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1 Introduction

A plactic algebra can be thought of as a (non-commutative) model for the representation ring of
a semisimple Lie algebra g. This algebra was introduced by Lascoux and Schützenberger in [13],
[18] in order to study the representation theory of GLn(C) and Sn. This new tool enabled them
for example to give the first rigouros proof of the Littlewood-Richardson rule to determine the
decomposition of tensor products into direct sums of irreducible representations. Using a case
by case analysis, such a plactic algebra has been constructed also for some other simple groups,
see [1], [8], [19], [20], [21].

Recently, two constructions of isomorphic plactic algebras have been given for symmetrisable
Kac-Moody algebras. From the point of view of quantum groups, this algebra is the algebra of
crystal bases ([5], [6], [7], [16], [17], [19]). The second construction realizes this algebra as the
algebra ZP of equivalence classes of paths in the space XQ of rational weights ([5], [14], [15]).

For simplicity, assume that G is a simple, simply connected algebraic group. To give a
description of ZP which is more in the spirit of the original work of Lascoux and Schützenberger,
let V = Vλ1 ⊕ . . .⊕Vλr be a faithful representation and let D be the associated set of L-S paths,
i.e. D is a basis of the corresponding model of V in ZP. Let Z{D} be the free associative algebra
generated by D. If λ =

∑
aωω is a dominant weight, then let |λ| denote the sum

∑
aω. The

canonical projection which maps a monomial to the concatenation:

ψ : Z{D} → ZP, d1 · · · ds 7→ [d1 ∗ . . . ∗ ds]

is surjective. For N ∈ N denote by RN ⊂ Kerψ the set

RN := {d1 · · · ds − c1 · · · cr | ψ(d1 · · · ds) = ψ(c1 · · · cr), r, s ≤ N}.

Main Theorem A Fix mV ∈ N such that for every fundamental weight ω of G there exists an
injection Vω ↪→ V ⊗mω for some mω ≤ mV . Let I ⊂ Z{D} be the two-sided ideal generated by
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RN for N = mV max{7, |λ1|, . . . , |λt|}. The canonical map Z{D} → ZP induces an isomorphism
Z{D}/I ' ZP.

The theorem is a consequence of the case where V = ⊕Vω is the sum of all fundamental repre-
sentations. To describe Kerψ in this case, one introduces the notion of a standard Young tableau
(sections 7, 8). For every pair (d, d′) ∈ D×D such that d ·d′ is not a standard Young tableau, let
d1, . . . , dr ∈ D be such that d1 · · · dr is the unique standard tableau with ψ(d1 · · · dr) = ψ(d · d′),
and denote by R the corresponding set of “plactic Plücker relations”:

R := {d · d′ − d1 · · · dr | d · d′ is not a standard Young tableau} ⊂ Kerψ.

Main Theorem B Kerψ is the two-sided ideal J generated by R.

We also use this opportunity to extend the Demazure type character formula [14] to standard
monomials (Corollary 4). The generating system RN , N = mV max{7, |λ|, . . . , |µ|}, for Kerψ
given by Theorem A is in general not a minimal system. Using the algebra of root operators A,
we prove for the following cases (the enumeration of the fundamental weights is as in [2]):

Main Theorem C Kerψ is generated by
a) R3 for (Spin2n+1, Vωn), (Spin2n, Vωn−1 ⊕ Vωn), and (G2, Vω1).
b) R3 and the relation: 12 . . . n = trivial path, for (SLn, Vω1). Further, ZP is the plactic algebra
defined by Lascoux and Schützenberger.
c) R3 and the relations: π − φi(π), π ∈ A[12 . . . i(−i)], for (Sp2n, Vω1). Here φi is the isomor-
phism A[12 . . . i(−i)] → A[12 . . . (i− 1)] for i = 3, . . . , n.
The following bounds for the other exceptional groups can possibly be reduced by a more careful
case by case analysis: Kerψ is generated by R6 for (F4, Vω4) and (E6, Vω1 ⊕ Vω6), by R9 for
(E6, Vω1), R10 for (E7, Vω7), and R11 for (E8, Vω8).

The author would like to thank C. De Concini and C. Procesi for useful discussions, and the
Scuola Normale Superiore di Pisa for its hospitality.

2 The paths

Let X be the weight lattice of a symmetrizable Kac-Moody algebra g. Write XQ for X ⊗Z Q,
and let [0, 1]Q be the set of rational numbers t such that 0 ≤ t ≤ 1. Denote by Π the set of
all piecewise linear paths π : [0, 1]Q → XQ such that π(0) = 0 and π(1) ∈ X. We consider two
paths π1, π2 as identical if there exists a piecewise linear, nondecreasing, surjective, continuous
map φ : [0, 1]Q → [0, 1]Q such that π1 = π2 ◦ φ. Let ZΠ be the free Z-module with basis Π. By
π := π1 ∗ π2 we mean the concatenation of the paths, i.e. π is the path defined by

π(t) :=
{
π1(2t), if 0 ≤ t ≤ 1/2;
π1(1) + π2(2t− 1), if 1/2 ≤ t ≤ 1.
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The concatenation gives ZΠ the structure of an associative algebra where the neutral element
is the trivial path θ(t) := 0 for all t ∈ [0, 1]Q.

3 The root operators

The aim of this section is to recall the definition of the root operators (see [15]). Fix a simple
root α, and for π ∈ Π let sα(π) be defined by sα(π)(t) := sα(π(t)). Denote by hα the function
hα : [0, 1]Q → Q, t 7→ 〈π(t), α∨〉, and let m be the minimal value attained by hα. If m ≤ −1,
then fix t1 minimal such that hα(t1) = m and let t0 be minimal such that hα(t) = m+1. Choose
t0 = s0 < s1 < . . . < sr = t1 such that either

a) hα(si−1) = hα(si) and hα(t) ≥ hα(si−1) for t ∈ [si−1, si]Q;

or b) hα is strictly decreasing on [si−1, si]Q.

Set s−1 := 0 and sr+1 := 1, then π = π0 ∗ π1 ∗ . . . ∗ πr+1 where πi is defined by

πi(t) := π((si−1 + t(si − si−1))− π(si−1), i = 0, . . . , r + 1.

Definition 1 If m > −1, then eαπ := 0, else eαπ := π0 ∗ η1 ∗ . . . ∗ ηr ∗ πr+1, where ηi := πi if
hα satisfies condition a) on [si−1, si]Q, and ηi := sα(πi) if not.

The definition of fα is similar. Fix t0 maximal such that hα(t0) = m. If hα(1)−m ≥ 1, then
let t1 be maximal such that hα(t) = m + 1 and choose t0 = s0 < s1 < . . . < sr = t1 such that
either

a) hα(si) = hα(si−1) and hα(t) ≥ hα(si−1) for t ∈ [si−1, si]Q;

or b) or hα is strictly increasing on [si−1, si]Q.

