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1 Introduction

A plactic algebra can be thought of as a (non-commutative) model for the representation ring of
a semisimple Lie algebra g. This algebra was introduced by Lascoux and Schiitzenberger in [13],
[18] in order to study the representation theory of GL,(C) and S,,. This new tool enabled them
for example to give the first rigouros proof of the Littlewood-Richardson rule to determine the
decomposition of tensor products into direct sums of irreducible representations. Using a case
by case analysis, such a plactic algebra has been constructed also for some other simple groups,
see [1], [8], [19], [20], [21].

Recently, two constructions of isomorphic plactic algebras have been given for symmetrisable
Kac-Moody algebras. From the point of view of quantum groups, this algebra is the algebra of
crystal bases ([5], [6], [7], [16], [17], [19]). The second construction realizes this algebra as the
algebra ZP of equivalence classes of paths in the space Xq of rational weights ([5], [14], [15]).

For simplicity, assume that G is a simple, simply connected algebraic group. To give a
description of ZP which is more in the spirit of the original work of Lascoux and Schiitzenberger,
let V=V, @...®&V,, be a faithful representation and let D be the associated set of L-S paths,
i.e. D is a basis of the corresponding model of V' in ZP. Let Z{D} be the free associative algebra
generated by D. If A = >  a,w is a dominant weight, then let || denote the sum )" a,. The
canonical projection which maps a monomial to the concatenation:

Y Z{D} - ZP, di---dsv+>[dy*...%xdg]
is surjective. For N € N denote by Ry C Ker v the set
Ry :={dy---ds—ci---¢c |(dy--ds) =(c1---¢), rs < N}.

Main Theorem A Fiz my € N such that for every fundamental weight w of G there exists an
injection V,, < V& for some my, < my. Let I C Z{D} be the two-sided ideal generated by
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Ry for N = my max{7,|\1],...,|\|}. The canonical map Z{D} — ZP induces an isomorphism
Z{D}/1 ~ZP.

The theorem is a consequence of the case where V = @V, is the sum of all fundamental repre-
sentations. To describe Ker v in this case, one introduces the notion of a standard Young tableau
(sections 7, 8). For every pair (d,d’) € D x D such that d-d’ is not a standard Young tableau, let
di,...,dy € D be such that d; - - - d, is the unique standard tableau with ¥ (d; - --d,) = ¢¥(d - d’),
and denote by R the corresponding set of “plactic Pliicker relations”:

R:={d-d —dy---d.|d-d is not a standard Young tableau} C Ker .

Main Theorem B Ker ¢ is the two-sided ideal J generated by R.

We also use this opportunity to extend the Demazure type character formula [14] to standard
monomials (Corollary 4). The generating system Ry, N = my max{7, |\|,...,|u|}, for Kery
given by Theorem A is in general not a minimal system. Using the algebra of root operators A,
we prove for the following cases (the enumeration of the fundamental weights is as in [2]):

Main Theorem C Ker ¢ is generated by

a) Rg for (Spinan+t1, Vi), (Spinan, Vi, ® Vi), and (G2, Vi, ).

b) Rs and the relation: 12 ...n = trivial path, for (SLy,V,, ). Further, ZP is the plactic algebra
defined by Lascouzr and Schiitzenberger.

¢) Rs and the relations: ™ — ¢i(w), m € A[12...i(—1i)], for (Span,Ve,). Here ¢; is the isomor-
phism A[12...i(—i)] = A[12...(i —1)] fori=3,...,n.

The following bounds for the other exceptional groups can possibly be reduced by a more careful
case by case analysis: Ker is generated by Rg for (Fa,V,,) and (E¢, Vi, ® Vi), by Rg for
(Es, Vi, ), Rao for (E7,V,,,), and Ry for (Eg, Viyg).

The author would like to thank C. De Concini and C. Procesi for useful discussions, and the
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2 The paths

Let X be the weight lattice of a symmetrizable Kac-Moody algebra g. Write Xq for X ®z Q,
and let [0,1]g be the set of rational numbers ¢t such that 0 < ¢t < 1. Denote by II the set of
all piecewise linear paths 7 : [0, 1]g — Xg such that 7(0) = 0 and (1) € X. We consider two
paths 7y, w9 as identical if there exists a piecewise linear, nondecreasing, surjective, continuous
map ¢ : [0,1]g — [0, 1]g such that m = mp 0 ¢. Let ZII be the free Z-module with basis II. By
T = T * Ty we mean the concatenation of the paths, i.e. 7 is the path defined by

() = m1(2t), if0<t<1/2
=Y m) +m2t—1), if1/2<t<1.



The concatenation gives ZII the structure of an associative algebra where the neutral element
is the trivial path 6(t) := 0 for all t € [0, 1]g.

3 The root operators

The aim of this section is to recall the definition of the root operators (see [15]). Fix a simple
root «, and for m € II let so(m) be defined by s4(7)(t) := sq(7(t)). Denote by h, the function
he : [0,1]g — Q, t — (7(t),a), and let m be the minimal value attained by h,. If m < —1,
then fix ¢; minimal such that h,(¢1) = m and let ¢y be minimal such that h,(t) = m+1. Choose
to =50 < 81 <...<§8, =ty such that either

a) ha(sifl) = ha(Si) and ha(t) > ha(Sifl) fort € [Sifl, Si](@;
orb) hg is strictly decreasing on [s;_1, si]g.
Set s_1:=0and s,4+1 := 1, then m# = mg * 71 * ... * w41 where 7; is defined by
mi(t) == m((si—1 +t(si — si—1)) —w(si—1), ©=0,...,7r+ 1.

Definition 1 If m > —1, then e,m := 0, else eqm := my * M1 * ... % Ny * Tpp1, where 0; = m; if
ha satisfies condition a) on [si_1,si]g, and 1; = sq(m;) if not.

