i$, and hence $s_{\alpha}w_i \leq w_i \mod W_{\lambda}$ for any dominant weight.

In this way one gets for all j = 1, ..., i - 1: $w_j \ge w_i \ge s_\alpha w_i \mod W_{\lambda_j}$. But $w_j \equiv id \mod W_{\lambda_j}$ for j < i, so $w_i \equiv id \mod W_{\lambda_j}$ and $s_\alpha \equiv id \mod W_{\lambda_j}$, which can only be if $\langle \lambda_j, \alpha^{\vee} \rangle = 0$ for all j < i. So the function h_α attains strictly negative values for this monomial, and consequently $e_\alpha(m) \neq 0$.

Since the weight of the monomial is smaller or equal to $\lambda_1 + \ldots + \lambda_p$, this shows that for any monomial m with a defining chain one can find simple roots such that $e_{\alpha_1} \ldots e_{\alpha_r}(m) =$ $\pi_{\lambda} * \ldots * \pi_{\mu}$. So the module of monomials with a defining chain coincides with the module of standard monomials.

Let **b** be the Borel subalgebra of **g** corresponding to the choice of simple roots. Let $\lambda_1, \ldots, \lambda_s$ be dominant weights and suppose that $\mathbf{q} \supset \mathbf{b}$ is a parabolic subalgebra such that the weights can be extended to characters of **g**. Let $W_{\mathbf{q}}$ be the Weyl group of **q**. Recall that the fibres $p^{-1}(w)$ of the projection $p: W \to W/W_{\mathbf{q}}$ have a unique minimal element $w^{min} \in W$ (respectively unique maximal element $w^{max} \in W$), which is called the minimal (resp. maximal) representative in W of w.

Corollary 3 A monomial $m = \pi_1 * \ldots * \pi_p$ of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_p)$ is standard if and only if there exists a **q**-defining chain for m, i.e.: For $\pi_1 = (\tau_1, \ldots, \tau_r; a_0, \ldots, a_r), \ldots, \pi_p = (\tau_s, \ldots, \tau_K; b_s, \ldots, b_K)$ there exist elements w_1, \ldots, w_K in $W/W_{\mathbf{q}}$ such that $w_1 \geq \ldots \geq w_K$, and

$$w_1 \equiv \tau_1, \ldots, w_2 \equiv \tau_r \mod W_{\lambda_1}; \ldots; w_s \equiv \tau_s, \ldots, w_K \equiv \tau_K \mod W_{\lambda_n}.$$

Proof. If (w_1, \ldots, w_K) is a defining chain, then the projection of the chain into $(W/W_{\mathbf{q}})^K$ gives the desired **q**-chain. If (w_1, \ldots, w_K) is a **q**-chain, then it is easy to see that $(w_1^{min}, \ldots, w_K^{min})$ is a defining chain for m.

It follows that the notion of a standard Young tableau given here and in [10] and [12] coincide. As there one proves easily (notation as above):

Lemma 1 For a standard monomial $m = \pi_1 * \ldots * \pi_p$ of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_p)$ there exists a unique maximal **q**-defining chain (w_1^+, \ldots, w_K^+) and a unique minimal **q**-defining chain (w_1^-, \ldots, w_K^-) . I.e. for any **q**-defining chain (w_1, \ldots, w_K) for m one has $w_1^+ \ge w_1 \ge w_1^-, \ldots, w_K^+ \ge w_K \ge w_K^-$.

Theorem 8 Set $\lambda = \lambda_1 + \ldots + \lambda_p$, and suppose that **q** is maximal such that λ can be extended to a character of **q**. For a standard monomial $m = \pi_1 * \ldots * \pi_p$ of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_p)$ let $\eta = (\tau_1, \ldots, \tau_r; a_0, \ldots, a_r)$ be the unique L-S path of shape λ such that $[m] = [\eta]$ in \mathbb{ZP} . Let (w_1^+, \ldots, w_K^+) be the maximal **q**-defining chain for m and let (w_1^-, \ldots, w_K^-) be the minimal **q**-defining chain for m. Then $\tau_1 = w_1^-$ and $\tau_r = w_K^+$.