Definition 2 Let the πi be as above. If hα(1) − m < 1, then fαπ := 0. Otherwise fαπ :=
π0 ∗ η1 ∗ . . . ∗ ηr ∗ πr+1, where ηi := πi if hα is on [si−1, si]Q as in a), and ηi := sα(πi) if not.

Remark 1 It is easy to see that if eαπ 6= 0, then (eαπ)(1) = π(1) + α and fαeαπ = π, and if
fαπ 6= 0, then (fαπ)(1) = π(1)− α and eαfαπ = π .

4 The path model of a representation

We recall the main results in [14], [15]. Denote by A ⊂ EndZ ZΠ the subalgebra generated by
the root operators eα and fα. Let Π+ be the set of paths π such that the image is contained in
the dominant Weyl chamber and denote by Mπ the A-module Aπ. Clearly, Bπ := Mπ ∩ Π is a
Z-basis of Mπ.
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Theorem 1 i) If π(1) = π′(1) for π, π′ ∈ Π+, then the A-modules Mπ and Mπ′ are isomor-
phic.

ii) If π ∈ Π+, then CharMπ :=
∑

η∈Bπ
eη(1) is equal to the character CharVλ of the irreducible

g-module Vλ of heighest weight λ := π(1).

iii) For π ∈ Π+ let η ∈ Mπ be an arbitrary path. The minimum mα(η) of the function
hα : t 7→ 〈η(t), α∨〉 is an integer for all simple roots, and eαη = 0 for all simple roots if
and only if η = π.

Since mα(η) ∈ Z one has (see [15]) for η ∈Mπ and η′ ∈Mπ′ :

fα(η ∗ η′) =
{

(fαη) ∗ η′, if fn
αη 6= 0 but enαη

′ = 0 for some n ≥ 1;
η ∗ (fαη

′), otherwise.

eα(η ∗ η′) =
{
η ∗ (eαη′) if enαη

′ 6= 0 but fn
αη = 0 for some n ≥ 1;

(eαη) ∗ η′, otherwise.

For π1, π2 ∈ Π+ denote by Mπ1 ∗Mπ2 the Z-module spanned by the concatenations η1∗η2, where
η1 ∈ Bπ1 η2 ∈ Bπ2 . This is an A-module (see [15]):

Theorem 2 Suppose π1, π2 ∈ Π+, then Mπ1 ∗Mπ2 =
⊕

η Mπ1∗η, where η runs over all paths in
Bπ2 such that π1 ∗ η ∈ Π+.

By the character formula we get immediately (see [15]):

Theorem 3 For π1, π2 ∈ Π+ set λ = π1(1) and µ = π2(1). Then Vλ ⊗ Vµ decomposes into the
direct sum

⊕
η Vλ+η(1) of irreducible g-modules, where η runs over all paths in Bπ2 such that

π1 ∗ η ∈ Π+.

In the following we mean by an A-morphism
⊕

iMπi →
⊕

j Mηj always a modul homomor-
phism that maps paths onto paths.

5 The plactic algebra

Denote by ZΠ0 := AΠ+ the A-submodule of ZΠ generated by the paths in Π+. Note that, by
Theorem 2, ZΠ0 is a subalgebra.

Definition 3 For two paths π, η ∈ ZΠ0 let π+, η+ ∈ Π+ be the unique paths such that π ∈
Mπ+ , η ∈Mη+. We call π, η equivalent and write π ∼ η, if π+(1) = η+(1) and φ(π) = η under
the isomorphism φ : Mπ+ →Mη+.
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Set ZP := ZΠ0/ ∼, and for π ∈ ZΠ0 let [π] ∈ ZP be its equivalence class. ZP is an A-
module: fα[π] := [fαπ], eα[π] := [eαπ], and an algebra: [π1] ∗ [π2] := [π1 ∗ π2] (see [15]). We
write Mλ for A[π] ⊂ ZP, where π ∈ Π+ is an arbitrary path such that λ = π(1).

Definition 4 The algebra ZP is called a plactic algebra for g.

As before, set CharMλ :=
∑

[π]∈Mλ
eπ(1). The previous results imply:

Theorem 4 The plactic algebra is a model for the representation ring of g. More precisely,
ZP =

⊕
λ∈X+ Mλ is the sum of simple A-modules, CharMλ is the character CharVλ of the

corresponding simple g-module, and for λ, µ ∈ X+ one has Char(Mλ ∗Mµ) = Char(Vλ ⊗ Vµ).

6 Lakshmibai-Seshadri paths

In order that we may give a description ZP in terms of generators and relations, we recall the
description of the basis of the A-module generated by πλ : t 7→ tλ for a dominant weight λ.
These are called L-S paths (see [14]). Let Wλ be the stabilizer of λ, let “≤” denote the Bruhat
order on W/Wλ and let l(·) be the length function on W/Wλ. We identify a pair π = (τ , a) of
sequences:

• τ : τ1 > τ2 > . . . > τr is a sequence of linearly ordered cosets in W/Wλ,

• a : a0 := 0 < a1 < . . . < ar := 1 is a sequence of rational numbers,

with the path:

π(t) :=
j−1∑
i=1

(ai − ai−1)τi(λ) + (t− aj−1)τj(λ) for aj−1 ≤ t ≤ aj .

Let τ > σ be two elements of W/Wλ and let 0 < a < 1 be a rational number. By an a-chain for
(τ, σ) we mean a sequence of cosets, where β1, . . . , βs are positive real roots, l(κi) = l(κi−1)− 1,
a〈κi(λ), β∨i 〉 ∈ Z for all i = 1, . . . , s and:

κ0 = τ > κ1 := sβ1τ > κ2 := sβ2sβ1τ > . . . > κs := sβs · . . . · sβ1τ = σ.

Definition 5 A pair (τ , a) is called a Lakshmibai-Seshadri path (L–S path) of shape λ if, for
all 1 ≤ i ≤ r − 1, there exists an ai-chain for the pair (τi, τi+1).

Theorem 5 [14] The set of all L-S paths (τ , a) of shape λ is a basis for the A-module Aπλ ⊂ ZΠ0

generated by the path πλ.

Corollary 1 The set of all equivalence classes [(τ , a)] ∈ ZP of L-S paths forms a basis for ZP.

In general it is quite difficult to find for two L-S paths (τ1, a1), (τ2, a2) the unique L-S path
(τ3, a3) such that [(τ1, a1)] ∗ [(τ2, a2)] = [(τ3, a3)] in ZP.
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7 L-S monomials

In this section we consider monomials of L-S paths. A combinatorial description of the “standard
monomials” will be given in section refstandardmonomialsanddefiningchains.