The definition of f, is similar. Fix ¢y maximal such that h,(to) = m. If ho(1) —m > 1, then
let ¢; be maximal such that h,(t) = m + 1 and choose ty) = so < s1 < ... < s, = t1 such that
either

a) ha(si) = ha(si—1) and ho(t) > ha(si—1) for t € [si—1, Si|o;
orb) or hg is strictly increasing on [s;_1, S;]g.

Definition 2 Let the m; be as above. If ho(1) —m < 1, then fom := 0. Otherwise fom =
O * M1 % ...k Ny ok Tpp1, where 1; =T if ho is on [s;_1, S;]g as in a), and n; := sq(m;) if not.

Remark 1 It is easy to see that if eqm # 0, then (eqm)(1) = (1) + @ and foeqm = 7, and if
fam #0, then (fom)(1) =7(1) —a and eq fom =7 .

4 The path model of a representation

We recall the main results in [14], [15]. Denote by A C Endz ZII the subalgebra generated by
the root operators e, and f,. Let II™ be the set of paths 7 such that the image is contained in
the dominant Weyl chamber and denote by M, the A-module Ar. Clearly, B; := M; NIl is a
Z-basis of M.



Theorem 1 i) Ifw(1) = 7'(1) for m, 7" € I, then the A-modules M, and M, are isomor-
phic.

ii) If m € ", then Char M, := Y neBx ") is equal to the character Char Vy of the irreducible
g-module V) of heighest weight X := mw(1).

iii) For m € T let n € My be an arbitrary path. The minimum mey(n) of the function
he @t — (n(t),av) is an integer for all simple roots, and eqn = 0 for all simple roots if
and only if n = 7.

Since ma(n) € Z one has (sce [15]) for n € My and o/ € My
! if n,l __ )
Faln*1) = { (fam) =1’y if fIn # 0 but eln’ = 0 for some n > 1;

n* (fan'), otherwise.

/ TR n.. ]
ea(n*n’) _ n*(ean), it el'n ?éObut fin =0 for some n > 1;
(eam) xn', otherwise.

For 7y, o € IIT denote by My, * M, the Z-module spanned by the concatenations ), * 12, where
M € Br, m2 € Br,. This is an A-module (see [15]):

Theorem 2 Suppose w1, 7o € I, then My, x My, = @7] M, v, where 1 runs over all paths in
By, such that m *n € IIT.

By the character formula we get immediately (see [15]):

Theorem 3 For m,my € I set A = m1(1) and p = ma(1). Then V) ® V), decomposes into the
direct sum @n Viagn(n) of irreducible g-modules, where 1 runs over all paths in Br, such that
m ok €I,

In the following we mean by an A-morphism @, M, — @ ; My, always a modul homomor-
phism that maps paths onto paths.

5 The plactic algebra

Denote by ZII := AII™ the A-submodule of ZII generated by the paths in II". Note that, by
Theorem 2, ZIIj is a subalgebra.

Definition 3 For two paths w,nm € ZIly let 77,n" € II" be the unique paths such that © €
M+, n € My+. We call m,n equivalent and write = ~n, if 7+ (1) = n*(1) and ¢(v) = n under
the isomorphism ¢ : M+ — M, +.



Set ZP = ZIly/ ~, and for m € ZIl let [r] € ZP be its equivalence class. ZP is an A-
module: fo[7] := [fa7], ea[T] := [ea7], and an algebra: [mi] * [m2] := [m1 * m2| (see [15]). We
write M) for A[r] C ZP, where 7w € II" is an arbitrary path such that A = 7(1).

Definition 4 The algebra ZP is called a plactic algebra for g.
As before, set Char M) := Z[W] €M, e™ ). The previous results imply:

Theorem 4 The plactic algebra is a model for the representation ring of g. More precisely,
ZP = @yrcx+ My is the sum of simple A-modules, Char My is the character Char V) of the
corresponding simple g-module, and for X\, ;€ X* one has Char(My * M) = Char(Vy, @ V).

6 Lakshmibai-Seshadri paths

In order that we may give a description ZP in terms of generators and relations, we recall the
description of the basis of the A-module generated by 7y : ¢ — tA for a dominant weight .
These are called L-S paths (see [14]). Let W) be the stabilizer of A, let “<” denote the Bruhat
order on W/W) and let I(-) be the length function on W/W,. We identify a pair 7 = (7,a) of
sequences:

e T:T] >Tp>...>T, is a sequence of linearly ordered cosets in W/Wj,

e a:ap:=0<a; <...<a,:=1Iis asequence of rational numbers,
with the path:
j—1

W(t) = Z(CLZ — ai_l)n(/\) + (t — aj_l)Tj()\) for aj—1 <t< a;.
=1

Let 7 > o be two elements of W/W), and let 0 < a < 1 be a rational number. By an a-chain for

(1,0) we mean a sequence of cosets, where [31,. .., 35 are positive real roots, I(k;) = l(k;—1) — 1,
al{ki(N),B8)) € Z for alli=1,...,s and:

Ko =T > K1 1= 83T > K2 1= 83,83, T > ... > Kg 1= 83, *... 83, T =0.

Definition 5 A pair (7,a) is called a Lakshmibai-Seshadri path (L-S path) of shape X\ if, for
all 1 <i <r—1, there exists an a;-chain for the pair (7;, Ti+1).

Theorem 5 [14] The set of all L-S paths (T, a) of shape X is a basis for the A-module Amy C ZI1
generated by the path my.

Corollary 1 The set of all equivalence classes [(T,a)] € ZP of L-S paths forms a basis for ZP.

In general it is quite difficult to find for two L-S paths (71, a;), (73,a,) the unique L-S path
(T3,a3) such that [(7,a,)] * [(T2, ap)] = [(z3,a3)] in ZP.



