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Paths and root operators in
representation theory

By PETER LITTELMANN*

Introduction

Let X be the weight lattice of a complex symmetrizable Kac-Moody al-
gebra g and denote by II the set of all piecewise linear paths 7 : [0,1] — Xg
starting at 0. In [8] we associated to a simple root o linear operators e, and
fa on the Z-module ZII spanned by II. Let A C Endgz ZII be the subalgebra
generated by these operators.

We studied in [8] a special A-submodule of ZII: For a dominant weight
A let 7 be the path t — tA and denote by M) the A-module Am) generated
by 7). Considered as a Z-module, the module M) has as a basis the set B)
consisting of all paths contained in M).

We showed that B, has some remarkable properties which are closely
related to the representation theory of g: The sum > e™ @) over the endpoints
of all paths in B, is the character of the irreducible representation V) of g of
highest weight A. Further, the Littlewood-Richardson rule to decompose tensor
products of representations of g = gl, can be generalized in a straightforward
way to all symmetrizable Kac-Moody algebras using the paths in B).

The aim of this article is to show that the results in [8] are independent of
the choice of the path connecting the origin with A\. As a consequence one ob-
tains a very interesting interpretation (and a new proof) of the decomposition
rules proved in [8]: The concatenation of paths can be viewed as a “model”
for the tensor product of representations of g.

We describe first the operators f, and e,: Let a" be the coroot of a.
According to the behavior of the function ¢ — (r(t),a¥) we write a path
T =M * -+ * T, as a concatenation of “smaller” paths. If fom # 0, then

fa7r:771*"'*7]r,

where either n; = 7; or 1; = sq(7;), and fom(1) = m(1) — o.. The definition of

€q is similar, only that eqm(1) = m(1) + « (see Section 1).

*Supported by the Schweizerischer Nationalfonds
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Let Pt be the set of paths m such that the image is contained in the
dominant Weyl chamber and 7(1) € X, and for 7 € P denote by M, the A-
module Ar. Clearly the set B, of paths contained in M is a basis for M,. We
show that the .4-module structure of M, is invariant under those deformations
of m which stay inside the dominant Weyl chamber and fix the starting point
and the endpoint of the path:

ISOMORPHISM THEOREM. For n,n’ € P, the A-modules M, and M,
are isomorphic if and only if n(1) = n'(1).

In particular, the isomorphism theorem shows that we always get the same
“character” for M,. The character can be calculated using Weyl’s character
formula (the proof given here is independent of the proof of the character
formula given in [8]): Let p € X be such that (p,a") = 1 for all simple roots.

CHARACTER FORMULA. For m € Pt let Char M, be the character
> neBx e"1) of the A-module My. Then:

E sgn(0)e’?) Char M, = E sgn(o)e (P,
ceW ceW
In particular, Char M is equal to the character of the irreducible, integrable

g-module V), of highest weight A: = m(1).

To define an analogue of a tensor product for A-modules, note that the
concatenation of paths induces a map * : II x II — II, (my,m2) — 7 * mo. Let
O be the A-submodule AP+ C ZII generated by P*, and extend “#” to a
bilinear map * : ZII x ZII — ZII.

TENSOR PRODUCT RULE. The concatenation induces a bilinear map
*:0 x O — O of A-modules such that for m,m € PT:

7|'1 * M7r2 @Mﬂ'v

where m runs over all paths in P+ of the form m = w1y x n for some 1 € By,.

By the character formula we get immediately the following Littlewood-
Richardson type decomposition rule (proved in (8] for a special choice of m3):

DECOMPOSITION FORMULA. If my,m3 € PT are such that A\ = m1(1) and
p = m2(1), then the tensor product VA ®V,, of irreducible g-modules decomposes
into the direct sum

VeV~ @ Ve,
™

where m runs over all paths in Pt of the form m = w1 xn for some n € By,.
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As described in [8, Section 8], for an appropriate choice of 7 this rule is
for g = gl, the Littlewood-Richardson rule. It should be interesting to find a
direct correspondence to Lusztig’s decomposition formula [9)].

For a Levi subalgebra [ of g let .4; be the subalgebra generated by those
€a; fa such that o is a simple root of I. Denote by P;" the set of paths contained
in the dominant Weyl chamber of the root system of I, and for n € P;" denote
by N; the A;-module generated by 7.

RESTRICTION RULE. The A-module M, m € P*, decomposes as an A;-
module into the direct sum M, = @, Ny, where n runs over all paths in By
contained in P{.

By the character formula we get for A = m(1): V), decomposes as an I-
module into the direct sum ®,, Uyq) of simple [-modules, where 7 runs over
all paths in B, contained in P;".

Let ILip¢ C II be the subset of paths such that m(1) € X. Using the
operators e, and f,, we easily construct for each simple root a Lie subalgebra
of Endz ZIlint that is isomorphic to slz(Z), but these subalgebras (see Section 2)
do not satisfy the Serre relations (for different simple roots).

Now we define an action of the Weyl group W of g on ZIIiy, such that
w(n)(1) = w(n(1)) for w € W. We construct also for each simple root an action
of the g-analogue U,(slz) of the enveloping algebra of sl2(Z) on Z[q, ¢~ |II.

Another connection between the .A-modules M, and the g-module Vrq) is
given as follows: Let G(7) be the oriented, colored graph having as points the
elements of the basis B, and we put an arrow m; —my with color « if and only
if fa(m1) = . Kashiwara [4] and Lakshmibai [6] have proved (independently):

THE CRYSTAL GRAPH. Form = ) the graph G(m)) is isomorphic to the
crystal graph of the representation V) of the q-analogue Uy(g) of the enveloping
algebra of g.

The isomorphism has also been proved by Joseph [1] using the isomor-
phism theorem for .A-modules. He gives a list of properties characterizing the
crystal graph uniquely up to isomorphism. The most important condition: For
all dominant weights A, 4 the graphs G(my * m,) and G(m4,) are isomorphic,
is satisfied by the isomorphism theorem.

Acknowledgments. The author would like to thank M. Kashiwara for help-
ful discussions and the RIMS, Kyoto, for its hospitality. I would also like to
thank M. Kashiwara and the referee for pointing out a gap in the proof in a
preprint version of this article.
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Y

w(t0)

FIGURE 1.  The part of the new path e, different from 7 is drawn as a dashed line.

1. The root operators

We write [0,1] for the set {t € Q | 0 < ¢ < 1}. Denote by II the set of
all piecewise linear paths 7 : [0,1] — Xg such that 7(0) = 0. We consider
two paths 7y, 72 as identical if there exists a piecewise linear, nondecreasing,
surjective, continuous map ¢ : [0,1] — [0, 1] such that m; = 73 0 ¢. Let ZII
be the free Z-module with basis II. For each simple root o we define linear
operators e, and f, (the root operators) on ZII.

The definition given here is slightly different from the definition given in
8], but the effect on Lakshmibai-Seshadri paths is the same (see Section 4).

Let m,m1,m € II be paths. For a simple root o let so(7) be the path
given by s4(7)(t) := sa(m(t)). By 7 := m * m2 we mean the concatenation of
the paths, i.e. 7 is the path defined by

0 m1(2t), if0<t<1/2;
T =
7r1(1)+7r2(2t—1), if 1/2§t§1.