Proof. By the maximality of \mathbf{q} one has $W_{\mathbf{q}} = W_{\lambda}$. For $\tau \in W/W_{\lambda}$ let π_{τ} be the L-S path $(\tau; 0, 1)$ of shape λ . Now $\eta * \pi_{\tau}$ is standard by Corollary 3 if and only if $\tau \leq \tau_r$. In the same way one sees that $\pi_{\tau} * \eta$ is standard if and only if $\tau \geq \tau_1$. By Corollary 3 and Lemma 1, the same arguments imply that $m * \pi_{\tau}$ is standard if and only if $w_K^+ \geq \tau$, and $\pi_{\tau} * m$ is standard if and only if $w_K^- \geq \tau_r$. Since $[m] = [\eta]$ in $\mathbb{Z}\mathcal{P}$, it follows that $\tau_1 = w_1^-$ and $\tau_r = w_K^+$.

For $\tau \in W/W_{\lambda}$ let $P_{\underline{\lambda},\tau}$ be the set of standard monomials of shape $\underline{\lambda}$ such that $w_1^- \leq \tau$. Choose $\rho \in X$ such that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots, and let $\Lambda_{\alpha} : e^{\mu} \mapsto (e^{\mu} - e^{s_{\alpha}(\mu+\rho)-\rho})/(1-\rho)$ $e^{-\alpha}$) be the Demazure operator. Let $\tau = s_{\alpha_1} \dots s_{\alpha_r}$ be a reduced decomposition. It follows from Theorem 5.2, [14]:

Corollary 4 $\sum_{m \in P_{\underline{\lambda},\tau}} e^{m(1)} = \Lambda_{\alpha_1} \circ \ldots \circ \Lambda_{\alpha_r}(e^{\lambda}).$

We conclude this section with another version of defining chains: Suppose that $\lambda_1, \ldots, \lambda_s$ are dominant weights and let $\mathbf{b} \subseteq \mathbf{q}_1 \subseteq \mathbf{q}_2 \subseteq \ldots \subseteq \mathbf{q}_s$ be parabolic subgroups such that λ_i can be extended to a character of \mathbf{q}_i . As above one proves:

Proposition 2 Let $m = \pi_1 * \pi_2 * \ldots * \pi_s$ be of shape $\underline{\lambda} = (\lambda_1, \ldots, \lambda_s)$. Then m is standard if and only if there exists a defining chain in $\prod_{i=1}^s W/W_{\mathbf{q}_i}$. I.e. for the paths $\pi_1 = (\tau_1, \ldots, \tau_p; a_0, \ldots, a_p)$, $\pi_2 = (\delta_1, \ldots, \delta_q; b_0, \ldots, b_q)$, $\pi_3 = (\kappa_1, \ldots, \kappa_r; c_0, \ldots, c_r)$ and so, there exist $w_1 \geq \ldots \geq w_p$ in $W/W_{\mathbf{q}_1}, u_1 \geq \ldots \geq u_q$ in $W/W_{\mathbf{q}_2}, v_1 \geq \ldots \geq v_r$ in $W/W_{\mathbf{q}_3}$, and so, such that $w_p \geq u_1 \mod W_{\mathbf{q}_2}$, $u_q \geq v_1 \mod W_{\mathbf{q}_3}$ and so, and

 $w_1 \equiv \tau_1, \ldots, w_p \equiv \tau_p \mod W_{\lambda_1}; u_1 \equiv \delta_1, \ldots, u_p \equiv \delta_q \mod W_{\lambda_2}; and so.$

12 A lifting criterium

To make the Young tableaux more compatible with the classical notion of a Young tableau for example for $SL_n(\mathbb{C})$ (compare also [16]), we show that for a "good" enumeration of the fundamental weights in many cases the weakly standard tableaux are standard. Let G be as in section 10.

Fix a Borel subgroup $B \subset G$. Let $\alpha \neq \gamma$ be simple roots, denote by ω_{α} and ω_{γ} the fundamental weights and let $P(\alpha), P(\gamma) \supset B$ be the associated minimal parabolic subgroup. Suppose $Q \supset B$ is a parabolic subgroup such that $P(\alpha), P(\gamma) \not\subset Q$. Let Q' be generated by Q and $P(\alpha)$, and let $W_{\mathbf{q}}, W_{\mathbf{q}'}$, be the Weyl groups of $\mathbf{q} := \text{Lie } Q, \mathbf{q}' := \text{Lie } Q$. Consider the diagram:

$$W \xrightarrow{} W/W_{\mathbf{q}} \xrightarrow{p} W/W_{\omega_{a}}$$

$$W \xrightarrow{j_{j}} W/W_{\mathbf{q}'} \xrightarrow{p'} W/W_{\omega_{\gamma}}$$

For $\tau \in W/W_{\omega_a}$ let $\tau^{max} \in W/W_{\mathbf{q}}$ be the unique maximal element in $p^{-1}(\tau)$. Denote by $D - \gamma$ the diagram obtained from the Dynkin diagram D of G after removing (the node of) γ , and let D_{α} be the irreducible component of $D - \gamma$ containing the node of α .