7 L-S monomials

In this section we consider monomials of L-S paths. A combinatorial description of the “standard
monomials” will be given in section refstandardmonomialsanddefiningchains.

Definition 6 Let A1, ..., \; be dominant weights and set A = A +...+Xp. If foralli=1,... k,
m; 18 an L-S path of shape \;, then the monomial m = wi*...xmw, € Zlly is called an L-S monomial

of shape X\ (or A= (A1,...,Ag)).

To give a monomial basis of the plactic algebra, we introduce now the notion of standard
monomials. Let m be the L-S monomial 7y * ... % mp:

Definition 7 m is called weakly standard of shape X = (A1,..., A\g), if for alli =1,... k-1,
the concatenation m; * w41 is an element of A(my, * 7T)\i+1). The monomial m is called standard
of shape A, if m € A(my, *...%my,).

For all 1 < 4,5 < k fix A-isomorphisms ¢;; : Amy, * Amy; — Amy, x Amy,. Set M :=
@Uesk ./477,\6(1) * L.k Am\d(k), and denote by 7; : M — M the A-isomorphism defined by

Ti( L% oo T % Ty % ook ) 1= T % % B () o (i) (T % Tig1) % ook T,

for m % ... %M, € .A’]T)\o(l) * ...k .A7r,\a(k) C M. Note that for any choice of ¢;, one has:
(T, kT ) = Ty, *my,. S0 if m is a weakly standard monomial, then 7;(m) is independent
¢7 ( ) n) n l y ) p

of the choice of the ¢, for all i.

Theorem 6 For every element o € Sk choose a reduced decomposition o = s;, ---S;,, and let
m=my*...xm € Amy, x ... x Amy, be an L-S monomial. Then m is a standard monomial if
and only if for all o € Sy, the L-S monomial 7;, o...o1;,(m) is a weakly standard L-S monomial.

Proof. Note first that if an L-S monomial m is a (weakly) standard monomial, then all paths
in the A-module Am generated by m are (weakly) standard monomials. Since the 7; are A-
isomorphisms, it is sufficient to prove the theorem for monomials with the property e,m = 0 for
all simple roots. The only standard monomial with this property is m = my, ... * my,. Since
Tiy ©...0T;,(m) = T, 1y ¥ ¥ TA Ly 15 @ weakly standard monomial for all o € Sj, this
proves one direction of the theorem.
Suppose now m is such that 7;, o...o7;,(m) is a weakly standard monomial for all o € Sj.
If £ = 2, then all weakly standard monomials are standard. By induction one can assume that
M = Ty, *...%k T\, _, *TE. SUppose Ty # Ty, . Since my, , * T is standard, we know by Remark

1 and Theorem 1:

UD YN * T = foé1 .. .faq(ﬂ')\,%l * 7T,\k) = T \p_1 * (foq . ..faqﬂ',\k)



for some simple roots. By section 4, this is only possible if ()\k,l,aﬁ =0forall<j<yg.
By assumption, the monomial my_,, * ... % m ,_, * 7 is weakly standard for all o € Si_1.
This shows that ()\l,ajV> =0foralll < j<gand1l <1 < k— 1. But this implies that
€aM = Ty, * ...* Ty, _, * (eq,m) # 0, contradicting the assumption. So 7, = my,, which

finishes, the proof. °

8 Young tableaux

Fix an enumeration wq,...,w, of the fundamental weights of g. A Young tableau is an L-S
monomial that follows the chosen enumeration:

Definition 8 A Young tableau of shape X = >\ | a;w; is an L-S monomial T = 7+ ...%n such
that the first a1 paths are of shape w1, the next ay are of shape wo, etc. The tableau is called
(weakly) standard if the monomial is (weakly) standard.

We have by the definition of standard tableaux for g semisimple:

Proposition 1 The classes [T] of the standard Young tableaux form a basis for the plactic
algebra ZP.

9 Main Theorem B

We assume in this section that g is semisimple. Fix an enumeration wq,...,w, of the funda-
mental weights. Let B; be the set of all L-S paths of shape w;, and denote by B the union
Ui, Bi. The free associative algebra Z{B} generated by B can be naturally considered as the A-
stable subalgebra of ZII; generated by B, so it makes sense to talk also about (weakly) standard
monomials, tableaux, (weakly) standard tableaux etc. in Z{B}. The canonical map

Q/JZZ{B}HZ'P, bleH[bl]**[bN],

is surjective (Proposition reftableaucor). Let R C Ker be the following set of Pliicker type
relations for all by, b € B such that by - by is not a standard tableau:

R :={b1-by — T | T standard tableau, [T] = [by * ba]}.

Main Theorem B.Let J C Z{B} be the two-sided ideal generated by R. The canonical map
Z{B} — ZP induces an isomorphism Z{B}/J ~ ZP.

Proof. One has to show that an arbitrary monomial b; - - - by, in Z{B} is equivalent modulo J to
a standard monomial. Note first that one can “reorder” the factors of a monomial modulo J:



We know that Ar,, * Ar,, is isomorphic to Am, *x Am, as an A-module. Let b1 € B, and let
by € B,r. Then by - by is either a standard tableau T, or it is equivalent to a standard tableau
T by a relation in R. By the isomorphism, there exist (not necessarily uniquely determined)
d1 € B, and dy € B, such that ds - d; is either equal to T or equivalent to T" by a relation in R.

This correspondence can be extended in an A-equivariant way to an isomorphism ¢y, . :
Am, - Anyy — Amy - Am, such that b- b — ¢y, (b-b) € J for all b € By, b’ € B,y. So
b1 - bo = dsy - dy mod J for some di € B, dy € B,,.