Fix a simple root a. To define the operator e, we cut a path w € II into several
parts according to the behavior of the function

ho 1 [0,1] = Q, t— (m(t),a").

Let mq := min{hq(t) | t € [0,1]} be the minimal value attained by h,,.

If mq < —1, then fix ¢; € [0,1] minimal such that hy(t;) = m, and let
to € [0,t1] be maximal such that hy(t) > me + 1 for t € [0, 2]

Choose tg = sg < 81 < -+ < 8, = t; such that either

(1) ha(si—1) = ha(si) and hq(t) > ha(si—1) for t € [s;_1, si];
(2) or hg is strictly decreasing on [s;—1, s;] and hq(t) > ha(s;—1) for t < s;_;.
Set s_1 := 0 and s;4+1 := 1, and denote by ; the path defined by
mi(t) = 7((si—1 +t(si — 8i—1)) — 7(si=1), i=0,...,7+ 1.



ROOT OPERATORS 503

It is clear that m = mg % 7y * « - - % Tpyq.
Definition. If my > —1, then e,m := 0. Otherwise,
€qT 1= TQ * T]1 * TJ2 % « * = * 1]y * Tpyq,

where 7; = 7; if the function h, behaves on [s;_1, s;] as in (1), and n; = sq(m;)
if the function h, behaves on [s;_1, s;] as in (2).

The definition of the operator f, is similar. Let ¢ty € [0,1] be maximal
such that hq(to) = mq. If ho(1) — mq > 1, then fix t; € [to, 1] minimal such
that hq(t) > ma + 1 for t € [t1,1].

Choose tg = sp < 81 < --- < 8, = t1 such that either

(1) ha(si) = ha(si—1) and ha(t) > ha(si—1) for t € [si_1, si];
(2) or hg is strictly increasing on [s;_1, ;] and hq(t) > hy(s;) for t > s;.
Set s_1 := 0 and s,4; := 1, and denote by 7; the path defined by
mi(t) == m((si—1 +t(si — 8i-1)) — 7(si—1), 1=0,...,7+ 1.
It is clear that m = mo * 7y % - - - * Tpy 1.
Definition. If ho(1) — mq < 1, then fom := 0. Otherwise,

foaT i=moxm *mg % %Ny % Tpy1,
where 7; = 7; if the function h, behaves on [s;—1, s;] as in (1), and 7; = s4(7;)

if the function h, behaves on [s;_1, s;] as in (2).

Ezample. Suppose g = sly and p is the highest root. The eight paths
obtained from m, : t — tu by applying the operators fq,e, are the paths
mg(t) := tB, where (3 is an arbitrary root; for a simple one gets in addition:

{ —ta, for 0 <t<1/2

m(t) ==
(t—1)a, for1/2<t<1.

2. Some simple properties of the operators

Denote by A the subalgebra of Endz ZII generated by the root operators.
For m € II let my := min{hq(t) | ¢t € [0,1]} be the minimal value attained by
the function h, and denote by 7*(t) := n(1 —t) — 7(1) the dual path of m. The
following properties are obvious by the definition of the root operators:

LEMMA 2.1. a) Ifeqm # 0, then eqm(1) = w(1) + @, and if fom # 0, then
farr(1) =7(1) — a.
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b) If eqm # 0, then foeqm = m, and if fom # 0 then eqfom = .

c) em = 0 if and only if n > |mq|, and fim = 0 if and only if n >
(r(1),2") — mq.

d) The A-module Ar C ZII generated by 7 has as basis the set of all paths
n € II contained in Am.

e) (fam)* = eqm* and (eqm)* = fom*.

Let ZII;,: be the submodule of ZII spanned by the paths -ending in an
integral weight. Clearly, ZII;, is stable under the root operators. Choose
p € X such that (p,a) = 1 for all simple roots. The following is an easy
consequence of Lemma 2.1.

LEMMA 2.2. a) For m € Ilip; let ny1,ng be mazimal such that egim # 0
and 72w # 0. Then (m(1),0") = ng — n1.

b) eqm = 0 for all simple roots if and only if the shifted path p + m is
completely contained in the interior of the dominant Weyl chamber.

Let v € X be an integral weight and denote by II;n(v) the set of elements
7 in Iy such that (1) = v. Fix a simple root a and let ¢; : Ijpe(v) —

Ilins (v — ja) U {0} be the map defined by 7+ fir for j > 0 and w — el for
j <0. By Lemma 2.2 we have:

LEMMA 2.3. Set N: = (v,a"). The map ¢; is injective for 0 < j < N if
N>0and for N<j<0if N<O.

For n € N and m € II denote by nr the path (nm)(t) := nn(t). The
definition for the operators e, and f, given here has the advantage (compared
with [8]) that it is obviously compatible with the “stretching” of paths:

LEMMA 2.4. a) n(fom) = f2(nm).
b) n(eqm) = eX(nm).

Let G be the colored, oriented graph associated to ILy: The points of G
are the elements of IIj,, and we put an arrow colored by a simple root o
between two elements if fom = 7/, or equivalently e,n’ = 7. For 7 € ILip; let
G(m) be the connected component of G containing m. The set of points of G(r)
is then just By, the set of paths in Axn. Note that G(7) determines completely
the A-module structure of Am.

An isomorphism ¢ : G(m1) — G(m2) of such graphs is a map which is a
bijection on the set of points of the graphs, and which in addition has the
property that ¢(fom) = fao(m) for all simple roots and all points 7 of G(my).

LEMMA 2.5. For m,my,m3 € iy let G(7),G(m1) and G(mz) be the associ-
ated graphs.
a) The injection j:Br +— Bpr, ©’ — n’, satisfies j(fon') = foj(n').
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b) If ¢n:G(nm1) — G(nma) is an isomorphism for some n € N such that
én(nm1) = nma, then there exists an isomorphism ¢:G(m) — G(m2) such that

¢(m1) = 2.

Proof. Part a) is just a reformulation of Lemma 2.4. To prove b) note
that the image of j; : Br, + By, is just the set of paths obtained from nm;
by applying the operators e}, and f. Since the same is true for jp, we see that
®n, induces a bijection Im(j;) — Im(j2) and hence a bijection ¢ : By, — B,
such that ¢(m1) = m. Since ¢, is a graph isomorphism, ¢ induces in fact an
isomorphism ¢ : G(m1) — G(ma). a

2.6. Concatenation of modules. Let M C ZIlj,; be an A-stable submod-
ule having as a basis the set of paths B := M NIl;. We say that B has
the integrality property if for all # € B and all simple roots the minimum at-
tained by the function hy(t) := (7 (t), ") is an integer. In the following we set
m*%0=0x7:=0for 7 € II.

Suppose M; and My are two A-submodules of ZIl,; having By, Ba C it
as bases. Assume further that both have the integrality property. For m € B;
and 1 € Bs let m x 1 be the concatenation of the two paths.

Denote by m, the minimum of the function h, for 7 and by mg the
minimum for 7. Since (1) is an integral weight, we get:

(fam) *n, if my < (m(1),a) + my;
7 * (fam); otherwise.

fo(mxm) = {

By Lemma 2.2 one can describe the action of f, and e, on 7 * 1) as follows:

LEMMA 2.7. Let M1,Ms C ZIlI;y; be A-submodules having By,Ba C Il
as bases, and suppose that By,By have the integrality property. For m € By and
n € By, '

fa(ﬂ'*"?) = {

(fam) %, if there exists n > 1 such that fim # 0 but egn = 0;

7 * (fon), otherwise.