Lemma 2 Suppose that $P(\beta) \subset Q'$ for all simple roots β corresponding to a node in D_{α} . Then, for all elements $\tau \in W/W_{\omega_{\alpha}}$, there exists an element $\tau' \in W/W_{\omega_{\gamma}}$ such that $j(\tau^{max}) = {\tau'}^{max}$.

Proof. Let $w \in W$ be the maximal lift for $\tau \in W/W_{\omega_{\alpha}}$, so $l(ws_{\beta}) < l(w)$ for all simple roots $\beta \neq \alpha$. Let now $w' \in W$ be arbitrary such that $w \equiv w' \mod W_{\mathbf{q}'}$ and $l(w's_{\beta}) < l(w')$ for all simple roots $\beta \notin D_{\alpha} \cup \{\gamma\}$.

If $\beta \in D_{\alpha}$ is such that $l(w's_{\beta}) > l(w')$, then set $w'' := w's_{\beta}$. One has $w'' \equiv w \mod W_{\mathbf{q}'}$, and for $\delta \notin D_{\alpha} \cup \{\gamma\}$ one has $l(w''s_{\delta}) = l(w's_{\beta}s_{\delta}) = l(w's_{\delta}s_{\beta}) < l(w'')$ since s_{β} and s_{δ} commute. So w'' is again of the same type. Since W is finite, one can assume that $w' \in W$ is such that $w' \equiv w \mod W_{\mathbf{q}'}$ and $l(w's_{\beta}) < l(w')$ for all simple roots $\beta \neq \gamma$. So $w' \in W$ is the maximal lift of $\tau' \in W/W_{\omega_{\gamma}}$, where $\tau' := w' \mod W_{\omega_{\gamma}}$. Since $w' \equiv w \mod W_{\mathbf{q}'}$, it follows for $\tau'^{max} \equiv w' \mod W_{\mathbf{q}'}$ that $j(\tau^{max}) = \tau'^{max}$.

Corollary 5 Suppose D_{α} satisfies the conditions of Lemma 2. Let $\kappa \in W/W_{\omega_{\gamma}}$ be an arbitrary element. If there exists an element $w \in W$ such that $w \equiv \tau \mod W_{\omega_{\alpha}}$ and $w \geq \kappa \mod W_{\omega_{\gamma}}$, then $j(\tau^{max}) \geq \kappa^{max}$.

Let $\omega_1, \ldots, \omega_r$ be fundamental weights and let $\alpha_1, \ldots, \alpha_r$ be the corresponding simple roots. Suppose $Q_0 \supset B$ is a parabolic subgroup such that the ω_i can be extended to characters of Q_0 . Let Q_i be the parabolic subgroup generated by Q_0 and the $P(\alpha_j), j \leq i$, and for $1 \leq i \leq r-1$ let D_{α_i} be the irreducible component of $D - \alpha_{i+1}$ containing the node corresponding to α_i .

Definition 9 The tuple $(Q_0, \omega_1, \ldots, \omega_r)$ is called a good string if the following holds for all $i = 1, \ldots, r - 1$: Whenever $\gamma \in D_{\alpha_i}$, then $P(\gamma) \subset Q_{i+1}$.

One sees immediatly:

Lemma 3 Suppose $(Q_0, \omega_1, \ldots, \omega_r)$ is a good string. For a subset $I := \{i_1, \ldots, i_s\} \subset \{1, \ldots, r\}$ such that $i_1 < \ldots < i_s$ let Q'_0 be generated by Q_0 and the $P(\alpha_l)$ such that $l \notin I$. Then $(Q'_0, \omega_{i_1}, \ldots, \omega_{i_s})$ is a good string.

Lemma 4 If $(Q_0, \omega_1, \ldots, \omega_r)$ is a good string, then all weakly standard monomials of shape $\underline{\lambda}$, $\lambda = a_1 \omega_1 + \ldots + a_r \omega_r$, are standard.