Hence one can assume that m = by - - - by, is (modulo J) a tableau of shape \. Let “<” be the
usual partial order on the weights. If m is not standard, by Theorem 6, there exists a “reordering”
m/ = b --- b} such that m’ =m (mod J), m’ is an L-S monomial of the same shape A (but not
necessarily a tableau), but b} -}, is not a standard monomial for some 1 <7 < k—1. Replacing
b; - bi,; by the corresponding standard tableau T' in m/, after reordering the factors we get a
new tableau m” of shape A’ such that m” =m (mod .J). But since bj x b, € Am, * Am,y is
not a standard monomial, the shape of T' is strictly smaller then the shape w + ' of b - b]_ ;.
So X < A, and after repeating the procedure a finite number of times, this algorithm yields a

standard Young tableau m” such that m” = (mod J). .

10 Main Theorem A

To give a presentation of the plactic algebra which is more in the original style of the work
of Lascoux and Schiitzenberger, suppose G = G1 X ... X G, is the product of simple, simply
connected algebraic groups and with Lie algebra g. Let V = V), @& ... ® V), be a faithful
representation of G and denote by D = By, U ... U By, the union of all L-S paths of shape
AL, ..., Ar. Let Z{D} be the free associative algebra generated by D. The canonical map

Y :Z{D} = ZP, di-...-ds [di] *...x[ds],

is obviously surjective. Fix my € N such that for every fundamental weight w there exists an
me, < my and an injection V,, < V&M,

Example 1 We use the enumeration of the fundamental weights in [2]. Using [14] or the tables
in [3] or the program LiE [4], one sees that:

a) my =2 for (Spinan+1, Vi, ), (Spinen, Vi, | ® Vi) and (G, Vi, ).

b) my =3 for (Fa, Vi) and (Eg, Vo, B Vi )-

c) my =4 for (E, Viy,) and (E7,V,,.), my =5 for (Eg, V).

d) my =n—1 for (SLy, V., ), my =n for (Span, Vi, )-

Let Ry C Kervy be the set of relations of the form

dy---dp—cy---cg, where 1<pqg<N, ci,...,cqd1,...,dy €D,



and [dy x dg * ... xdp] = [c1 *xca % ... x¢g] in ZP. For a dominant weight X\ = ) . a;w; set
A= 225 ai
Main Theorem A Let I C Z{D} be the two-sided ideal generated by Ry for

N =my maX{77 ‘)‘1|7 L) ’)‘t’}
The canonical map Z{D} — ZP induces an isomorphism Z{D}/I ~ ZP.

Proof of Main Theorem A. For every fundamental weight w fix a monomial 7, = di---d,,
r < my, such that the path dq *...*d, € II" and ends in w. Denote by F the set of monomials
in @,An,. The algebra Z{F} is A-isomorphic to Z{B} by Theorem 1, let j : Z{F} — Z{D} be
the canonical map.

For N = my max{7,|A1],...,|\|} let I be the two-sided ideal in Z{D} generated by Rx.
Since N > my max{|A1],..., |A¢|}, my, is by Theorem 1 equivalent to a monomial in Im j modulo
the ideal I. This implies that, modulo I, every monomial in Z{D} is equivalent to an element
in Im 5.

In order to prove Theorem A, it is sufficient to show that the ideal j~!(I) satisfies the
conditions of Theorem B. Call a monomial in Z{F} a standard tableau if the corresponding
monomial in Z{B} is a standard tableau. Suppose now that f,g € F are such that f - ¢ is not a
standard tableau, and let w,w’ be the fundamental weights such that f € An, and g € An,.

For a monomial m € Z{F} let degm be the degree of j(m), so deg(f - g) < 2my. Now
[f xg] € My C ZP for some dominant weight A such that V) occurs in V,, ® V,,. Hence the
corresponding standard tableau is of degree at most |A\|my. To prove the theorem, one has to
show that |[A\| < 7. If w and &’ correspond to different connected components of the Dynkin
diagram, then A = w + w’. Hence one may assume that g is simple.

One knows for the classical groups that |A| < 3, for g of type Gy and F4 one checks easily
that |\| < 4. Recall that A = w + p for some weight p of V.. In the remaining cases, all roots
are of the same length. Let 3¥ be the sum of all simple coroots, so [A| = (X, 3Y) <1+ [(u, BY)].
Let By be the highest root, then |(u, 3Y)| < (', ) is bounded by the coefficients of the highest
root as a sum of simple roots, which are < 6. So |A| < 7. .

For A =) a,w set deg A := )"  a, degn,. The proof shows in fact:

Corollary 2 Suppose V is a sum of fundamental representations. For two arbitrary funda-
mental weights w,w’ let N(w,w’) be the mazimum of the degrees deg\ for all X\ such that
My C M, * M, and let N be the maximum of the N(w,w'). Then Kert is the two-sided
ideal generated by Ry .

11 Standard monomials and defining chains

We develop in this section a combinatorial description of standard monomials and standard
tableaux using the ideas in [10], [11], and [12]. Another aim is to say for a standard monomial



m a few words about the unique L-S path 7 such that [m] = [7] in ZP. In this section let g be
again an arbitrary symmetrizable Kac-Moody algebra.

Theorem 7 An L-S monomial m = m * ... * m, is standard of shape X = (A1,..., ) if
and only if there exists a defining chain for m, i.e. for m = (71,...,Tp;a0,...,0y), ..., Tp =
(Tsy- -y TK; bsy .., bi): there exist elements wy, ..., wxg € W such that w; > we > ... > wg,
and

w1 =T, ,wp =T mod W50 ws = 75,0, W =Tk mod Wy .