Similarly, eq(m *n) = 7 * (eqn) if there exists n > 1 such that eln # 0 but
fam =0, and eq(7 %) = (eqm) * N otherwise.
In particular, if we denote by My x My the Z-span of the concatenations

By x By: = {mxn | m € B1,n € By},
then Mi * My C ZIl;y is an A-submodule.

Remark 2.8. For w € Bj * By the minimum of the function h, is an
integer for all simple roots, so B; * By has again the integrality property.

Note that the module structure on M; * My depends only on the module
structure of M7 and M, and not on the paths: Let N7, N2 be A-submodules
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of ZII;y having as bases the subsets Pj, P» C Il of paths and suppose that
Py, P, have the integrality property. The following is obvious:

LEMMA 2.9. If ¢;:N; — M;, i = 1,2, are A-module isomorphisms such
that ¢;(P;) = B, then the induced maps

¢1 *id: Ny« My — My x Ma, mxn ¢1(m) *n

and
id * ¢: My * Np — My * Ma,m + 1 — 7 * ¢2(n)

are isomorphisms of A-modules.

2.10. Some sly-theory. The results in 2.1-2.3 show a certain resemblance
with standard results in the representation theory of the Lie algebra slz. We
conclude this section with a few remarks that make this resemblance more
explicit. Denote by B the subalgebra of Endz ZII;,; generated by the restriction
of the root operators to ZIlj, and let B be the subalgebra of Endz ZIIjn
consisting of all endomorphisms that can locally be approximated by elements
of B. Since the root operators are locally nilpotent, the operators

Lo := Zeix R Zféeix_17 ho = Z(eif; — faed)
i>1 i>1 ‘ i>1
are examples for elements of B. The following proposition follows easily from
Lemma 2.1 and 2.2 by applying the operators to an element in ITjy:

PROPOSITION 2.11.  If 7 is an element of Iy, then hom = (n(1),")m.
Further,

[xaaya] = hq, [hmxa] = 2z4, [haaya] = —2Ya,

so the elements To,yo and he, span a Lie subalgebra of Endg Zllin, isomorphic
to sly(Z).

Remark 2.12. The z, respectively y, do not satisfy the Serre relations,
but the h, commute. Let h be the subalgebra of Endz ZIl;,; spanned by the
ho. The “character” of M, considered in the introduction can hence be viewed
as the (usual) character of M, as an h-module.

The results above can be easily extended to the g-analogue of slz. We
define the corresponding operators on ZIliy: ®z Z[g,q~1]. Set K, := g"*, so
that Ko := ¢ ) for m € Mg (v). Let [j] denote the Laurent polynomial

(@ —q77)/(a—q"). Weset
Eo:=Y (] - li— e i, Fo:=Y (] - [i— 1)) fiel™

i>1 i>1

and

Hy = (Ko—K;")/(g—q7").
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PROPOSITION 2.13. Hym = [(n(1),@")]m for m € Iins. Further,
[EasFo]l = Hay KaEoK3'=¢’X, and K YoK™'=q%F,,

so the elements Ky,E, and F, satisfy the relations of the generators of the
g-analogue Uy(slz) of the enveloping algebra of sla(Z).

Remark 2.14. The paths form naturally a basis of the crystal lattice in
ZITint ®z Q(q) for the action of Uy(slz2) ([5], [9]). Note that the operators f,
and é, associated in [5] to the operators F, and E, are here just again the
root operators f, and e,.

3. Continuity

Compared to the definition given in [8], the main advantage of the defi-
nition of the root operators given here is that the action is “continuous”. For
w1, € II, fix a parameterization. With respect to this parameterization we
set:

d(my,m2) := max{|(m1(t) — m2(t),a") | « simple, ¢ € [0,1]}.

Denote by ¢ the maximum max{[a,v") | a,~ simple roots }.

PROPOSITION 3.1. a) Let mj,m2 € Iy be such that d(m,m) < e < 1
and min{(r;(t),a") | t € [0,1]} € Z for j = 1,2. Then frm # 0 (respectively
eam # 0) if and only if fRma # 0 (respectively elma # 0) for alln > 1.

b) Suppose m1,m2 € II are paths such that d(m1,m2) < € and fom1,fam2 # 0.
Then d(fom1,fam2) < 3ce.

c) Suppose 1,m2 € II are paths such that d(m1,m2) < € and eqm1,eqm2 # 0.
Then d(eqm1,eqm2) < 3cc.

Proof. If d(m1,m2) < 1 and the minima are integers, then we have neces-
sarily

m = min{(m(t),a") | t € [0,1]} = min{(ma(¢),a") |t € [0,1]} € Z

and (m1(1),a") = (ma(1),a"), which proves part a) by Lemma 2.1.
To prove b), let ¢1, 2 be nondecreasing functions such that fom(t) =
m1(t) — p1(t)a and foma(t) = m2(t) — p2(t)a. Then

d(famy, fam2) = d(m — g1, 72 — p20)
< d(m,m2) + emax{|e1(t) — 2(2)] | t € [0,1]}
< e+ cmax{|p1(t) — w2(t)| [ t € [0,1]}.
CramM. max{|p1(t) — p2(2)| | t € [0,1]} < 2e.
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Note that the claim implies the proposition: d(fa71, fam2) < €+2ce < 3ce.

Proof of the claim. Set m; := min{(m;(t),a") | t € [0,1]}, ¢ = 1,2. Note
that |m; — mg| < €. Suppose first ¢ € [0,1] is such that neither ¢; nor ¢ is
constant on an arbitrary small neighborhood of ¢. Since

e1(t) = (m(t),a") —=m1, @a(t) = (m(t),a") — ma,

we get |p1(t) — p2(t)| < e+ |m1 —ma| < 2e.

Next suppose p, g € [0,1] are such that p < ¢ and ¢ is constant on [p, q],
but @2 is not constant on an arbitrary small neighborhood of p and ¢, or
p = 0. In addition we assume that |p1(p) — p2(p)| < 2e. We prove now that
|p1(t) — p2(t)| < 2¢ for all ¢ € [p,q|:

Since ¢, is constant and ¢; is nondecreasing, it suffices to prove that
le1(9) — v2(q)| < 2e. The assumption that ¢2 is not locally constant at g
implies p2(q) = (m2(q),a¥) — mga. If ¢; is constant on [p,q] too, then there
is nothing to prove. If p1(q) < ¢2(q), then we have (¢; is nondecreasing)
lp2(q) — #1(9)] < lp2(p) — 1(p)] < 2e.

So suppose that ¢1(q) > ¢2(q) and fix now gp < ¢ maximal such that
1 is not locally constant at go. Then ¢1(q) = ¢1(q0) = (m1(g0), ") —my <
(m1(q), @) — my by the definition of ;. Since we assume that ¢;1(q) > ¢2(q),
we get

l01(a) = ¢2(@)] < [(m1(g), @) — ma — ((m2(q), @”) — m2)| < 2e.