Proof. For $\tau \in W/W_{\omega_i}$ write τ^{max} for the unique maximal representative in $W/W_{\mathbf{q}_{i-1}}$. Suppose $m = \pi \cdots \eta$ is of the shape above and weakly standard. For a factor $(\tau_1, \ldots, \tau_r; a_0, \ldots, a_r)$ of shape ω_i let $\tau_1^{max} \ge \ldots \ge \tau_r^{max}$ be be the corresponding sequence of maximal lifts in $W/W_{\mathbf{q}_{i-1}}$. If the next factor $(\kappa_1, \ldots, \kappa_t, b_1, \ldots, b_t)$ is of the same shape, then $\tau_r^{max} \ge \kappa_1^{max}$. This is because m is weakly standard (Corollary 3). If the type changes, then one can assume that $a_{i+1} \neq 0$ (Lemma 3). Let q_i be the projection $W/W_{\mathbf{q}_{i-1}} \to W/W_{\mathbf{q}_i}$. One finds $q_i(\tau_r^{max}) \ge \kappa_1^{max}$. This is due to Corollary 5 and the fact that m is weakly standard (Theorem 7). So this sequence in $\Pi_{s=0}^{r-1}W/W_{\mathbf{q}_s}$ is a defining chain, and m is standard by Proposition 2.

Corollary 6 Suppose G is simple and not of type D_n or E_n . Let the enumeration $\omega_1, \ldots, \omega_n$ of the fundamental weights be as in [2]. Then every weakly standard Young tableau is a standard Young tableau.

Proof. Since $(B, \omega_1, \ldots, \omega_n)$ is a good string, by Lemma 4 all weakly standard tableaux are standard.

Suppose now **g** is of type D_n or E_n . Let the enumeration of the fundamental weights be as in [2]. Using good strings, one proves as above:

Corollary 7 A weakly standard Young tableau of shape λ such that $a_n = 0$ or $a_{n-1} = 0$ for G of type D_n , respectively $a_2 = 0$ or $a_1 = a_3 = 0$ for G of type E_n , is a standard Young tableau. Further (the different ordering is important), a weakly standard Young tableau of shape $\lambda = a_{n-1}\omega_{n-1} + a_{n-2}\omega_{n-2} + a_n\omega_n$ is standard for G of type D_n , and a weakly standard Young tableau of shape $\lambda = a_1\omega_1 + a_3\omega_3 + a_4\omega_4 + a_2\omega_2$ is standard for G of type E_n .

To get a criterium for an arbitrary tableau m, let m_1 be the product of the factors of type ω_1 , m_2 the product of the factors of type ω_2 , and so. Of course, if $a_i = 0$ for some i, then m_i is not supposed to show up in the monomial, so $m = m_1 \cdots m_n$. If we reorder the factors, then we write the factors with a '. For example $m'_2m'_1m_3$ is a monomial obtained from the tableau $m_1m_2m_3$ by reordering the factors such that all paths of type ω_2 come first.

Suppose now G of type D_n and $\lambda = \sum_{i=1^n} a_i \omega_i$ is such that $a_{n-1}, a_n > 0$ and $a_i > 0$ for some i < n-2. Choose $i \le n-2$ maximal such that $a_i \ne 0$, and let $(\tau_1, \ldots, \tau_r; a_0, \ldots, a_r)$ be the last factor of m_i . If i = n-2, then set $\overline{\tau_r} := \tau_r$. Else let $\tau_r^{max} \in W/W_{\mathbf{q}_{i-1}}$ be its maximal representative, and denote by $\overline{\tau_r}$ its image under the projection $W/W_{\mathbf{q}_{i-1}} \rightarrow W/W_{\omega_{n-2}}$. We set $\pi := (\overline{\tau_r}; 0, 1)$.

Corollary 8 The tableau m is a standard tableau if and only if $m_1 \cdots m_{n-2}$ and the monomial $m'_{n-1}\pi'm_n$ are weakly standard.

Proof. If m is standard, then also $m_1 \cdots m_{n-2} \pi m_{n-1} m_n$ is standard. This is due to Proposition 2 and the choice of $\overline{\tau_r}$. So also $m_1 \ldots m_{n-2}$ is standard (and hence weakly standard), and $\pi m_{n-1} m_n$ is standard. But then the monomial $m'_{n-1} \pi' m_n$ is standard too.

Now if $m_1 \ldots m_{n-2}$ and $m'_{n-1}\pi' m_n$ are weakly standard, then they are standard by Corollary 7. Hence also the monomial $\pi m_{n-1}m_n$ is standard, and, by the choice of π , the monomial $m_1 \ldots m_{n-2}\pi$ is standard too.