Proof. We first show that the span of the monomials with a defining chain is stable under the
operator f,. The proof for e, is similar. Let C(m) := (71,...,7,...,Ts,...,TK) be the list of
Weyl group cosets corresponding to m and let (wq,...,wg) be a corresponding defining chain.
For 7; € C(m) let A; be the associated dominant weight. By [14], C(fa(m)) is of the form

("'7Ti78£¥7_i+1)"'78C¥Tj)7—j+17"') or (---77_ia3a7—i+17--'73a7—j77—j7--->-

Further, either s,7; = 7, mod W), for all [ = 1,...,4 or there exists an k < ¢ such that s,7, <
7 mod Wy, and s, = 7y mod Wy, forall I =k +1,...,4.

If ¢ > 1, then we can assume s,w; < w;: In the first case, if s,w; > w1, then we may replace
w1 by sqwi: This is still a lift for 7, and sqw; > w1 > we. So we may assume that spw; < wy;
for [ =1,...,m for some m < i. Suppose now m < ¢ and SqWmt1 > Wmt1. SINCE SqWpm41 1S &
lift for 741 and sqwp < Wiy, Wipt1 < Wy, iMplies sqWm41 < Wy, So one can replace wy,4+1 by
SaWm+1 in the defining chain. In the second case, we have anyway s wy < wg, so, by induction,
we may assume sow; < wy for [ =k, ..., m for some m <. The same arguments as above show
that if m < and sqwWpm+1 > Wm41, then one can replace wy, 11 by sqwWm+1 in the defining chain.

But now the same arguments (sqw; < w; and w;4+1 < w; = Sqwi+1 < w;) show that one of
the following is a defining chain for f,(m):

(o, Wiy SQWig s - -y SQWj, Wit - -.) OF («oo Wi, SaWig1, -« -, SqWj, Wy, . ..).

These arguments show that the module of paths with a defining chain is stable under the root
operators. If 7; is congruent to the coset of the neutral element for all 4 = 1,... N, then the
monomial is equal to my * ... * m,. Suppose now m # my * ... * m,, and fix ¢ minimal such that
T; % id, and let « be a simple root such that s,7; < 7;. Recall that this equivalent to saying that,
for the dominant weight \; one has (7;(\;), ") < 0. The condition also implies that sqw; < w;,
and hence s,w; < w; mod Wy for any dominant weight.

In this way one gets for all j =1,...7i—1: w; > w; > sqw; mod W);. But w; = id mod W),
for j <4, so w; = id mod W), and s, = id mod W), which can only be if (Aj,a¥) =0 for all
j < i. So the function h, attains strictly negative values for this monomial, and consequently
ea(m) # 0.

Since the weight of the monomial is smaller or equal to A; + ... + A,, this shows that for
any monomial m with a defining chain one can find simple roots such that e, ...eq.(m) =

10



) * ... *7,. So the module of monomials with a defining chain coincides with the module of
standard monomials. °

Let b be the Borel subalgebra of g corresponding to the choice of simple roots. Let Aq,..., As
be dominant weights and suppose that q D b is a parabolic subalgebra such that the weights can
be extended to characters of g. Let Wq be the Weyl group of q. Recall that the fibres p Y (w) of
the projection p : W — W/Wq have a unique minimal element w™m € W (respectively unique
maximal element w™* € W), which is called the minimal (resp. maximal) representative in W
of w.

Corollary 3 A monomial m = w1 * ..., of shape X = (A1,...,p) is standard if and only if
there exists a q-defining chain for m, i.e.:
Formi = (T1,...,7;00,...,0r),...,Tp = (Ts, ..., TK; bs, ..., b) there exist elements wn, ..., wk

in W/Wq such that wy > ... > wg, and
Wy =T, ,wy =T mod Wy 5ws = Ts, .., wg = T mod Wy

Proof. If (wy, ..., wk) is a defining chain, then the projection of the chain into (W/Wq)¥ gives
the desired g-chain. If (w1, ...,wk) is a g-chain, then it is easy to see that (w{™",..., wg"") is

a defining chain for m. °

It follows that the notion of a standard Young tableau given here and in [10] and [12] coincide.
As there one proves easily (notation as above):

Lemma 1 For a standard monomial m = m * ... % m, of shape A = (A1,...,\p) there ex-
ists a unique maximal q-defining chain (wf, . ,w};) and a unique minimal q-defining chain
(wy,...,wg). Le. for any q-defining chain (w1, ..., wk) for m one has wy > wy; > wy, ...,

+ —
Wy 2 WK 2 W

Theorem 8 Set A = A\ + ...+ )\, and suppose that q is maximal such that X can be extended

to a character of q. For a standard monomial m = m * ... % m, of shape A = (A1,...,\p)
let n = (11,...,7r;Q0,...,a,) be the unique L-S path of shape X\ such that [m] = [n] in ZP.
Let (wf,...,w}) be the maximal q-defining chain for m and let (w7 ,...,wx) be the minimal

q-defining chain for m. Then 71 = w; and 7, = w}.

Proof. By the maximality of q one has Wq = W). For 7 € W/W) let 7, be the L-S path
(1;0,1) of shape A\. Now 7 x 7, is standard by Corollary 3 if and only if 7 < 7,.. In the same
way one sees that m, * n is standard if and only if 7 > 7. By Corollary 3 and Lemma 1, the
same arguments imply that m * 7, is standard if and only if w;g > 7, and 7, * m is standard if

and only if w; < 7. Since [m] = [] in ZP, it follows that 7 = wj and 7. = wi. .

For 7 € W/W) let Py, be the set of standard monomials of shape A such that w; < 7.
Choose p € X such that (p, ) = 1 for all simple roots, and let A, : et — (et —eSa(rtr)=r) /(1 —
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e~ %) be the Demazure operator. Let 7 = s,, ... Sq, be a reduced decomposition. It follows from
Theorem 5.2, [14]:

Corollary 4 >, p, ™D = Ay, 0., 0 M, ().