Definition 6 Let λ1, . . . , λk be dominant weights and set λ = λ1+. . .+λk. If for all i = 1, . . . , k,
πi is an L-S path of shape λi, then the monomial m = π1∗. . .∗πk ∈ ZΠ0 is called an L-S monomial
of shape λ (or λ = (λ1, . . . , λk)).

To give a monomial basis of the plactic algebra, we introduce now the notion of standard
monomials. Let m be the L-S monomial π1 ∗ . . . ∗ πk:

Definition 7 m is called weakly standard of shape λ = (λ1, . . . , λk), if for all i = 1, . . . , k − 1,
the concatenation πi ∗ πi+1 is an element of A(πλi

∗ πλi+1
). The monomial m is called standard

of shape λ, if m ∈ A(πλ1 ∗ . . . ∗ πλk
).

For all 1 ≤ i, j ≤ k fix A-isomorphisms φi,j : Aπλi
∗ Aπλj

→ Aπλj
∗ Aπλi

. Set M :=⊕
σ∈Sk

Aπλσ(1)
∗ . . . ∗ Aπλσ(k)

, and denote by τi : M →M the A-isomorphism defined by

τi(π1 ∗ . . . ∗ πi ∗ πi+1 ∗ . . . ∗ πk) := π1 ∗ . . . ∗ φσ(i),σ(i+1)(πi ∗ πi+1) ∗ . . . ∗ πk

for π1 ∗ . . . ∗ πk ∈ Aπλσ(1)
∗ . . . ∗ Aπλσ(k)

⊂ M . Note that for any choice of φl,n one has:
φl,n(πλl

∗ πλn) = πλn ∗ πλl
. So if m is a weakly standard monomial, then τi(m) is independent

of the choice of the φl,n for all i.

Theorem 6 For every element σ ∈ Sk choose a reduced decomposition σ = si1 · · · sit, and let
m = π1 ∗ . . . ∗ πk ∈ Aπλ1 ∗ . . . ∗ Aπλk

be an L-S monomial. Then m is a standard monomial if
and only if for all σ ∈ Sk the L-S monomial τi1 ◦ . . .◦ τit(m) is a weakly standard L-S monomial.

Proof. Note first that if an L-S monomial m is a (weakly) standard monomial, then all paths
in the A-module Am generated by m are (weakly) standard monomials. Since the τi are A-
isomorphisms, it is sufficient to prove the theorem for monomials with the property eαm = 0 for
all simple roots. The only standard monomial with this property is m = πλ1 ∗ . . . ∗ πλk

. Since
τi1 ◦ . . . ◦ τit(m) = πλσ−1(1)

∗ . . . ∗ πλσ−1(k)
is a weakly standard monomial for all σ ∈ Sk, this

proves one direction of the theorem.
Suppose now m is such that τi1 ◦ . . . ◦ τit(m) is a weakly standard monomial for all σ ∈ Sk.

If k = 2, then all weakly standard monomials are standard. By induction one can assume that
m = πλ1 ∗ . . . ∗ πλk−1

∗ πk. Suppose πk 6= πλk
. Since πλk−1

∗ πk is standard, we know by Remark
1 and Theorem 1:

πλk−1
∗ πk = fα1 . . . fαq(πλk−1

∗ πλk
) = πλk−1

∗ (fα1 . . . fαqπλk
)
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for some simple roots. By section 4, this is only possible if 〈λk−1, α
∨
j 〉 = 0 for all 1 ≤ j ≤ q.

By assumption, the monomial πλσ(1)
∗ . . . ∗ πλσ(k−1)

∗ πk is weakly standard for all σ ∈ Sk−1.
This shows that 〈λl, α

∨
j 〉 = 0 for all 1 ≤ j ≤ q and 1 ≤ l ≤ k − 1. But this implies that

eα1m = πλ1 ∗ . . . ∗ πλk−1
∗ (eα1πk) 6= 0, contradicting the assumption. So πk = πλk

, which
finishes, the proof. •

8 Young tableaux

Fix an enumeration ω1, . . . , ωn of the fundamental weights of g. A Young tableau is an L-S
monomial that follows the chosen enumeration:

Definition 8 A Young tableau of shape λ =
∑n

i=1 aiωi is an L-S monomial T = π ∗ . . . ∗ η such
that the first a1 paths are of shape ω1, the next a2 are of shape ω2, etc. The tableau is called
(weakly) standard if the monomial is (weakly) standard.

We have by the definition of standard tableaux for g semisimple:

Proposition 1 The classes [T ] of the standard Young tableaux form a basis for the plactic
algebra ZP.

9 Main Theorem B

We assume in this section that g is semisimple. Fix an enumeration ω1, . . . , ωn of the funda-
mental weights. Let Bi be the set of all L-S paths of shape ωi, and denote by B the union⋃n

i=1 Bi. The free associative algebra Z{B} generated by B can be naturally considered as the A-
stable subalgebra of ZΠ0 generated by B, so it makes sense to talk also about (weakly) standard
monomials, tableaux, (weakly) standard tableaux etc. in Z{B}. The canonical map

ψ : Z{B} → ZP, b1 · . . . · bN 7→ [b1] ∗ . . . ∗ [bN ],

is surjective (Proposition reftableaucor). Let R ⊂ Kerψ be the following set of Plücker type
relations for all b1, b2 ∈ B such that b1 · b2 is not a standard tableau:

R := {b1 · b2 − T | T standard tableau, [T ] = [b1 ∗ b2]}.

Main Theorem B.Let J ⊂ Z{B} be the two-sided ideal generated by R. The canonical map
Z{B} → ZP induces an isomorphism Z{B}/J ' ZP.

Proof. One has to show that an arbitrary monomial b1 · · · bk in Z{B} is equivalent modulo J to
a standard monomial. Note first that one can “reorder” the factors of a monomial modulo J :
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We know that Aπω ∗Aπω′ is isomorphic to Aπω′ ∗Aπω as an A-module. Let b1 ∈ Bω and let
b2 ∈ Bω′ . Then b1 · b2 is either a standard tableau T , or it is equivalent to a standard tableau
T by a relation in R. By the isomorphism, there exist (not necessarily uniquely determined)
d1 ∈ Bω and d2 ∈ Bω′ , such that d2 · d1 is either equal to T or equivalent to T by a relation in R.

This correspondence can be extended in an A-equivariant way to an isomorphism φω,ω′ :
Aπω · Aπω′ → Aπω′ · Aπω such that b · b′ − φω,ω′(b · b′) ∈ J for all b ∈ Bω, b′ ∈ Bω′ . So
b1 · b2 ≡ d2 · d1 mod J for some d1 ∈ Bω, d2 ∈ Bω′ .