The proof of Lemma 4 shows that in order to get a defining chain in $\Pi_{s=0}^{n-3}W/W_{Q_s}$ for a standard monomial $m_1 \cdots m_{n-2}\pi$ (using the good string $(B, \omega_1, \ldots, \omega_{n-2})$), one has to take for a factor of shape ω_j , $j \leq n-2$, as lifts the maximal representatives in $W/W_{Q_{j-1}}$. Since the monomial $\pi m_{n-1}m_n$ is also standard, there exists a defining chain (Corollary 3) in $\Pi_{s=n-2}^n W/W_{Q_s}$. Since π comes first, one can assume without loss of generality that the lifts for π are the maximal representatives in $W/W_{Q_{n-3}}$. Hence the terms for π in the defining chain of $m_1 \cdots m_{n-2}\pi$ coincide with the terms for π of the defining chain of $\pi m_{n-2}m_{n-1}m_n$, so is a defining chain for $m_1 \cdots m_{n-2}\pi m_{n-1}m_n$ in $\Pi_{s=0}^{n-1}W/W_{Q_s}$. It follows that m is a standard tableau. Suppose now G of type \mathbf{E}_n and $\lambda = \sum_{i=1^n} a_i \omega_i$ is such that $a_2, a_1 + a_3 > 0$ and $a_i > 0$ for some i > 4. We call a monomial a tableau if the factors show up in the *reverse* ordering, i.e. the paths of shape ω_n come first etc., and the terms of shape ω_1 come last. Similarly, let Q_i be the parabolic subgroup generated by B and the $P(\alpha_j), j \ge i$, and let \mathbf{q}_i be its Lie algebra and $W_{\mathbf{q}_i}$ be its Weyl group. As above, if we reorder the factors, then we write the factors with a '.

Choose $i \geq 4$ minimal such that $a_i \neq 0$, and let $(\tau_1, \ldots, \tau_r; a_0, \ldots, a_r)$ be the last factor of m_i . If i = 4, then set $\overline{\tau_r} := \tau_r$. Else let $\tau_r^{max} \in W/W_{\mathbf{q}_{i-1}}$ be its maximal representative, and let $\overline{\tau_r}$ its image in W/W_{ω_4} . We set $\pi := (\overline{\tau_r}; 0, 1)$. Using the good strings $(B, \omega_n, \ldots, \omega_4)$ and $(Q_5, \omega_2, \omega_4, \omega_3, \omega_1)$, one proves:

Corollary 9 The tableau $m = m_n \cdots m_1$ is a standard tableau if and only if $m_n \cdots m_4$ and the monomial $m'_2 \pi' m'_3 m_1$ are weakly standard.

13 Examples

It remains to prove Theorem C. For a monomial $m \in \mathbb{Z}\{D\}$ let deg m be its degree, and for a dominant weight $\lambda = \sum_{\omega} a_{\omega} \omega$ set deg $\lambda := \sum_{\omega} a_{\omega} \deg \eta_{\omega}$.

Using [14], the tables in [3] or the program LiE [4], one checks easily that for the exceptional groups $\neq G_2$ the number given in Theorem C is the number N given by Corollary 2. We consider now the remaining cases.

Proof. Case A_n Then D is the set of paths $\pi_i : t \mapsto t\epsilon_i$. If one identifies π_i with the number i, then $\mathbb{Z}\{D\}$ is just the word algebra $\mathbb{Z}\{1, \ldots, n\}$ on the alphabet $\{1, \ldots, n\}$. The relations given by \mathbf{R}_3 can be written for a < b < c as:

$$aab = aba, \ cab = acb, \ bac = bca, \ bab = abb,$$

which are the well known Knuth relations [9]. So $\mathbb{Z}\{\mathbb{D}\}/I$, where I is the two sided ideal generated by \mathbb{R}_3 , is the algebra considered by Lascoux and Schützenberger. These relations imply for $j \leq i$: $12 \dots ij = j12 \dots i$. To prove that these relations (together with $\theta = 12 \dots n$) generate Ker ψ , it is sufficient to prove that a monomial $m = n_1 \cdots n_s$ such that $n_1 * \dots * n_s \in \Pi^+$ is equivalent to a standard tableau: $1 \dots i_1 \dots 1 \dots i_s$, where $i_1 \leq \dots \leq i_s < n$. We prove this by induction, the case where deg m = 1 being obvious. Suppose m is as above. By induction one can assume that $m = 1 \dots i_1 \dots 1 \dots i_t j$ for some j and $i_1 \leq \dots \leq i_s$. Since $n_1 * \dots * n_s \in \Pi^+$, one has $j \leq i_t + 1$. If $j = i_t + 1$, then m is standard. Else m is equivalent by the Knuth relations to $1 \dots i_{t-1} j1 \dots i_t$, which is by induction equivalent to a standard tableau.