We conclude this section with another version of defining chains: Suppose that Aq,..., Ag
are dominant weights and let b C q; C q2 C ... C qs be parabolic subgroups such that \; can
be extended to a character of q;. As above one proves:

Proposition 2 Let m = myxmox...x7s be of shape A = (A1,...,As). Then m is standard if and
only if there exists a defining chain in II{_ W /Wy,. Le. for the paths m = (T1,...,Tp; a0, ..., ap),
mg = (01,...,0¢;b0,...,bq), 3 = (K1,...,Kr;C0,...,C) and so, there exist wy > ... > w, in
W/Wq, u1 > ... > ug inW/Weq,, v1 > ... > v, in W/Wy,, and so, such that w, > u; mod Wg,,
ug > v1 mod Wy, and so, and

Wy =Ti,...,wp = Tp mod Wy su1 = 01,...,up = d; mod Wy,; and so.

12 A lifting criterium

To make the Young tableaux more compatible with the classical notion of a Young tableau
for example for SL,(C) (compare also [16]), we show that for a “good” enumeration of the
fundamental weights in many cases the weakly standard tableaux are standard. Let G be as in
section 10.

Fix a Borel subgroup B C G. Let a # v be simple roots, denote by w, and w, the
fundamental weights and let P(«), P(y) D B be the associated minimal parabolic subgroup.
Suppose (Q D B is a parabolic subgroup such that P(a), P(y) ¢ Q. Let @' be generated by
@ and P(a), and let Wy, Wy, be the Weyl groups of q := Lie@, q' := Lie@. Consider the
diagram:

SOWWy S WW,
W L .
N WWy B WW,
For 7 € W/W,, let 7% € W/Wq be the unique maximal element in p~!(7). Denote by D —~

the diagram obtained from the Dynkin diagram D of G after removing (the node of) ~, and let
D, be the irreducible component of D — « containing the node of a.

Lemma 2 Suppose that P(8) C Q' for all simple roots 3 corresponding to a node in D,. Then,
for all elements T € W/W.,,, there exists an element v/ € W/W,, such that j(r™%) = 7/™*.

Proof. Let w € W be the maximal lift for 7 € W/W,, , so l(wsg) < l(w) for all simple roots
B # a. Let now w' € W be arbitrary such that w = w’ mod Wy and l(w'sg) < l(w') for all
simple roots 3 &€ D, U {v}.

12



If 3 € D, is such that {(w'sg) > I(w'), then set w” := w'sg. One has w” = w mod W, and
for 6 & Do U {7} one has I(w"ss) = l(w'sgss) = l(w'sssg) < l(w”) since sg and s; commute.
So w” is again of the same type. Since W is finite, one can assume that w’ € W is such
that w' = wmod Wy and I(w'sg) < l(w’) for all simple roots 8 # 7. So w' € W is the
maximal lift of 7/ € W/W,, , where 7" := w' mod W,,,. Since w’ = w mod Wy, it follows for
™% = w' mod Wy that j(rm**) = /™. .

Corollary 5 Suppose D,, satisfies the conditions of Lemma 2. Let k € W/W,, be an arbitrary
element. If there exists an element w € W such that w = 7 mod W,,, and w > k mod W,
then j(Tm) > gMAT,

Let wy, ...,w, be fundamental weights and let a1, ..., a, be the corresponding simple roots.
Suppose Qg D B is a parabolic subgroup such that the w; can be extended to characters of Q.
Let @; be the parabolic subgroup generated by Qo and the P(c;), j < i, and for 1 <i <r—1
let D,, be the irreducible component of D — ;41 containing the node corresponding to ;.

Definition 9 The tuple (Qo,w1,...,w,) is called a good string if the following holds for all
i=1,...,7r—1: Whenever v € D,,, then P(y) C Qiy1.

One sees immediatly:
Lemma 3 Suppose (Qo,w1,...,wy) is a good string. For a subset I := {iy,...,is} C{1,...,r}
such that i1 < ... < is let Q[ be generated by Qo and the P(«a;) such that | ¢ I. Then

(Qb, Wiy s - - - wi,) is a good string.

Lemma 4 If (Qo,w1,...,wy) is a good string, then all weakly standard monomials of shape A,
A=ajwi + ...+ a,w., are standard.

Proof. For 7 € W/W,, write 7™%* for the unique maximal representative in W/Wy, ,. Suppose

m = 7---n is of the shape above and weakly standard. For a factor (m1,...,7;a0,...,a,) of
shape w; let 7" > ... > 7" be be the corresponding sequence of maximal lifts in W/Wy,_,.
If the next factor (k1,..., K¢, b1,...,b:) is of the same shape, then 7% > x***. This is because

m is weakly standard (Corollary 3). If the type changes, then one can assume that a;11 # 0
(Lemma 3). Let g; be the projection W/Wg, , — W/Wg,. One finds ¢;(7,"**) > s7"**. This
is due to Corollary 5 and the fact that m is weakly standard (Theorem 7). So this sequence in

HZ;éW/ Wq, is a defining chain, and m is standard by Proposition 2. °

Corollary 6 Suppose G is simple and not of type D, or E,. Let the enumeration wy, ...,w, of
the fundamental weights be as in [2]. Then every weakly standard Young tableau is a standard
Young tableau.
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Proof. Since (B,w1,...,wy) is a good string, by Lemma 4 all weakly standard tableaux are
standard. °

Suppose now g is of type D,, or E,. Let the enumeration of the fundamental weights be as
in [2]. Using good strings, one proves as above:

Corollary 7 A weakly standard Young tableau of shape A such that a,, = 0 or ap,—1 = 0 for
G of type D,, respectively ao = 0 or a1 = az = 0 for G of type E,, is a standard Young
tableau. Further (the different ordering is important), a weakly standard Young tableau of shape
A= Gp_1Wp_1 + Qp_own_9o + anwy, 1s standard for G of type Dy, and a weakly standard Young
tableau of shape A = ajwi + asws + aqwyq + aswsy is standard for G of type E,.