Let = be such that ¢1(t) = 1 for t > z and ¢1(t) < 1 for ¢t < z. Without
loss of generality we assume that ¢a(t) < 1 for ¢t < z too. Then every point
t € [0,z] is contained in some interval [p,q], p < g, such that either ¢; and
w2 are nowhere locally constant on [p, g], or either ¢; or 2 is constant on the
interval and the function is not locally constant at p (except p = 0) and q. Since
|©1(0) —p2(0)| = 0, this implies by the considerations above |¢1 () —p2(t)| < 2¢
for ¢t € [0, z].

Since ¢; is constant, p;(t) > ¢2(t) for t > = and ¢y is nondecreasing,
lp1(z) — p2(x)| < 2¢ implies |p1(t) — p2(t)| < 2¢ for ¢ > z, which finishes the
proof of the claim and hence the proof of b).

The proof of ¢) is similar. O

4. Lakshmibai-Seshadri paths

First let A be a dominant integral weight. In [8], the .A-module Am)
generated by the path ¢t — t)\ is described as the module spanned by the
Lakshmibai-Seshadri paths (L-S paths) of shape A.
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In this section, we introduce the notion of an L-S path of class A, where
A is now an arbitrary integral weight (and not necessarily an element of the
Tits cone!). The two notions coincide for dominant weights. As in the case
of dominant weights, the L-S paths of class A have the integrality property
and they are stable under the action of the root operators. But if A is not in
the Tits cone, then in general the module A7) is a proper submodule of the
A-module spanned by the L-S paths of class .

An important notion for the definition of L-S paths is the distance function
dist(u, v) on Weyl group orbits, which has been proposed by M. Kashiwara to
the author as a replacement for the length function on W used in [8]. The use
of dist simplified many proofs given in a previous version of this article.

For A € X and v, u € W write v > p if there exist sequences of weights
v =1g,11,...,Vs = u and positive real roots G1, ..., s such that

v; = sg,(vi—1) and  (v;_1,B)) <0 foralli=1,...,s.

If v > p, then denote by dist(v, u) the maximal length s of all possible such
sequences. Clearly, dist(p1, p2) + dist(p2, p3) < dist(u1, p3) if p1 > po > ps.

LEMMA 4.1. a) If u > v and « is a simple root such that (u,a") < 0 but
(v,aV) > 0, then so(p) > v and dist(sq(u),v) < dist(u,v).

b) If u > v and a is a simple root such that (u,a") <0 but (v,av) > 0,
then > sq(v) and dist(p,s4(v)) < dist(p,v).

c) If u > v and « is a simple root such that (u,a),(v,a") > 0 (respectively
(u,a¥),(v,aV) < 0), then dist(u,v) = dist(sq(1),54(V)).

COROLLARY 1. Suppose p > v is such that dist(u,v) = 1 and B is a
positive real Toot such that sg(u) = v. If a is a simple root such that (pu,a") <0
and (v,a¥) > 0 (or (u,a") <0 but (v,a¥) > 0), then a = 8.

Remark 4.2. Suppose A is a dominant weight, and for p,v € WA fix
7,6 € W/W) such that 7(\) = ¢ and x(A\) = v. Then p > v if and only if
7 > K in the Bruhat order, and dist(p,v) = I(7) — l(k).

Proof of the lemma. Let u = vg,v1,...,Vs = v be a sequence of weights
of maximal length and let £1,..., s be the corresponding positive real roots.
Fix 4 minimal such that (v;,aV) < 0 but (v;y1,2") > 0.

The sequence sq (1) = $a(10), Sa(V1), .- ., 8a(v;) has the property that

85a(8;) (8a(Vj-1)) = 8a(v;) and  (sa(vj-1),5a(5;)) < 0.

So if we prove that so(v;) = V41, then it follows that so(p) > v. Further,
since any such sequence between s, (1) and s4(v;) = vi+1 can be extended to a
sequence between p and s, (v;) by adding p to the sequence of weights and o to
the sequence of positive real roots ({u, @) < 0!), the maximality of the length
of the sequence we started with implies that dist(sq(p),v) = dist(y,v) — 1.
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It remains to prove that so(v;) = vi41. So for simplicity we may assume
that d(u,v) = 1, B is a positive real root such that sg(u) = v and «a is a simple
root such that (u,aV) < 0 and (v,a") > 0. Suppose that o # B and consider
the sequence v := p, V1 = Sa(l), V2 := So(v) and v3 := v. Then sq(v0) =11
and (vp,aV) < 0, and s4(v2) = v3 and (vz,a") < 0. Since

Ssa(8)(V1) =v2, and  (v1,84(8")) = (1, 8Y) <0,

one obtains dist(p,v) > 3 (respectively dist(u,v) > 2 if (r2,a”) = 0), in
contradiction to the assumption dist(u,v) = 1.
The proofs of b) and c) are similar. ]

Definition. A rational path m = (v,a) of class A is a pair of sequences
where v : 13 > --- > v, is a linearly ordered sequence of weights in WA,
a:ap=0<a; <---<a, =1 is a sequence of rational numbers. We identify
m with the path

j—1
m(t) := Z(al —a;—1)V;i + (t — aj_1)1/j for aj_1 <t < aj.

i=1

To ensure that 7(1) is an integral weight, we introduce now the a-chain
(see [7], [8])- Let 0 < a < 1 be a rational number and pu,v € WA:

Definition. An a-chain for (u,v)isasequence p=MXg > A1 > -+ > As =V
of weights in WA such that either s = 0 and p = Ao = v, or \; = sg,(Ai—1) for
some positive real roots B, ..., 0s, and dist(Ai—1, A;) =1 and a{\i—1,8/) € Z
foralli=1,...,s.

The “integrality” condition implies that a(u — v) = Y i_; a(hic1 — X)) =
S oa{Xi—1,0))B; is a sum of positive roots.

LEMMA 4.3. Let p = X > A1 > -+ > Xs = v be an a-chain for (u,v)
and fix a simple root a.

a) If (u,aV) < 0 and (Ni,&¥) > 0 for some i, then there exists an a-chain
for (sa(p).v).

b) If (v,aV) > 0 and (\;,@¥) <0 for some i, then there exists an a-chain

for (,54(v))-

Proof. Assume first that (u, ") < 0, and let ¢ be minimal with the prop-
erty that (\;+1,aV) > 0. Further, let 81,...,0; be the positive real roots cor-
responding to the a-chain. Since (X, 8}) = (sa(};), 5a(B))), one sees as in the
proof of Lemma 4.1 that so (1) = sa(Xo) > -+ > Sa(Xi) = Aig1 > - > As =V

is an a-chain for (squ,v). The proof of b) is similar. ]

Definition. A rational path m = (v;a) of class A € X is called an L-S path
of class N if for all i =1,...,s — 1 there exists an a;-chain for (v;,V;41).
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Remark 4.4. a) If m = (v;a) is an L-S path of class A, then it is an L-S
path of class w(\) for all w € W.

b) See [8]: If A is a dominant weight, then 7 = (v;a) is an L-S path of
class X if and only if (7,...,7s;a0,...,as) is an L-S path of shape A, where
the 7, € W/W,, are such that 7;(\) = v;.