Hence one can assume that m = b1 · · · bk is (modulo J) a tableau of shape λ. Let “≤” be the
usual partial order on the weights. Ifm is not standard, by Theorem 6, there exists a “reordering”
m′ = b′1 · · · b′k such that m′ ≡ m (mod J), m′ is an L-S monomial of the same shape λ (but not
necessarily a tableau), but b′i ·b′i+1 is not a standard monomial for some 1 ≤ i ≤ k−1. Replacing
b′i · b′i+1 by the corresponding standard tableau T in m′, after reordering the factors we get a
new tableau m′′ of shape λ′ such that m′′ ≡ m (mod J). But since b′i ∗ b′i+1 ∈ Aπω ∗ Aπω′ is
not a standard monomial, the shape of T is strictly smaller then the shape ω + ω′ of b′i · b′i+1.
So λ′ < λ, and after repeating the procedure a finite number of times, this algorithm yields a
standard Young tableau m′′ such that m′′ ≡ m (mod J). •

10 Main Theorem A

To give a presentation of the plactic algebra which is more in the original style of the work
of Lascoux and Schützenberger, suppose G = G1 × . . . × Gr is the product of simple, simply
connected algebraic groups and with Lie algebra g. Let V = Vλ1 ⊕ . . . ⊕ Vλt be a faithful
representation of G and denote by D = Bλ1 ∪ . . . ∪ Bλt the union of all L-S paths of shape
λ1, . . . , λt. Let Z{D} be the free associative algebra generated by D. The canonical map

ψ : Z{D} → ZP, d1 · . . . · ds 7→ [d1] ∗ . . . ∗ [ds],

is obviously surjective. Fix mV ∈ N such that for every fundamental weight ω there exists an
mω ≤ mV and an injection Vω ↪→ V ⊗mω .

Example 1 We use the enumeration of the fundamental weights in [2]. Using [14] or the tables
in [3] or the program LiE [4], one sees that:

a) mV = 2 for (Spin2n+1, Vωn), (Spin2n, Vωn−1 ⊕ Vωn) and (G2, Vω1).
b) mV = 3 for (F4, Vω1) and (E6, Vω1 ⊕ Vω6).
c) mV = 4 for (E6, Vω1) and (E7, Vω7), mV = 5 for (E8, Vω8).
d) mV = n− 1 for (SLn, Vω1), mV = n for (Sp2n, Vω1).

Let RN ⊂ Kerψ be the set of relations of the form

d1 · · · dp − c1 · · · cq, where 1 ≤ p, q ≤ N, c1, . . . , cq, d1, . . . , dp ∈ D,
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and [d1 ∗ d2 ∗ . . . ∗ dp] = [c1 ∗ c2 ∗ . . . ∗ cq] in ZP. For a dominant weight λ =
∑

i aiωi set
|λ| :=

∑
i ai.

Main Theorem ALet I ⊂ Z{D} be the two-sided ideal generated by RN for

N = mV max{7, |λ1|, . . . , |λt|}.

The canonical map Z{D} → ZP induces an isomorphism Z{D}/I ' ZP.

Proof of Main Theorem A. For every fundamental weight ω fix a monomial ηω = d1 · · · dr,
r ≤ mV , such that the path d1 ∗ . . . ∗ dr ∈ Π+ and ends in ω. Denote by F the set of monomials
in ⊕ωAηω. The algebra Z{F} is A-isomorphic to Z{B} by Theorem 1, let j : Z{F} → Z{D} be
the canonical map.

For N = mV max{7, |λ1|, . . . , |λt|} let I be the two-sided ideal in Z{D} generated by RN .
Since N ≥ mV max{|λ1|, . . . , |λt|}, πλi

is by Theorem 1 equivalent to a monomial in Im j modulo
the ideal I. This implies that, modulo I, every monomial in Z{D} is equivalent to an element
in Im j.

In order to prove Theorem A, it is sufficient to show that the ideal j−1(I) satisfies the
conditions of Theorem B. Call a monomial in Z{F} a standard tableau if the corresponding
monomial in Z{B} is a standard tableau. Suppose now that f, g ∈ F are such that f · g is not a
standard tableau, and let ω, ω′ be the fundamental weights such that f ∈ Aηω and g ∈ Aηω′ .

For a monomial m ∈ Z{F} let degm be the degree of j(m), so deg(f · g) ≤ 2mV . Now
[f ∗ g] ∈ Mλ ⊂ ZP for some dominant weight λ such that Vλ occurs in Vω ⊗ Vω′ . Hence the
corresponding standard tableau is of degree at most |λ|mV . To prove the theorem, one has to
show that |λ| ≤ 7. If ω and ω′ correspond to different connected components of the Dynkin
diagram, then λ = ω + ω′. Hence one may assume that g is simple.

One knows for the classical groups that |λ| ≤ 3, for g of type G2 and F4 one checks easily
that |λ| ≤ 4. Recall that λ = ω + µ for some weight µ of Vω′ . In the remaining cases, all roots
are of the same length. Let β∨ be the sum of all simple coroots, so |λ| = 〈λ, β∨〉 ≤ 1 + |〈µ, β∨〉|.
Let β0 be the highest root, then |〈µ, β∨〉| ≤ 〈ω′, β∨0 〉 is bounded by the coefficients of the highest
root as a sum of simple roots, which are ≤ 6. So |λ| ≤ 7. •

For λ =
∑

ω aωω set degλ :=
∑

ω aω deg ηω. The proof shows in fact:

Corollary 2 Suppose V is a sum of fundamental representations. For two arbitrary funda-
mental weights ω, ω′ let N(ω, ω′) be the maximum of the degrees degλ for all λ such that
Mλ ⊂ Mω ∗ Mω′, and let N be the maximum of the N(ω, ω′). Then Kerψ is the two-sided
ideal generated by RN .

11 Standard monomials and defining chains

We develop in this section a combinatorial description of standard monomials and standard
tableaux using the ideas in [10], [11], and [12]. Another aim is to say for a standard monomial

9



m a few words about the unique L-S path π such that [m] = [π] in ZP. In this section let g be
again an arbitrary symmetrizable Kac-Moody algebra.

Theorem 7 An L-S monomial m = π1 ∗ . . . ∗ πp is standard of shape λ = (λ1, . . . , λp) if
and only if there exists a defining chain for m, i.e. for π1 = (τ1, . . . , τr; a0, . . . , ar), . . . , πp =
(τs, . . . , τK ; bs, . . . , bK): there exist elements w1, . . . , wK ∈ W such that w1 ≥ w2 ≥ . . . ≥ wK ,
and

w1 ≡ τ1, . . . , wr ≡ τr mod Wλ1 ; . . . ; ws ≡ τs, . . . , wK ≡ τK mod Wλp .