Proof. Case C_n Here D is the set of paths $\pi_{\pm i} : t \mapsto t \pm \epsilon_i$. If one identifies $\pi_{\pm i}$ with the number $\pm i$, then $\mathbb{Z}\{D\}$ is the word algebra $\mathbb{Z}\{1, \ldots, n, -n, \ldots, -1\}$ on the alphabet $1 < \ldots < n < -n < \ldots < -1$. Let ϕ_i be the isomorphism $\mathcal{A}[12 \ldots i(-i)] \to \mathcal{A}[12 \ldots (i-1)], 2 \leq i \leq n$. The relations given by \mathbf{R}_3 are:

$$1(-1) = \theta$$
, $1a(-1) = a$, $12(-2) = 1$, $2(-2)(-1) = (-1)$, for $1 \le a \le -1$,

 $aab = aba, \ cab = acb, \ bac = bca, \ bab = abb \ for \ a < b < c, \ (a, c) \neq (1, -1).$

To prove that \mathbf{R}_3 together with the relations $\pi - \phi_i(\pi)$, $\pi \in \mathcal{A}[12...i(-i)]$, generate Ker ψ , it is sufficient to prove that a monomial $n_1 \cdots n_s$ such that $n_1 * \ldots * n_s \in \Pi^+$ is equivalent to a standard tableau.

We prove this by induction on the degree of the monomial, the case deg m = 1 being obvious. Suppose deg m > 1, by induction one can assume that $m = 1 \dots i_1 1 \dots i_2 \dots 1 \dots i_s j$ for some $i_1 \leq \dots \leq i_s \leq n$ and some $1 \leq j \leq -1$. Since the corresponding path is in Π^+ , one has $|j| \leq i_s$ or $j = i_s + 1$. In the last case, m is a standard tableau. If $1 \leq j \leq i_s$, the same arguments as in the case \mathbf{A}_n show that m is equivalent to a standard tableau. If $-1 \geq j \geq -i_s$, then $i_l = |j|$ for some l and (by induction) m is equivalent to $m' = 1 \dots i_1 \dots 1 \dots i_s 1 \dots |j| j$. Hence m' is equivalent to $1 \dots i_1 \dots 1 \dots i_s 1 \dots (|j| - 1)$, which is by induction equivalent to a standard tableau.

Proof. Case B_n, D_n In this case $m_V = 2$. Further, one sees easily by weight considerations that if λ is a dominant weight such that $M_{\lambda} \subset M_{\omega} * M_{\omega'}$ for two fundamental weights, then $|\lambda| \geq 3$ only if $\lambda = 2\omega_n + \omega_j$ for some $1 \leq j \leq n-1$ in the case B_n and $\lambda = 2\omega_n + \omega_j, 2\omega_{n-1} + \omega_j$ or $\omega_{n-1} + \omega_n + \omega_j$ for some $1 \leq j \leq n-2$ in the case D_n . So Ker ψ is generated by \mathbf{R}_4 by Corollary 2.

We consider in the following only the case B_n , the proof for D_n is similar. To prove that Ker ψ is already generated by \mathbf{R}_3 , it is sufficient to show that every monomial $m = d_1 \cdots d_r$ of degree $r \leq 4$ such that $d_1 * \ldots * d_r \in \Pi^+$ is equivalent to a standard tableau modulo the ideal I generated by \mathbf{R}_3 . Since deg $\lambda \leq 3$ for a dominant weight such that $M_\lambda \subset M_{\omega_n}^{*k}$, k = 2, 3, this true for monomials of degree ≤ 3 . Suppose now deg m = 4. Using the relations for monomials of degree ≤ 3 , one can assume that m is of the form

$$\eta_{\omega_n} \cdot \eta_{\omega_n} \cdot \eta_{\omega_n} \cdot d \text{ or } \eta_{\omega_j} \cdot \eta_{\omega_n} \cdot d, \quad 1 \le j < n$$