We say that a function h attains on [0,1] a local minimum at t = tp if
either h is constant, or if there exists an € > 0 such that h(t) > h(tp) for
|t —to| < € and h(t) > h(to) for either to <t <tg+eortg—e <t <tp.

LEMMA 4.5. a) If w is an L-S path of class A, then m € Ilin.

b) If # = (v;a) is an L-S path, then 7' = (v;,...,v5;0,0: ... ,0;-1,1) is an
L-S path for all1 <i<j<s.

c) If m is an L-S path and a;—1 < = < a; is such that (n(z),aV) € Z for
some simple root a, then z(v;,a") € Z.

d) Let m# = (v;a) be an L-S path and fix a simple root o. If the function
ha(t): = (m(t),aY) attains at t =ty a local minimum, then hqo(to) € Z.

In particular, the L-S paths have the integrality property.

Proof. The chain condition implies a;(v; — vj+1) is a sum of roots, so

s s—1
m(1) = (a; —aj1)v; =vs + Y aj(vj — vj41) € X,
Jj=1 j=1

proving a). Similarly, one has for ¢): 7(z) = zv; + ;_:11 a;(vj — vj+1), which
implies that (m(x),a") € Z if and only if z(v;,@") € Z. The proof of b) is
obvious; it remains to prove d). '

We may assume to = a; for some i. To prove that h,(a;) is an integer, by
b) one can assume that i = s—1. So hg(as—1) = (r(1), V) — (1 —as—1){vs, @").
Hence it is sufficient to prove that (1 — as_1){vs,a") € Z. This is obvious if
(vs,@") = 0. Since hq(t) attains at as—1 a local minimum, one has otherwise
(vs,aV) > 0 and (vs_1,a") <0.

By Lemma 4.3 this implies that 7’ = (..., Vs—1, Sa(Vs); . -, 0s—1,0s) is an
L-S path. Now by the chain condition one knows that v; — m(1) as well as
sa(vs) — m'(1) are elements of the root lattice; so, also, m(1) — #’(1) is in the
root lattice. But 7(1) — 7/(1) = (1 — as—1){Vs,@")a is in the root lattice only
if (1 —as—1)(vs,aV) € Z. O

Remark 4.6. The same arguments prove the following: For an L-S path
7= (v;a) let v; = po > p1 > --+ > pr = Vi1 be an ag;-chain for (v;,vi4q). If
(v;,aV) < 0 for a simple root o and (u;,a") > 0 for some j, or (Vit1,0¥) >0
and (u;,a") < 0 for some j, then hq(a;) = (7(as),a") € Z.

PROPOSITION 4.7. Let n = (v;a) be an L-S path and assume that the
function ho(t): = (n(t),aV) attains at t = a; a local minimum.
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a) Suppose there exists a y > a; such that ho(y) = ha(a;) +1 and ha(t) >
ha(as) for all a; <t <y. Then there exist a; < aj < x <y such that

ha(ai) = ha(aj) < ha(t) < ha(z) = ha(y)

for a; <t < x, and the function h, is strictly increasing on [aj,x]. Further, n'
is an L-S path, where:

n:= (1, Vj,8aWVit1)s - - 5Sa(V1)sViy - - - Vri@0, - -+ QI—1,T,a15 - - - ,ar).

b) Suppose there exists an x < a; such that hy(a;) + 1 = ho(z) and
ha(t) > ho(a;) for all z <t < a;. Then there exist t <y < ax < a; such that

ha(z) = ho(y) > ha(t) > holax) = ha(as)

for y <t < a and the function hy is strictly decreasing on [y,ax]. Further, n/
is an L-S path, where:

77/: = (Vla e ,Vl,Sa(Vl), e ,Sa(Vk),Vk+1, <5 Vria, - . ,01—1,Y,a0,y - - . aa’r)'

Remark 4.8. If sqo(vj+1) = v; or € = a; etc., then the corresponding
entries are not listed twice.

COROLLARY 2. a) The Z-module Ly C ZIly generated by all L-S paths
of class A is an A-submodule.

b) On the set of L-S paths the root operators defined in Section 1 coincide
with the root operators defined in [8].

COROLLARY 3. If A is a dominant weight, then my is the only L-S path
7 of class A such that eom = 0 for all simple roots. Further, any L-S path m of
class A is of the form m = fqu, ... fa, ™\ for some simple roots ay,. .. .

Remark 4.9. If X is not in the Tits cone, then Am), can be a proper
submodule of L. For example, in the rank two case, suppose that A is not in
the Tits cone. Consider the L-S paths m = (v,a) of class A such that for all ¢
there exists a simple root such that v;_; = so(v;). It is easy to see that these
paths span a proper A-stable submodule of L.

Proof of the corollaries. Assume that h, attains at ty = a; its minimum
for the last time, and t; > a; is the first time such that h, attains the value
ha(ai) + 1. Since by the integrality property one has hy(t) > hq(a;) + 1 for
t > t1, one sees that 7’ in a) above is f,7. Similarly, if h, attains at t; = a;
its minimum for the first time and tg < a; is the last time such that h, attains
the value hqo(a;) + 1, then 7 in b) above is equal to e,.

Further, since h, is always strictly increasing on [to,t1] (respectively de-
creasing), on the set of L-S paths the root operators defined in Section 1
coincide with the root operators defined in [8].
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Suppose now A is a dominant weight. If 7 = (v, a) is an L-S path of class A
such that 11 # A, then there exists a simple root « such that (1;,a") < 0. By
the integrality property and Lemma 2.1 this implies e,m # 0. So there exist
some simple roots such that 7’ = (V/,d') = eq, - ..€q,7 is such that 1] = A,
and hence 7’ = 7). O

Proof of the proposition. The proofs of a) and b) are similar, so only the
proof of a) is given. Let a; < a; < y be maximal such that ho(a;) = ha(aj),
and let a; < z < y be minimal such that hy(z) = he(y) = ho(a;) + 1. By
Lemma, 4.5 it follows that the function h,, is strictly increasing on [a;, z].

It remains to prove that n’ is an L-S path of class A. Now h, attains
at t = a; a local minimum, so hq(a;) € Z, and by the choice of j one has
(vj,a") <0 and (vj41,a") > 0. So by Lemma 4.3 there exists an a;-chain for
(¥, 8a(Vj+1)). Further, since hq(t) € Z for a; < t < z, it follows by Remark 4.6
that forall k =j+1,...,0 —1: If vy = po > -+ > pr = Vg41 is an ag-chain
for (Vk, Vg+1), then sq (k) > - > sa(ur) is an ag-chain for (sq(Vk), Sa(Vks1))-
Eventually, by Lemma 4.5 c¢), sq(v;) > v, is an z-chain for (s(v;),v;), and
hence 7’ is an L-S path of class A. a

5. Gluing L-S paths

The next step towards a proof of the isomorphism theorem will be to
investigate modules of the form A(my * 7,), where A, u are rational weights
and A + p is an integral weight.