Proof. We first show that the span of the monomials with a defining chain is stable under the
operator fα. The proof for eα is similar. Let C(m) := (τ1, . . . , τr, . . . , τs, . . . , τK) be the list of
Weyl group cosets corresponding to m and let (w1, . . . , wK) be a corresponding defining chain.
For τi ∈ C(m) let λi be the associated dominant weight. By [14], C(fα(m)) is of the form

(. . . , τi, sατi+1, . . . , sατj , τj+1, . . .) or (. . . , τi, sατi+1, . . . , sατj , τj , . . .).

Further, either sατl ≡ τl mod Wλl
for all l = 1, . . . , i or there exists an k ≤ i such that sατk <

τk mod Wλk
and sατl = τl mod Wλl

for all l = k + 1, . . . , i.
If i ≥ 1, then we can assume sαwi < wi: In the first case, if sαw1 > w1, then we may replace

w1 by sαw1: This is still a lift for τ1, and sαw1 > w1 ≥ w2. So we may assume that sαwl < wl

for l = 1, . . . ,m for some m ≤ i. Suppose now m < i and sαwm+1 > wm+1. Since sαwm+1 is a
lift for τm+1 and sαwm < wm, wm+1 ≤ wm implies sαwm+1 ≤ wm. So one can replace wm+1 by
sαwm+1 in the defining chain. In the second case, we have anyway sαwk < wk, so, by induction,
we may assume sαwl < wl for l = k, . . . ,m for some m ≤ i. The same arguments as above show
that if m < i and sαwm+1 > wm+1, then one can replace wm+1 by sαwm+1 in the defining chain.

But now the same arguments (sαwi < wi and wi+1 ≤ wi ⇒ sαwi+1 ≤ wi) show that one of
the following is a defining chain for fα(m):

(. . . , wi, sαwi+1, . . . , sαwj , wj+1, . . .) or (. . . , wi, sαwi+1, . . . , sαwj , wj , . . .).

These arguments show that the module of paths with a defining chain is stable under the root
operators. If τi is congruent to the coset of the neutral element for all i = 1, . . . N , then the
monomial is equal to πλ ∗ . . . ∗ πµ. Suppose now m 6= πλ ∗ . . . ∗ πµ, and fix i minimal such that
τi 6≡ id, and let α be a simple root such that sατi < τi. Recall that this equivalent to saying that,
for the dominant weight λi one has 〈τi(λi), α∨〉 < 0. The condition also implies that sαwi < wi,
and hence sαwi ≤ wi mod Wλ for any dominant weight.

In this way one gets for all j = 1, . . . i− 1: wj ≥ wi ≥ sαwi mod Wλj
. But wj ≡ id mod Wλj

for j < i, so wi ≡ id mod Wλj
and sα ≡ id mod Wλj

, which can only be if 〈λj , α
∨〉 = 0 for all

j < i. So the function hα attains strictly negative values for this monomial, and consequently
eα(m) 6= 0.

Since the weight of the monomial is smaller or equal to λ1 + . . . + λp, this shows that for
any monomial m with a defining chain one can find simple roots such that eα1 . . . eαr(m) =
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πλ ∗ . . . ∗ πµ. So the module of monomials with a defining chain coincides with the module of
standard monomials. •

Let b be the Borel subalgebra of g corresponding to the choice of simple roots. Let λ1, . . . , λs

be dominant weights and suppose that q ⊃ b is a parabolic subalgebra such that the weights can
be extended to characters of g. Let Wq be the Weyl group of q. Recall that the fibres p−1(w) of
the projection p : W → W/Wq have a unique minimal element wmin ∈ W (respectively unique
maximal element wmax ∈W ), which is called the minimal (resp. maximal) representative in W
of w.

Corollary 3 A monomial m = π1 ∗ . . . ∗ πp of shape λ = (λ1, . . . , λp) is standard if and only if
there exists a q-defining chain for m, i.e.:
For π1 = (τ1, . . . , τr; a0, . . . , ar), . . . , πp = (τs, . . . , τK ; bs, . . . , bK) there exist elements w1, . . . , wK

in W/Wq such that w1 ≥ . . . ≥ wK , and

w1 ≡ τ1, . . . , w2 ≡ τr mod Wλ1 ; . . . ;ws ≡ τs, . . . , wK ≡ τK mod Wλp .

Proof. If (w1, . . . , wK) is a defining chain, then the projection of the chain into (W/Wq)K gives
the desired q-chain. If (w1, . . . , wK) is a q-chain, then it is easy to see that (wmin

1 , . . . , wmin
K ) is

a defining chain for m. •
It follows that the notion of a standard Young tableau given here and in [10] and [12] coincide.

As there one proves easily (notation as above):

Lemma 1 For a standard monomial m = π1 ∗ . . . ∗ πp of shape λ = (λ1, . . . , λp) there ex-
ists a unique maximal q-defining chain (w+

1 , . . . , w
+
K) and a unique minimal q-defining chain

(w−1 , . . . , w
−
K). I.e. for any q-defining chain (w1, . . . , wK) for m one has w+

1 ≥ w1 ≥ w−1 , . . .,
w+

K ≥ wK ≥ w−K .

Theorem 8 Set λ = λ1 + . . .+ λp, and suppose that q is maximal such that λ can be extended
to a character of q. For a standard monomial m = π1 ∗ . . . ∗ πp of shape λ = (λ1, . . . , λp)
let η = (τ1, . . . , τr; a0, . . . , ar) be the unique L-S path of shape λ such that [m] = [η] in ZP.
Let (w+

1 , . . . , w
+
K) be the maximal q-defining chain for m and let (w−1 , . . . , w

−
K) be the minimal

q-defining chain for m. Then τ1 = w−1 and τr = w+
K .

Proof. By the maximality of q one has Wq = Wλ. For τ ∈ W/Wλ let πτ be the L-S path
(τ ; 0, 1) of shape λ. Now η ∗ πτ is standard by Corollary 3 if and only if τ ≤ τr. In the same
way one sees that πτ ∗ η is standard if and only if τ ≥ τ1. By Corollary 3 and Lemma 1, the
same arguments imply that m ∗ πτ is standard if and only if w+

K ≥ τ , and πτ ∗m is standard if
and only if w−1 ≤ τ . Since [m] = [η] in ZP, it follows that τ1 = w−1 and τr = w+

K . •
For τ ∈ W/Wλ let Pλ,τ be the set of standard monomials of shape λ such that w−1 ≤ τ .

Choose ρ ∈ X such that 〈ρ, α∨〉 = 1 for all simple roots, and let Λα : eµ 7→ (eµ−esα(µ+ρ)−ρ)/(1−
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e−α) be the Demazure operator. Let τ = sα1 . . . sαr be a reduced decomposition. It follows from
Theorem 5.2, [14]:

Corollary 4
∑

m∈Pλ,τ
em(1) = Λα1 ◦ . . . ◦ Λαr(eλ).