To get a criterium for an arbitrary tableau m, let m; be the product of the factors of type
w1, meo the product of the factors of type wo, and so. Of course, if a; = 0 for some 4, then m;
is not supposed to show up in the monomial, so m = my - --m,,. If we reorder the factors, then
we write the factors with a /. For example m4m/ms is a monomial obtained from the tableau
m1meoms by reordering the factors such that all paths of type wo come first.

Suppose now G of type D, and A = >, ,» a;w; is such that a,—1,a, > 0 and a; > 0 for
some i < n — 2. Choose i < n — 2 maximal such that a; # 0, and let (71,...,7;a0,...,a,) be
the last factor of m;. If i = n — 2, then set 7, := 7,. Else let 777" € W/Wg, , be its maximal
representative, and denote by 7 its image under the projection W/Wq, | — W/W,, _,. We set
m = (7r;0,1).

Corollary 8 The tableau m is a standard tableau if and only if my ---my_o and the monomial
m,,_ym'my, are weakly standard.

Proof. If m is standard, then also my - - - m,,_omm,_1m,, is standard. This is due to Proposition 2
and the choice of 7. So also m; ... m,_s is standard (and hence weakly standard), and mm,,_1m,
is standard. But then the monomial m] _,7'm,, is standard too.

Now if my ... my—9 and m,_,7'm,, are weakly standard, then they are standard by Corollary
7. Hence also the monomial 7wm,_1m,, is standard, and, by the choice of m, the monomial
my...Mmy—_om is standard too.

The proof of Lemma 4 shows that in order to get a defining chain in H’;:_g W/Wg, for a stan-
dard monomial m; - - -m,_om (using the good string (B,w1,...,w,—2)), one has to take for a
factor of shape wj, j < n—2, as lifts the maximal representatives in W/Wg,_,. Since the mono-
mial mm,_1m,, is also standard, there exists a defining chain (Corollary 3) in II?_ _,W/Wq,.
Since 7 comes first, one can assume without loss of generality that the lifts for = are the maxi-
mal representatives in W/Wyq, .. Hence the terms for 7 in the defining chain of my - - - my_om
coincide with the terms for 7 of the defining chain of mm,_om,_1my, so is a defining chain for
MY Mpy—2TMyy_1My, 1D HZ:_& W/Wq,. It follows that m is a standard tableau. °
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Suppose now G of type E, and A = Y, _;. ajw; is such that ag,a; + a3 > 0 and a; > 0 for
some ¢ > 4. We call a monomial a tableau if the factors show up in the reverse ordering, i.e.
the paths of shape w, come first etc., and the terms of shape wy come last. Similarly, let Q); be
the parabolic subgroup generated by B and the P(«; ), j > ¢, and let q; be its Lie algebra and
Wy, be its Weyl group. As above, if we reorder the factors, then we write the factors with a ’.

Choose ¢ > 4 minimal such that a; # 0, and let (7q,...,7;ao,...,a,) be the last factor of
m;. If i = 4, then set 7 := 7. Else let 7" € W/Wy, , be its maximal representative, and
let 7, its image in W/W,,,. We set 7 := (7,;0,1). Using the good strings (B,wp,...,ws) and
(@5, w2, wq,ws, w1 ), one proves:

Corollary 9 The tableau m = my, ---my is a standard tableau if and only if m, ---myg and the
monomial mhym'mhm, are weakly standard.

13 Examples

It remains to prove Theorem C. For a monomial m € Z{D} let degm be its degree, and for a
dominant weight A =) a,w set deg A := )"  a, degn,.

Using [14], the tables in [3] or the program LiE [4], one checks easily that for the exceptional
groups # Gy the number given in Theorem C is the number N given by Corollary 2. We consider
now the remaining cases.

Proof. Case A, Then D is the set of paths m; : t — te;. If one identifies m; with the number 4,
then Z{D} is just the word algebra Z{1,...,n} on the alphabet {1,...,n}. The relations given
by Ra can be written for ¢ < b < c as:

aab = aba, cab = acb, bac = bca, bab = abb,

which are the well known Knuth relations [9]. So Z{D}/I, where I is the two sided ideal generated
by R, is the algebra considered by Lascoux and Schiitzenberger. These relations imply for j < 4:
12...45 = j12...i. To prove that these relations (together with § = 12...n) generate Ker, it
is sufficient to prove that a monomial m = nq - - - ns such that nqy *...*n, € II'" is equivalent to
a standard tableau: 1...47...1...%5, where i1 < ... < iy <n. We prove this by induction, the
case where degm = 1 being obvious. Suppose m is as above. By induction one can assume that
m=1...41...1...4;j for some j and i1 < ... <15 Since ny*...xns € II'", one has j < i; + 1.
If j = 4,41, then m is standard. Else m is equivalent by the Knuth relations to 1...4;_151.. .4,
which is by induction equivalent to a standard tableau. °

Proof. Case C,, Here D is the set of paths my; : t — t £ ¢;. If one identifies 71; with the number
+i, then Z{D} is the word algebra Z{1,...,n,—n,...,—1} on the alphabet 1 < ... <n < —n <
... < —1. Let ¢; be the isomorphism A[12...i(—i)] — A[12...(i—1)], 2 < i < n. The relations
given by Rg are:

1(-1) =6, la(-1) =a, 12(=2) =1, 2(=2)(-1) = (-1), forl1<a< -1,
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aab = aba, cab = acb, bac = bca, bab = abb fora <b<c, (a,c)# (1,—1).

To prove that Rg together with the relations m — ¢;(m), m € A[12...i(—1i)], generate Ker 1, it
is sufficient to prove that a monomial ng ---ng such that ny * ... *x n, € II'™ is equivalent to a
standard tableau.