for some $d \in D$. Now in the first case the corresponding path is in Π^+ if and only if already $\eta_{\omega_n} * d \in \Pi^+$, so this monomial is equivalent to a standard tableau modulo I. In the second case, if already $\eta_{\omega_n} * d \in \Pi^+$ or $\eta_{\omega_j} * d \in \Pi^+$, then the monomial is equivalent to a standard tableau modulo I. Otherwise identify d with its endpoint, then the only possibilities for d are

$$d = \frac{1}{2}(\epsilon_1 + \ldots + \epsilon_{k-1} - \epsilon_k - \ldots - \epsilon_j + \epsilon_{j+1} + \ldots + \epsilon_{l-1} - \epsilon_l - \ldots - \epsilon_n)$$

for some k < j + 1 < l. Now $\eta_{\omega_j} * d = f_{\alpha_n} f_{\alpha_{n-1}} \dots f_{\alpha_l} \dots f_{\alpha_n} \pi$ for

$$\pi = \eta_{\omega_j} * \frac{1}{2} (\epsilon_1 + \ldots + \epsilon_{k-1} - \epsilon_k - \ldots - \epsilon_j + \epsilon_{j+1} + \ldots + \epsilon_n),$$

and π is equivalent to $\eta_{\omega_{k-1}} * \eta_{\omega_n}$. So $\eta_{\omega_j} \cdot d$ is equivalent to

$$f_{\alpha_n}f_{\alpha_{n-1}}\dots f_{\alpha_l}\dots f_{\alpha_n}(\eta_{\omega_{k-1}}\cdot\eta_{\omega_n})=\eta_{\omega_{k-1}}\cdot\frac{1}{2}(\epsilon_1+\dots+\epsilon_{l-1}-\epsilon_l-\dots-\epsilon_n).$$

Hence $\eta_{\omega_j} \cdot \eta_{\omega_n} \cdot d$ is equivalent to $\eta_{\omega_{k-1}} \cdot \eta_{\omega_{l-1}}$, which is a standard tableau. A detailed description of the relations will be given in a forthcoming article.

Proof. Case G_2 Using Corollary 2, one checks easily that Ker ψ is generated by \mathbf{R}_4 . We identify D with the set $\{1, 2, 3, z, 4, 5, 6\}$ in the following way:

$$1 := \pi_{\omega_1}; \ 2 := f_{\alpha_1}1; \ 3 := f_{\alpha_2}2; \ z := f_{\alpha_1}3; \ 4 := f_{\alpha_1}z; \ 5 := f_{\alpha_2}4; \ 6 := f_{\alpha_1}5.$$

We define the numerical value of z as $3\frac{1}{2}$. The relations in \mathbf{R}_2 are:

$$16 = \theta; \ 1 = 1z, \ 2 = 14, \ 3 = 15, \ z = 25, \ 4 = 26, \ 5 = 36, \ 6 = z6.$$

The relations in \mathbf{R}_3 , which are independent of those in \mathbf{R}_2 , are coming from the isomorphisms $\mathcal{A}_{123} \simeq \mathcal{A}_{11}$ and $\mathcal{A}_{121} \simeq \mathcal{A}_{112}$. In the first case one gets:

123 = 11, 12z = 21, 124 = 22, 13z = 31, 134 = 32, 23z = z1, 234 = z2 135 = 33, 2zz = 41, 235 = z3, 2z4 = 42, 3zz = 51, 2z5 = 43, 3z4 = 52, zzz = 61, 245 = 4z, 3z5 = 53, zz4 = 62, 345 = 5z, 246 = 44, zz5 = 63, 346 = 54, z45 = 6z, 356 = 55, z46 = 64, z56 = 65, 456 = 66. The basis of $\mathcal{A}121$ is $\{abc \mid a < b \ge c, b-a \le 2, or (a,b) = (z,z), c < z\}$, and the basis of $\mathcal{A}112$ is $\{abc \mid a \ge b < c, c-b \le 2, or (b,c) = (z,z), a > z\}$. The relations given by the isomorphism are:

$$aab = aba, \ cab = acb, \ bac = bca, \ bab = abb,$$

for the paths ending in an extremal weight. For the other paths one gets: 132=312, 2z2=412, 3z3=513, z44=624, z55=635, z66=645, 231=213, 2z2=22z, 3z3=33z, z44=4z4, z55=5z5, 465=546, 232=z12, 233=z13, 24z=42z, 35z=53z, 454=6z4, 455=6z5, 2z1=223, 3z1=323, z42=z24, z53=z35, 46z=445, 56z=545, 2z3=413, 243=423, 343=523, 344=5z4, 354=534, z54=634, 3z2=512, zz2=612, zz3=613, z4z=62z, z5z=63z, 45z=6zz, zz1=z23, z41=z2z, z51=z3z, 461=4zz, 561=5zz, 562=5z4, 341=32z, 342=324, 352=334, 452=434, 453=435, 463=4z5, 34z=52z, z43=623, z52=z34, 451=43z.