For a path m € T and 5,5’ € [0,1], s < &, let 7%, 7' and 7y be the paths

71 [0,8] = X, t > 7(t), = :[s, 8] — X, t > n(t),

and 7y : [¢/,1] — Xq, t — 7(t). If 7,7, 0 are paths, then let 7° o 773/ ooy be
the path obtained by “gluing” the paths 7*, nﬁ’ and oy, i.e.:

m(t), fort <s;
mont 0 oy(t) == n(t)+ [r(s) —n(s)), fors <t<;
o(t) + [m(s) = n(s) + n(s') — o(s)], fors' <t;

For A\, u € X let m) and 7, be the paths t — ¢ respectively t — tu. Denote by
6 the trivial path t + 0 for all t € [0, 1]. To simplify the notation we write also
0 for 5. Next we investigate the .A-module A generated by 7 = my0fom, o.

Remark 5.1. Let A, u be rational weights such that v = A+ v is an
integral weight. The path 7y * 7, can also be described in the form above: Fix
n > 2 such that nA,nu € X are integral weights. Then:

1
—_— n
TX* Ty = Ty © fo ln;/,,l—%
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up to reparametrization. The advantage of the somewhat heavy looking notion
on the right side is that m,) and =, are L-S paths.

We introduce now the “gluing pair” which can be viewed as a variation of
the defining chain for Young tableaux introduced by Lakshmibai, Musili and
Seshadri (see for example [7]). For two rational weights v, u we write

v p  if for all positive real roots 8:  (v,8") < 0= (u,8") <0.

Note that if v is a dominant rational weight, then obviously v > u for any u.
The notion v > u is due Kashiwara [4].

LEMMA 5.2. a) Ifvpu and o is a simple root such that (v,a¥) < 0, then
Sa(V) > sa(k).

b) If v> p and o is a simple root such that (v,a¥) > 0 and (u,aV) > 0,
then sq (V) > sa(p).

Proof. For any positive real root 8 # a we have:
(sa(v),8Y) < 04 (v,5q(8"))
< 0= (u,5q(8Y)) 0 (saln),BY) <0. m

5.3. Let o0 = (A1,...,Ar;00,...,a,) be an L-S path of class A and let
6 = (p1,-..,pt;b0,b1,...) be an L-S path of class u. Suppose now that 0 <
s < s’ <1 are such that a,_; < s and s’ < by, and n = 0% 0006y € Ijy.

Definition. A pair (Ary1,0), Ar+1 € WA and pp € Wy, of weights is
called a gluing pair for n if A.41>p0, and if there exists an s-chain for (Ar, Ary1)
and an s’-chain for (uo, 1)

Remark 5.4. If A\, # Ary1, then the condition on A, implies that ¢/ =
(c- s Ary Arg1; .- .5ap-1, 8,ar) is an L-S path. Similarly, if yg # pi1, then the
condition on po implies that &' = (uo, p1, - - -; bo, 8, b1,...) is an L-S path.

Example. Let A, u be rational weights such that v = A + p is an integral
weight. If A> p (for example if A is dominant!), then by Remark 5.1 one sees
that 7y x 7, is as in 5.3 with gluing pair (nA, nu).

LEMMA 5.5. Letn € Ilin be as in 5.3. If there exists a gluing pair for n,
then for all simple roots a the local minima of the function ha(t): = (n(t),a")
are integers.

Proof. If the minimum is attained at t = ¢ty and t9 < s or tg > s, then
the claim follows from the corresponding property for L-S paths (Lemma 4.5)
since (1) € X. Suppose now h, attains a local minimum at to = s (or to = §';
recall that h, is constant on [s,s]), and this minimum is only attained on
[s,5]. We may hence assume that (\,,a") < 0 and (u1,a") > 0.

B O o S
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If (A\r+1,0Y) > 0, then hq(s) € Z since 0’ = (..., T, Tr415-- -, 0r-1,8,1)
is an L-S path by assumption, and hs(s) = (n(s),a¥) = (¢/(s),a") € Z by
Lemma 4.5. So we may assume that (\.41,a") < 0 and hence (uo,a") < 0.
Since &' = (o, p1, - - -3 b0, 8, b1,-..) is an L-S path and (u1,a") > 0, it follows
by Lemma 4.5 that (§'(s'),a") € Z. Since n(1) — §'(1) = n(s') — §(s') is an
integral weight, it follows that hq(s') = ha(s) € Z. O

PROPOSITION 5.6. Let o be an L-S path of class A and let 6 be an L-S
path of class pu, and suppose n = 0° 0@ ody € Iy is as in 5.3 with gluing pair
(Ar+1,10). Then the A-module An has the integrality property.

Further, for a path ' € An there exist an L-S path o’ of class A and an
L-S path &' of class p such that i’ = 0° 00 o0 6y is as in 5.3. Also there exists
aw €W such that (w(Ar+1),w(po)) s a gluing pair for n'.

Proof. By Lemma 5.5, the first part of the proposition follows from the
second part. To prove the second part, it is sufficient to consider the case
n' = fon or ' = eqn. Fix a simple root «, and for a root operator, let ty < t;
be as in Section 1. If ty5 > s’ or t; < s, then it follows from Proposition 4.7
that one can write f,7, respectively e.n, again as ' = 0’* 000§/, as in 5.3,
and one can take (Ar4+1, to) as a gluing pair.

For f, assume that t; = s, so that (A,,a¥) > 0. Set n := (o(1)—0(to),a");
then fon = (fR0)*06oéy. And since hq(t1) = (o(t1), ") € Z, there exists an
s-chain also for (sq(Ar), Ary1) (Lemma 4.5 c)), so (Ar4+1, 4o) is a gluing pair for
fan. The same arguments prove for e, that if ty = s’ (and hence (u1, ") < 0),
then eqn = 0°0fo(el'6)y with gluing pair (Ar41, to), where m = —(6(¢1), V).

Similarly, if we assume for f, that to = s’ and (ugp,aV) < 0, then f,n =
o%080o(f5'6)s with gluing pair (Ar+1, po), where m = (6(t1),aV). Andift; = s
and (Ar41,2Y) > 0, then e,n = (e70)® 0 0 0 by with gluing pair (Ar41, to),
where m = (o(ty) — (1), V).

For f, assume now that to = s’ and (uo, ") > 0. Note that this implies
that (Ar41,a) > 0. Further, since tp = s/, one knows that (\.,a) < 0, so in
any case there exists an s-chain also for (A, sq(Ar+1)) by Lemma 4.3. Also,
ha(s') € Z implies (6(s’),) € Z, and hence there exists also an s'-chain for
(8a(t0), Sa(p1)). Eventually, by Lemma 5.2 one knows that sq(Ar41) > Sa(0)-
So if one sets n := (6(s'),a) + 1, then fon = 0° 0 0o (f76)s with gluing pair
(sa(Ar41), Sa(ko))-

Similarly, if t; = s and (\41,2Y) < 0, then ean = (eM0)® 0 § 0 6 with
gluing pair (sa(Ar+1), Sa(to)), where m = (o (tp) — o (1), ).

Suppose now tg < s < s’ < t;. In the following we consider only the
operator f, since the proof for e, is similar. By Lemma 5.5 (and the fact
ha(s) = ha(s') & Z) one has (A;,a¥) > 0 and (u1,a¥) > 0. Set n = (o(1) —
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o(to), V) and m = (6(t1),a") (these are integers!), then f,n = (flo)*cfo
(f a 6)3’ .