We prove this by induction on the degree of the monomial, the case degm = 1 being obvious.
Suppose degm > 1, by induction one can assume that m = 1...411...49...1...75j for some
i1 <...<is<mnandsome 1< j < —1. Since the corresponding path is in II", one has 7] < is
or j = is+ 1. In the last case, m is a standard tableau. If 1 < j < 44, the same arguments
as in the case A, show that m is equivalent to a standard tableau. If —1 > j > —i,, then

iy = |j| for some [ and (by induction) m is equivalent to m’ = 1...4;...1...451...|j|j. Hence
m/ is equivalent to 1...41...1...451...(|j| — 1), which is by induction equivalent to a standard
tableau. .

Proof. Case B,,D,, In this case my = 2. Further, one sees easily by weight considerations that
if A is a dominant weight such that M, C M, x M, for two fundamental weights, then |[\| > 3
only if A = 2w, + w; for some 1 < j < n — 1 in the case B, and A = 2w, + wj, 2w, 1 + w; or
Wp—1 4wy, +w;j for some 1 < j < n —2 in the case D,. So Ker is generated by R4 by Corollary
2.

We consider in the following only the case By, the proof for D, is similar. To prove that
Ker 1) is already generated by Rg, it is sufficient to show that every monomial m = d; - - - d, of
degree r < 4 such that dy * ... * d, € II'" is equivalent to a standard tableau modulo the ideal
I generated by Rj3. Since deg A < 3 for a dominant weight such that M, C Mjﬁ, k = 2,3, this
true for monomials of degree < 3. Suppose now degm = 4. Using the relations for monomials
of degree < 3, one can assume that m is of the form

an'nwn'mn'dor??wj'ﬁwn'da I1<j<n

for some d € D. Now in the first case the corresponding path is in IT* if and only if already
Nw, * d € I, so this monomial is equivalent to a standard tableau modulo I. In the second
case, if already 1., * d € II'" or n,,; * d € II'", then the monomial is equivalent to a standard
tableau modulo I. Otherwise identify d with its endpoint, then the only possibilities for d are

1
d:§(€1+~--+€k—1_Ek_---_6j+€j+1+--~+€l—1_el_---_fn)

for some k < j +1 <1l. Now ny,; xd = fa, fap_y -+ fa; -+ fa,m for

1
7T:77w].*§(€1+...+6k,1—Gk—...—€j+6j+1—|-...—|—€n),

and 7 is equivalent to 1., , * Mu,. SO Mw; * d is equivalent to

1
fanfozn_l .. 'fozl .. ‘fan(nwk_l : nwn) = Nwp_1 ° 5(61 +...+e€g1—€¢g—...— en).
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Hence Mew; * N, -d is equivalent to 7, , ‘1., ,, which is a standard tableau. A detailed description
of the relations will be given in a forthcoming article. °

Proof. Case Gy Using Corollary 2, one checks easily that Ker ) is generated by R4. We identify
D with the set {1,2,3,2,4,5,6} in the following way:

1i=my; 2:= fou 15 3= fa,2; 2:= fo,3; 4:= fo,2; 5= fa,4; 6:= fo,b.
We define the numerical value of z as 3%. The relations in Ry are:
16=0; 1=1z, 2=14, 3=15, z=25, 4 =26, 5 =36, 6 = z0.

The relations in Rg, which are independant of those in Rs, are coming from the isomorphisms
A123 ~ A1l and A121 ~ A112. In the first case one gets:
123 =11, 12z =21, 124 =22, 13z = 31, 134 = 32, 23z = z1, 234 = z2
135 =33, 22z =41, 235 = z3, 2z4 = 42, 3zz = 51, 225 = 43, 3z4 = 52,
277 = 61, 245 = 4z, 375 = 53, 724 = 62, 345 = bz, 246 = 44, 725 = 63,
346 = 54, 745 = 6z, 356 = 55, z46 = 64, z56 = 65, 456 = 66.
The basis of A121 is {abc | a <b>¢, b—a <2, or (a,b) = (2,2), ¢ < z}, and the basis of A112
is {abc|a>b<c, c—b<2, or(b,c)=(z,2), a> z}. The relations given by the isomorphism
are:

aab = aba, cab = ach, bac = bca, bab = abb,

for the paths ending in an extremal weight. For the other paths one gets:

132=312, 222=412, 323=>513, z44=624, z55=635, z66=645, 231=213, 222=22z,

323=33z, z44=4z4, z55=5z5, 465=>546, 232=z12, 233=z13, 24z=42z, 352z=>53z,

454=06z4, 455=0625, 221=223, 3z1=323, z42=224, 253=235, 462z=445, 56z=545,

223=413, 243=423, 343=>523, 344=>5z4, 354=534, z54=634, 322=512, zz2=612,

7223=613, z42=62z, 252=063z, 452="02z, zz1=223, z41=22z7, z51=23z, 461=47z,

561=>5zz, 562=5z4, 341=32z, 342=324, 352=334, 452=434, 453=435, 463=4z5,

347z=>52z , 7243=623 , z52=2z34 , 451=43z.

So every monomial of length < 3 can be written as a standard tableau of length < 3. To prove
that Ker v is generated by these relations, it is sufficient to show that a monomial m =dy - --dy
such that di * ... d, € IIT, is equivalent to a standard tableau. Using the relations above, one
sees that such a monomial is either equivalent to one of length < 3, or it has to be of the form

Nwy * Nwy * My d7 Non " Nws - d, or Nws * TNws

for some d € D. The last monomial is already a standard tableau. In the first case the corre-
sponding path is in IT* if and only if the path corresponding to m’ = 1, - 1., - d is already in
IT*. This monomial is of degree < 3, so one can assume that it is already standard, but then
N, - m' is standard. In the second case one shows similarly that either already 7, * d € II* or
Nw, * d € IIT. Therefore, the monomial is equivalent to a standard tableau. °
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