We conclude this section with another version of defining chains: Suppose that λ1, . . . , λs

are dominant weights and let b ⊆ q1 ⊆ q2 ⊆ . . . ⊆ qs be parabolic subgroups such that λi can
be extended to a character of qi. As above one proves:

Proposition 2 Let m = π1∗π2∗ . . .∗πs be of shape λ = (λ1, . . . , λs). Then m is standard if and
only if there exists a defining chain in Πs

i=1W/Wqi. I.e. for the paths π1 = (τ1, . . . , τp; a0, . . . , ap),
π2 = (δ1, . . . , δq; b0, . . . , bq), π3 = (κ1, . . . , κr; c0, . . . , cr) and so, there exist w1 ≥ . . . ≥ wp in
W/Wq1, u1 ≥ . . . ≥ uq in W/Wq2, v1 ≥ . . . ≥ vr in W/Wq3, and so, such that wp ≥ u1 mod Wq2,
uq ≥ v1 mod Wq3 and so, and

w1 ≡ τ1, . . . , wp ≡ τp mod Wλ1 ;u1 ≡ δ1, . . . , up ≡ δq mod Wλ2 ; and so.

12 A lifting criterium

To make the Young tableaux more compatible with the classical notion of a Young tableau
for example for SLn(C) (compare also [16]), we show that for a “good” enumeration of the
fundamental weights in many cases the weakly standard tableaux are standard. Let G be as in
section 10.

Fix a Borel subgroup B ⊂ G. Let α 6= γ be simple roots, denote by ωα and ωγ the
fundamental weights and let P (α), P (γ) ⊃ B be the associated minimal parabolic subgroup.
Suppose Q ⊃ B is a parabolic subgroup such that P (α), P (γ) 6⊂ Q. Let Q′ be generated by
Q and P (α), and let Wq, Wq′ , be the Weyl groups of q := LieQ, q′ := LieQ. Consider the
diagram:

↗ W/Wq
p−→ W/Wωa

W ↓ j

↘ W/Wq′
p′−→ W/Wωγ

For τ ∈W/Wωa let τmax ∈W/Wq be the unique maximal element in p−1(τ). Denote by D − γ
the diagram obtained from the Dynkin diagram D of G after removing (the node of) γ, and let
Dα be the irreducible component of D − γ containing the node of α.

Lemma 2 Suppose that P (β) ⊂ Q′ for all simple roots β corresponding to a node in Dα. Then,
for all elements τ ∈W/Wωα, there exists an element τ ′ ∈W/Wωγ such that j(τmax) = τ ′max.

Proof. Let w ∈ W be the maximal lift for τ ∈ W/Wωα , so l(wsβ) < l(w) for all simple roots
β 6= α. Let now w′ ∈ W be arbitrary such that w ≡ w′ mod Wq′ and l(w′sβ) < l(w′) for all
simple roots β 6∈ Dα ∪ {γ}.
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If β ∈ Dα is such that l(w′sβ) > l(w′), then set w′′ := w′sβ. One has w′′ ≡ w mod Wq′ , and
for δ 6∈ Dα ∪ {γ} one has l(w′′sδ) = l(w′sβsδ) = l(w′sδsβ) < l(w′′) since sβ and sδ commute.
So w′′ is again of the same type. Since W is finite, one can assume that w′ ∈ W is such
that w′ ≡ w mod Wq′ and l(w′sβ) < l(w′) for all simple roots β 6= γ. So w′ ∈ W is the
maximal lift of τ ′ ∈ W/Wωγ , where τ ′ := w′ mod Wωγ . Since w′ ≡ w mod Wq′ , it follows for
τ ′max ≡ w′ mod Wq′ that j(τmax) = τ ′max. •

Corollary 5 Suppose Dα satisfies the conditions of Lemma 2. Let κ ∈W/Wωγ be an arbitrary
element. If there exists an element w ∈ W such that w ≡ τ mod Wωα and w ≥ κ mod Wωγ ,
then j(τmax) ≥ κmax.

Let ω1, . . . , ωr be fundamental weights and let α1, . . . , αr be the corresponding simple roots.
Suppose Q0 ⊃ B is a parabolic subgroup such that the ωi can be extended to characters of Q0.
Let Qi be the parabolic subgroup generated by Q0 and the P (αj), j ≤ i, and for 1 ≤ i ≤ r − 1
let Dαi be the irreducible component of D − αi+1 containing the node corresponding to αi.

Definition 9 The tuple (Q0, ω1, . . . , ωr) is called a good string if the following holds for all
i = 1, . . . , r − 1: Whenever γ ∈ Dαi, then P (γ) ⊂ Qi+1.

One sees immediatly:

Lemma 3 Suppose (Q0, ω1, . . . , ωr) is a good string. For a subset I := {i1, . . . , is} ⊂ {1, . . . , r}
such that i1 < . . . < is let Q′

0 be generated by Q0 and the P (αl) such that l 6∈ I. Then
(Q′

0, ωi1 , . . . , ωis) is a good string.

Lemma 4 If (Q0, ω1, . . . , ωr) is a good string, then all weakly standard monomials of shape λ,
λ = a1ω1 + . . .+ arωr, are standard.

Proof. For τ ∈W/Wωi write τmax for the unique maximal representative in W/Wqi−1 . Suppose
m = π · · · η is of the shape above and weakly standard. For a factor (τ1, . . . , τr; a0, . . . , ar) of
shape ωi let τmax

1 ≥ . . . ≥ τmax
r be be the corresponding sequence of maximal lifts in W/Wqi−1 .

If the next factor (κ1, . . . , κt, b1, . . . , bt) is of the same shape, then τmax
r ≥ κmax

1 . This is because
m is weakly standard (Corollary 3). If the type changes, then one can assume that ai+1 6= 0
(Lemma 3). Let qi be the projection W/Wqi−1 → W/Wqi . One finds qi(τmax

r ) ≥ κmax
1 . This

is due to Corollary 5 and the fact that m is weakly standard (Theorem 7). So this sequence in
Πr−1

s=0W/Wqs is a defining chain, and m is standard by Proposition 2. •

Corollary 6 Suppose G is simple and not of type Dn or En. Let the enumeration ω1, . . . , ωn of
the fundamental weights be as in [2]. Then every weakly standard Young tableau is a standard
Young tableau.
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Proof. Since (B,ω1, . . . , ωn) is a good string, by Lemma 4 all weakly standard tableaux are
standard. •

Suppose now g is of type Dn or En. Let the enumeration of the fundamental weights be as
in [2]. Using good strings, one proves as above:

Corollary 7 A weakly standard Young tableau of shape λ such that an = 0 or an−1 = 0 for
G of type Dn, respectively a2 = 0 or a1 = a3 = 0 for G of type En, is a standard Young
tableau. Further (the different ordering is important), a weakly standard Young tableau of shape
λ = an−1ωn−1 + an−2ωn−2 + anωn is standard for G of type Dn, and a weakly standard Young
tableau of shape λ = a1ω1 + a3ω3 + a4ω4 + a2ω2 is standard for G of type En.