So every monomial of length ≤ 3 can be written as a standard tableau of length ≤ 3 . To prove that Ker ψ is generated by these relations, it is sufficient to show that a monomial $m = d_1 \cdots d_4$ such that $d_1 \ast \ldots \ast d_r \in \Pi^+$, is equivalent to a standard tableau. Using the relations above, one sees that such a monomial is either equivalent to one of length ≤ 3 , or it has to be of the form

$$\eta_{\omega_1} \cdot \eta_{\omega_1} \cdot \eta_{\omega_1} \cdot d, \quad \eta_{\omega_1} \cdot \eta_{\omega_2} \cdot d, \quad \text{ or } \quad \eta_{\omega_2} \cdot \eta_{\omega_2}$$

for some $d \in D$. The last monomial is already a standard tableau. In the first case the corresponding path is in Π^+ if and only if the path corresponding to $m' = \eta_{\omega_1} \cdot \eta_{\omega_1} \cdot d$ is already in Π^+ . This monomial is of degree ≤ 3 , so one can assume that it is already standard, but then $\eta_{\omega_1} \cdot m'$ is standard. In the second case one shows similarly that either already $\eta_{\omega_2} * d \in \Pi^+$ or $\eta_{\omega_1} * d \in \Pi^+$. Therefore, the monomial is equivalent to a standard tableau.

References

- A. Berele, A Schensted-type correspondence for the symplectic group, J. Comb. Theory A 43, 1986, 320–328.
- [2] Bourbaki, Groupes et algèbres de Lie, Chap. 4–6 Hermann, Paris, 1968.
- [3] M. R. Bremner, R. V. Moody, and J. Patera, *Tables of dominant weight multiplicities for* representations of simple Lie algebras, Marcel Dekker, New York, 1985.
- [4] A. Cohen, M. A. A. van Leeuwen, B. Lisser, LiE, CAN, Amsterdam, 1992.
- [5] A. Joseph, Quantum Groups and their primitive ideals, Springer Verlag, New York, 1994.
- [6] M. Kashiwara, Crystalizing the q-analog of Universal Enveloping Algebras, Commun. Math. Phys. 133 (1990), 249-260.
- [7] M. Kashiwara, Crystal base and Littelmann's refined Demazure character formula, RIMS 133 (1992), preprint.
- [8] R. C. King, Weight multiplicities for the classical groups, Group Theoretical methods in Physics, in *Lecture Notes in Physics*, (Janner, Jannssen, Boon, ed.) 50, 1976.
- [9] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Math. 34, (1970) 709-727.
- [10] V. Lakshmibai, and C. S. Seshadri, Standard monomial theory, in *Proceedings of the Hy*derabad Conference on Algebraic Groups, Manoj Prakashan, 1991.
- [11] V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P IV, Proc. Ind. Acad. Sci., 88A, (1979) 279-362.
- [12] V. Lakshmibai and C. S. Seshadri, Geometry of G/P V, J. Algebra 100, (1986) 462-557.
- [13] A. Lascoux, and M. P. Schützenberger, Le monoïde plaxique, in Noncommutative structures in algebra and geometric combinatorics, Quaderni della Ricerca Scientifica del C. N. R., Roma, 1981.
- [14] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math. 116 (1994), 329-346.
- [15] P. Littelmann, Paths and root operators in representation theory, to appear in Annals of Mathematics.
- [16] P. Littelmann, Crystal graphs and Young tableaux, to appear in Journal of Algebra.

- [17] G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Prog. Theor. Phys. 102 (1990), 175-201.
- [18] M. P. Schützenberger, La correspondance de Robinson, in *Combinatoire et représentation du groupe symmetrique*, Springer Lecture notes 579, 1976.
- [19] T. Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, preprint, RIMS, 783,1991.
- [20] R. A. Proctor, A Schensted algorithm which models tensor representations of the orthogonal group, Canad. J. Math., 42, 1990), 28–49.
- [21] S. Sundaram, Orthogonal tableaux and an insertion algorithm for SO(2n+1), J. Combin. Theory Ser. A, **53**, 1990, 239–256.