If A\r # Art1, by Remark 54, o' = (..., A\r, Ap41;...,8,1) is an L-S path
of class A. Since (0'(s),a") = (n(s),aV) & Z, it follows by Lemma 4.5 that
(Ar+1,a") > 0 and, as in the proof of Proposition 4.7, there exists an s-chain
for (sa(Ar), Sa(Ar41))- If A = Art1, such a chain trivially exists.

Note that (uo,a") > 0; otherwise & = (uo, 1 - - - ; bo, s, b1, . ..) would be
an L-S path with the property: (§'(s’),a") € Z. Since §'(s’) and n(s') differ
only by an integral weight, this would contradict the assumption (n(s'),a") =
(n(s),a") € Z. Now the same arguments as for A\r,1 prove that there exists
an s'-chain for (sq (o), Sa(p1)).- Since so(Ar+1) > so(o) by Lemma 5.2, this
proves that (sq(Ar+1),8a(10)) is a gluing pair for fun. O

PROPOSITION 5.7.  Let A\,u be rational weights such that A is dominant
and A + p = v is an integral dominant weight, and set m = my * w,. The
module Am has the integrality property, and « is the only path in Am such that
(1) = v and eqm = 0 for all simple roots.

Proof. Fix n > 2 and s,s’ as in Remark 5.1 and Example 5.4 such that
T = Ty 000,y Since (nA,nu) is a gluing pair for 7, the first claim
follows from Proposition 5.6. Suppose now 7’ = 7§ 0 § 0 T ¢ € Am is such
that /(1) = v and ean’ = 0 for all simple roots. Then e,m = 0 for all simple
roots, so T = mpx. Now by Proposition 5.6 one can choose (n\, w(nu)) as a
gluing pair for 7’ for some w € W.

Since m = my * m,, is in PT, one knows that (u,a) > 0 for a simple such
that (A\,@") = 0. In particular, if (w(u),aV) < 0, then s,w < w. But if
(w(p),a") < 0 and T = (V/,d'), then (V],a") > 0 since 7/ € P*. Hence by
Lemma 4.3, there exists an a}-chain for (sqw(nu),nu). Since n) is dominant
we have nA> sqw(nu), so that (nA, sqw(nu)) is also a gluing pair for . Thus
in the following we may take (nA, nu) as a gluing pair for 7’. But since p > 11,
one gets 7'(1) = A + (m2(1) — ma(s’)) = A+ p = v if and only if 7 = m,,, and
hence 7 = =’. O

6. Linking

Let ¢ be the constant introduced in section 3. To use the “continuity”
of the root operators, we introduce now the notion of linking. Two paths
n,n" € Iin such that n(1) = n(1) are called linked of level L (n £ n'), if there
exist paths n = mg,...,m = 1’ such that: (1) = m;(1) for all 0 < 7 < ¢, the
modules Am; have the integrality property for all 0 < 7 < t, and there exist
parametrizations of the paths such that d(m;, m+1) <3 L L forall 0 <i <t.
Such a sequence of paths is called a linking chain.
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LEMMA 6.1. Ifn'éfn' and ny +ng+--- < L, then faten2...n =0 if and
only if fylef2...n' =0.

Proof. By the definition of linking chain it is sufficient to prove the lemma
for 0,7’ such that d(n,n') < 3=Lc~L. But then the lemma follows immediately
from Proposition 3.1. O

Ezample. Let A, be rational weights such that v = X + p is an integral
weight, and assume that A u (for example if A is dominant). For z € [0, 1],
consider the paths g := mz) * Tu+(1—z)r- Lhen mg = m, is an L-S path of class
v, and m = m\ * m,. If x > 0, then for appropriate choices of n, s, s’ one gets
(modulo reparametrization, see Example 5.4):

— 8
Tz = Tpgx © 6o s’ n(ut+(1—x)A)>

where n > 2 is chosen such that nzA, n(u+(1—x)\) are integral weights. Since
A> p implies zA> p + (1 — z)A, (nz, n(p + (1 — z)N)) is a gluing pair for .
In particular, Am is integral for all z € [0,1]. Further, since m,(t) — m,(t) =
2t(z —y)A for t < 1/2 and mg(t) — my(¢) = 2(1 —¢t)(z — y)A for t > 1/2, one can
choose, for any given L, o =0,...,zx = 1 such that d(rg,,ms,,,) < 37Lc L

fori=0,...,N. Hence: m, £ 7 * 7, for arbitrary L.
As a first application one can extend the result of Proposition 5.7:

PROPOSITION 6.2. Let \,u be rational weights such that \ is dominant
and v = A+ p is an integral dominant weight. Then T = ) * T, 18 the only
path in Am ending in v = n(1).

Proof. By the example above one knows that 7, 3 m*m, for arbitrary L.
Let now D = filep? ... fi* be a monomial in the root operators and suppose
that Dm(1) = v. By Lemma 6.1 it follows that D, # 0, and since D, (1) = v,
one has in fact D, = m, by Corollary 3. Since e,m, = 0 for all simple roots,
it follows in turn from Lemma 6.1 that e D7 = 0 for all simple roots, and now
Proposition 5.7 implies that D7 = 7. O

THEOREM 6.3. Let A\,u be rational weights such that )\ is dominant and
v = A+ p is an integral dominant weight. The map 7 * w, — 7, extends to
an isomorphism ®:A(my x 7,)—Am, of A-modules.

Proof. Let D = filef2 ... fir be a monomial of root operators. By
Lemma 6.1 and the example above, one knows that Dm, = 0 if and only
if D(m\ *m,) = 0. To prove that the map ® : a(my * 7,) — a(m,) is well
defined, one has to show that if D' = fiMel2 ... f and Dm,, D'm, # 0, then

6.1 Dr, = D'm, & D(7my\ x7y) = D' () x 7).
v ¥
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Set D" =€y ... f22ept D'; then 6.1 is equivalent to

(6.2) 7y, = D"my, & myx my = D" (7 % my).

If one of the equalities in 6.2 holds, then D"7,(1) = D"(my x my)(1) = v, so
(6.2) follows from Proposition 6.2. Both modules have the paths as a basis, and
the morphism maps paths to paths. So ®(a1m + - - + a,m) = 0 only if some
of the paths with a; # 0 have the same image. But this is excluded by (6.1),
so @ is injective. Since P is clearly surjective, this proves the theorem. O

7. The Isomorphism Theorem for Pt

For a path m € Pt let M, := Am be the module generated by m and
denote by B, the basis of M, consisting of the set of paths contained in M.
For A := 7(1) let m) be the path t — t, set M) := Am) and denote by B) the
basis of M) of L-S paths.

THEOREM 7.1. The map my — 7 extends to an isomorphism M) — M,
of A-modules.