To get a criterium for an arbitrary tableau m, let m1 be the product of the factors of type
ω1, m2 the product of the factors of type ω2, and so. Of course, if ai = 0 for some i, then mi

is not supposed to show up in the monomial, so m = m1 · · ·mn. If we reorder the factors, then
we write the factors with a ′. For example m′

2m
′
1m3 is a monomial obtained from the tableau

m1m2m3 by reordering the factors such that all paths of type ω2 come first.
Suppose now G of type Dn and λ =

∑
i=1n aiωi is such that an−1, an > 0 and ai > 0 for

some i < n − 2. Choose i ≤ n − 2 maximal such that ai 6= 0, and let (τ1, . . . , τr; a0, . . . , ar) be
the last factor of mi. If i = n − 2, then set τr := τr. Else let τmax

r ∈ W/Wqi−1 be its maximal
representative, and denote by τr its image under the projection W/Wqi−1 →W/Wωn−2 . We set
π := (τr; 0, 1).

Corollary 8 The tableau m is a standard tableau if and only if m1 · · ·mn−2 and the monomial
m′

n−1π
′mn are weakly standard.

Proof. Ifm is standard, then alsom1 · · ·mn−2πmn−1mn is standard. This is due to Proposition 2
and the choice of τr. So alsom1 . . .mn−2 is standard (and hence weakly standard), and πmn−1mn

is standard. But then the monomial m′
n−1π

′mn is standard too.
Now if m1 . . .mn−2 and m′

n−1π
′mn are weakly standard, then they are standard by Corollary

7. Hence also the monomial πmn−1mn is standard, and, by the choice of π, the monomial
m1 . . .mn−2π is standard too.

The proof of Lemma 4 shows that in order to get a defining chain in Πn−3
s=0W/WQs for a stan-

dard monomial m1 · · ·mn−2π (using the good string (B,ω1, . . . , ωn−2)), one has to take for a
factor of shape ωj , j ≤ n−2, as lifts the maximal representatives in W/WQj−1 . Since the mono-
mial πmn−1mn is also standard, there exists a defining chain (Corollary 3) in Πn

s=n−2W/WQs .
Since π comes first, one can assume without loss of generality that the lifts for π are the maxi-
mal representatives in W/WQn−3 . Hence the terms for π in the defining chain of m1 · · ·mn−2π
coincide with the terms for π of the defining chain of πmn−2mn−1mn, so is a defining chain for
m1 · · ·mn−2πmn−1mn in Πn−1

s=0W/WQs . It follows that m is a standard tableau. •
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Suppose now G of type En and λ =
∑

i=1n aiωi is such that a2, a1 + a3 > 0 and ai > 0 for
some i > 4. We call a monomial a tableau if the factors show up in the reverse ordering, i.e.
the paths of shape ωn come first etc., and the terms of shape ω1 come last. Similarly, let Qi be
the parabolic subgroup generated by B and the P (αj), j ≥ i, and let qi be its Lie algebra and
Wqi be its Weyl group. As above, if we reorder the factors, then we write the factors with a ′.

Choose i ≥ 4 minimal such that ai 6= 0, and let (τ1, . . . , τr; a0, . . . , ar) be the last factor of
mi. If i = 4, then set τr := τr. Else let τmax

r ∈ W/Wqi−1 be its maximal representative, and
let τr its image in W/Wω4 . We set π := (τr; 0, 1). Using the good strings (B,ωn, . . . , ω4) and
(Q5, ω2, ω4, ω3, ω1), one proves:

Corollary 9 The tableau m = mn · · ·m1 is a standard tableau if and only if mn · · ·m4 and the
monomial m′

2π
′m′

3m1 are weakly standard.

13 Examples

It remains to prove Theorem C. For a monomial m ∈ Z{D} let degm be its degree, and for a
dominant weight λ =

∑
ω aωω set degλ :=

∑
ω aω deg ηω.

Using [14], the tables in [3] or the program LiE [4], one checks easily that for the exceptional
groups 6= G2 the number given in Theorem C is the number N given by Corollary 2. We consider
now the remaining cases.
Proof. Case An Then D is the set of paths πi : t 7→ tεi. If one identifies πi with the number i,
then Z{D} is just the word algebra Z{1, . . . , n} on the alphabet {1, . . . , n}. The relations given
by R3 can be written for a < b < c as:

aab = aba, cab = acb, bac = bca, bab = abb,

which are the well known Knuth relations [9]. So Z{D}/I, where I is the two sided ideal generated
by R3, is the algebra considered by Lascoux and Schützenberger. These relations imply for j ≤ i:
12 . . . ij = j12 . . . i. To prove that these relations (together with θ = 12 . . . n) generate Kerψ, it
is sufficient to prove that a monomial m = n1 · · ·ns such that n1 ∗ . . . ∗ ns ∈ Π+ is equivalent to
a standard tableau: 1 . . . i1 . . . 1 . . . is, where i1 ≤ . . . ≤ is < n. We prove this by induction, the
case where degm = 1 being obvious. Suppose m is as above. By induction one can assume that
m = 1 . . . i1 . . . 1 . . . itj for some j and i1 ≤ . . . ≤ is. Since n1 ∗ . . . ∗ ns ∈ Π+, one has j ≤ it + 1.
If j = it +1, then m is standard. Else m is equivalent by the Knuth relations to 1 . . . it−1j1 . . . it,
which is by induction equivalent to a standard tableau. •
Proof. Case Cn Here D is the set of paths π±i : t 7→ t± εi. If one identifies π±i with the number
±i, then Z{D} is the word algebra Z{1, . . . , n,−n, . . . ,−1} on the alphabet 1 < . . . < n < −n <
. . . < −1. Let φi be the isomorphism A[12 . . . i(−i)] → A[12 . . . (i−1)], 2 ≤ i ≤ n. The relations
given by R3 are:

1(−1) = θ, 1a(−1) = a, 12(−2) = 1, 2(−2)(−1) = (−1), for 1 ≤ a ≤ −1,
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aab = aba, cab = acb, bac = bca, bab = abb for a < b < c, (a, c) 6= (1,−1).

To prove that R3 together with the relations π − φi(π), π ∈ A[12 . . . i(−i)], generate Kerψ, it
is sufficient to prove that a monomial n1 · · ·ns such that n1 ∗ . . . ∗ ns ∈ Π+ is equivalent to a
standard tableau.

We prove this by induction on the degree of the monomial, the case degm = 1 being obvious.
Suppose degm > 1, by induction one can assume that m = 1 . . . i11 . . . i2 . . . 1 . . . isj for some
i1 ≤ . . . ≤ is ≤ n and some 1 ≤ j ≤ −1. Since the corresponding path is in Π+, one has |j| ≤ is
or j = is + 1. In the last case, m is a standard tableau. If 1 ≤ j ≤ is, the same arguments
as in the case An show that m is equivalent to a standard tableau. If −1 ≥ j ≥ −is, then
il = |j| for some l and (by induction) m is equivalent to m′ = 1 . . . i1 . . . 1 . . . is1 . . . |j|j. Hence
m′ is equivalent to 1 . . . i1 . . . 1 . . . is1 . . . (|j| − 1), which is by induction equivalent to a standard
tableau. •
Proof. Case Bn, Dn In this case mV = 2. Further, one sees easily by weight considerations that
if λ is a dominant weight such that Mλ ⊂ Mω ∗Mω′ for two fundamental weights, then |λ| ≥ 3
only if λ = 2ωn + ωj for some 1 ≤ j ≤ n − 1 in the case Bn and λ = 2ωn + ωj , 2ωn−1 + ωj or
ωn−1 +ωn +ωj for some 1 ≤ j ≤ n− 2 in the case Dn. So Kerψ is generated by R4 by Corollary
2.

We consider in the following only the case Bn, the proof for Dn is similar. To prove that
Kerψ is already generated by R3, it is sufficient to show that every monomial m = d1 · · · dr of
degree r ≤ 4 such that d1 ∗ . . . ∗ dr ∈ Π+ is equivalent to a standard tableau modulo the ideal
I generated by R3. Since degλ ≤ 3 for a dominant weight such that Mλ ⊂ M∗k

ωn
, k = 2, 3, this

true for monomials of degree ≤ 3. Suppose now degm = 4. Using the relations for monomials
of degree ≤ 3, one can assume that m is of the form

ηωn · ηωn · ηωn · d or ηωj · ηωn · d, 1 ≤ j < n

for some d ∈ D. Now in the first case the corresponding path is in Π+ if and only if already
ηωn ∗ d ∈ Π+, so this monomial is equivalent to a standard tableau modulo I. In the second
case, if already ηωn ∗ d ∈ Π+ or ηωj ∗ d ∈ Π+, then the monomial is equivalent to a standard
tableau modulo I. Otherwise identify d with its endpoint, then the only possibilities for d are

d =
1
2
(ε1 + . . .+ εk−1 − εk − . . .− εj + εj+1 + . . .+ εl−1 − εl − . . .− εn)

for some k < j + 1 < l. Now ηωj ∗ d = fαnfαn−1 . . . fαl
. . . fαnπ for

π = ηωj ∗
1
2
(ε1 + . . .+ εk−1 − εk − . . .− εj + εj+1 + . . .+ εn),

and π is equivalent to ηωk−1
∗ ηωn . So ηωj · d is equivalent to

fαnfαn−1 . . . fαl
. . . fαn(ηωk−1

· ηωn) = ηωk−1
· 1
2
(ε1 + . . .+ εl−1 − εl − . . .− εn).
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Hence ηωj ·ηωn ·d is equivalent to ηωk−1
·ηωl−1

, which is a standard tableau. A detailed description
of the relations will be given in a forthcoming article. •
Proof. Case G2 Using Corollary 2, one checks easily that Kerψ is generated by R4. We identify
D with the set {1, 2, 3, z, 4, 5, 6} in the following way:

1 := πω1 ; 2 := fα11; 3 := fα22; z := fα13; 4 := fα1z; 5 := fα24; 6 := fα15.

We define the numerical value of z as 31
2 . The relations in R2 are:

16 = θ; 1 = 1z, 2 = 14, 3 = 15, z = 25, 4 = 26, 5 = 36, 6 = z6.

The relations in R3, which are independant of those in R2, are coming from the isomorphisms
A123 ' A11 and A121 ' A112. In the first case one gets:
123 = 11, 12z = 21, 124 = 22, 13z = 31, 134 = 32, 23z = z1, 234 = z2
135 = 33, 2zz = 41, 235 = z3, 2z4 = 42, 3zz = 51, 2z5 = 43, 3z4 = 52,
zzz = 61, 245 = 4z, 3z5 = 53, zz4 = 62, 345 = 5z, 246 = 44, zz5 = 63,
346 = 54, z45 = 6z, 356 = 55, z46 = 64, z56 = 65, 456 = 66.
The basis of A121 is {abc | a < b ≥ c, b−a ≤ 2, or (a, b) = (z, z), c < z}, and the basis of A112
is {abc | a ≥ b < c, c− b ≤ 2, or (b, c) = (z, z), a > z}. The relations given by the isomorphism
are:

aab = aba, cab = acb, bac = bca, bab = abb,

for the paths ending in an extremal weight. For the other paths one gets:
132=312, 2z2=412, 3z3=513, z44=624, z55=635, z66=645, 231=213, 2z2=22z,
3z3=33z, z44=4z4, z55=5z5, 465=546, 232=z12, 233=z13, 24z=42z, 35z=53z,
454=6z4, 455=6z5, 2z1=223, 3z1=323, z42=z24, z53=z35, 46z=445, 56z=545,
2z3=413, 243=423, 343=523, 344=5z4, 354=534, z54=634, 3z2=512, zz2=612,
zz3=613, z4z=62z, z5z=63z, 45z=6zz, zz1=z23, z41=z2z, z51=z3z, 461=4zz,
561=5zz, 562=5z4, 341=32z, 342=324, 352=334, 452=434, 453=435, 463=4z5,
34z=52z , z43=623 , z52=z34 , 451=43z.
So every monomial of length ≤ 3 can be written as a standard tableau of length ≤ 3. To prove
that Kerψ is generated by these relations, it is sufficient to show that a monomial m = d1 · · · d4

such that d1 ∗ . . . ∗ dr ∈ Π+, is equivalent to a standard tableau. Using the relations above, one
sees that such a monomial is either equivalent to one of length ≤ 3, or it has to be of the form

ηω1 · ηω1 · ηω1 · d, ηω1 · ηω2 · d, or ηω2 · ηω2

for some d ∈ D. The last monomial is already a standard tableau. In the first case the corre-
sponding path is in Π+ if and only if the path corresponding to m′ = ηω1 · ηω1 · d is already in
Π+. This monomial is of degree ≤ 3, so one can assume that it is already standard, but then
ηω1 ·m′ is standard. In the second case one shows similarly that either already ηω2 ∗ d ∈ Π+ or
ηω1 ∗ d ∈ Π+. Therefore, the monomial is equivalent to a standard tableau. •
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