COROLLARY 1. a) (Integrality property) For any n € By and any simple
root o the minimum attained by the function hy is an integer.

b) 7 is the only path in By such that eqm = 0 for all simple roots.

c) Every element n € By is of the form n = fo, fay - - fasT-

Proof. Parts b) and c) follow from the isomorphism theorem and the cor-
responding properties for the set of L-S paths B), (Corollary 3). To prove a), fix
a simple root « and n € Bj. Let ' € B) be the path corresponding to n under
the isomorphism M), — M,. Since 1’ has the integrality property, we know
that if n,m € N are maximal such that f7n’ # 0, respectively e™n’ # 0, then
pn and pm are maximal such that f2"(pn’) # 0, respectively e?™(pn’) # 0. By
the isomorphism theorem this is also true for . For the minimum ¢ attained
by h,, for the path n we know m < |g|. Let p € N be such that p|q| € Z. Now
pm is maximal such that e£™(pn) # 0, but p|g| > pm and eRd! (pn) # 0. This
implies p|g| = pm and hence ¢ = m € Z. O

Proof of Theorem 7.1. By Lemma 2.5, it is sufficient to consider the case
where m = m,, *--- *m,, and vy,...,V,s are integral weights. We proceed by
induction on s. If s = 1, then there is nothing to prove; the case s = 2 has
been proved in Theorem 6.3. Suppose now s > 3 and ™ =y, * -+ * T,,,. Set
m = Ty, * - *xm,,_, and A; := m(1). By induction, the map m\, — m
extends to an isomorphism of .4-modules Amy, — Am, and by Lemma 2.9,
this isomorphism induces an isomorphism ¢ : Amy, * Am,, — Am * Am,,
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of A-modules such that (my, * my,,) = my, * -+ * m,_, * T,,. So we get an
isomorphism of A-modules A(my, * my,) — A(my, * -+ *m,,) = Am.

Now by Theorem 6.3 we have for A := \; + vs = 7(1) an isomorphism
Amy — A(my, *m,,) such that my — 7y, *m,,, so the composition of these two
gives the desired isomorphism Amy — A such that my — . a

8. The action of the Weyl group

The slp(Z)-action constructed in subsection 2.10 suggests the following
operators on Iljpy:

() o= { i if n=(r(1),a") >0,
T e ifni= (r(1),0Y) < 0.

€q

Note that §2 = 1 and §,(7)(1) = sa(7(1)). In fact:

THEOREM 8.1. The map sq — 3o on the simple reflections in W extends
to a representation W — Endz I such that w(m)(1) = w(mw(1)) for m € Iint
andweW.

Proof. Tt remains to prove that the braid relations are satisfied in the
rank two case for g finite-dimensional. Without loss of generality we may
assume that m € Il is such that m(1) is a dominant weight. Let wo =
SaSy ... = SySq ... be the two different decompositions of the longest word wo
in the Weyl group. We have to prove that 3,8, ...(7) = 8484 ... (7). This is
obvious if A := m(1) is not regular, so we may assume in the following that A
is regular. Replacing m by mm for some m € N, by Lemma 2.4 we may assume
that m = 7y *my % - - - xm,, where A, u, ..., v are integral weights, so that 7 is a
concatenation of L-S paths. Further, if 7 € Pt then 843, ...(7) = 3,34...(m)
is the unique path in A7 ending in wo()). So we may assume 7 & PT.

Denote by 7™ the n-fold concatenation: 7 x --- % m and set (r(1),a") =
k > 0. Then f*(m * ) = 3a(m) * f7*n for m > k (Lemma 2.7). Let n be
a concatenation of L-S paths. If p is maximal such that en # 0, then choose
N < n such that (7N (1),aV) > p. We get by Lemma 2.7 for m > kN:

fa (" xm) = (Bam)N x fr ¥ (@ N w ).
Let p € X be such that {p,a") = (p,7") = 1. For n € N choose ¢ € N such that
Tgp * ™ € PT, s0 that 548y ... (mgp * ") = 3,84 ... (Mg * ™). The arguments
above show that for n >> 0 there exist 71 € By, and m € Ar™ ! such that

8a8y ... (mgpx ") = T % 8o,y ... () * ma.

Similarly, 3,34 ...(mgp * ™) = T * 8y84...... (m) % mg, where m € By, and
7y € An™~ L. But this implies §,34...... () = 348y ... (m). a
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9. Weyl’s character formula

Fix p in the weight lattice X such that (p, ") = 1 for all simple roots. For
m € PT let M, := Am be the A-module generated by 7 and let B, := M, NII
be the Z-basis of M, consisting of the paths contained in M,. Denote by
Char My =3 cp, (1) the character of M.

THEOREM 9.1. (Weyl’s character formula).

Z sgn(c)e’®) Char M, = Z sgn(o)e? PN,

ceEW cEW
In particular, Char M, is equal to the character of the irreducible, integrable
g-module V), of highest weight \: = 7(1).

Proof. Set Q(u) := {(n,0) | n € Br,0 € W,0(p) +n(1) = p} for p €
X. Since Q(7(n)) = {(tr(n),70) | (n,0) € Q(u)}, we may assume that p
is dominant. Further, o(p) < p for ¢ # 1, and n = f3!... farm, so that
n(1) < w(1) = A for n # 7. Hence Q(A + p) = {(m,1)} and

Z Sgn(a)ea(p)+n(1) — eMp.
(m,0)€Q(A+p)

Let 1 # p+ A be dominant such that Q = Q(u) # 0. It remains to show:

(9.1) 3" sgn(o)e”@1) = o,
(om)€R(w)

Fix (no,00) € ©Q, and choose ¢y € [0,1] maximal such that oo(p) + no(to) is
dominant but not regular. If such a to does not exist, then necessarily og = 1
and (p+no(t),a") > 0for all ¢t € [0,1]. By the integrality property of the paths
this implies (no(¢),a") > 0 for all t € [0,1] and hence 7o = , in contradiction
to the assumption p # p + A.

Fix a simple root a such that (go(p) + n0(to), @") = 0 and consider

Qo :={(n,0) € Q| a(p) +n(t) = oo(p) + no(t) for all t € [to,1]}.

We define an involution i, on g such that i4((n,0)) = (7', 540). Note that
the existence of such an involution implies

Z sgn(o)e? P10 = o
(7’70)600

Since Q = QoU---UQ, is a disjoint union for some 7y, . ..,n, € §2, this implies
9.1. (Recall that = Q(u) is a finite set by Corollary 1). To construct i, let
(n, o) first be such that (o(p),a") < 0. Since (o(p) + n(t),a") > 0 for t > to,
for m := |(a(p),a")| we get fI'n # 0 and sq0(p) + fa'n(t) = a(p) + n(t) for
t > to. In particular, (f'n, sa0) € Q. We set io(n, 0) := (f3'N, 8a0).
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Similarly, if (o(p),a") = m > 0, then iy(n,0) := (eI'n,s40) € Qo. It is
now easy to see that i2 = id, so that i, is an involution. O

10. The decomposition rules

The decomposition rules stated in the introduction are immediate conse-
quences of the character formula (Theorem 9.1). For 7 € P let M, := A be
the module generated by m and let B, = II N M, be its basis.

For 71, m € Pt one knows by Corollary 1 that if n € By, * By,, then its
weight 7(1) can be written as 71(1) +m2(1) —>_; aif;, where the 3; are positive
real roots and a; > 0. So by weight considerations there exists for n a sequence
n1,...,np such that m := eyl ...egﬁn has the property e,m = 0 for all simple
roots. Since By, * By, has the integrality property this implies m € P*. Since
7 is the only path in A such that e,m = 0 for all simple roots we get:

7r1 * M71'2 @Mm

where 7 runs over all ™ € By, * By, such that m € P*. To see that the elements
7 € By, * By, NPT are in fact of the form 71 x 7’ note that if 7 = n* 7’ is such
that e,n # 0, then eqm # 0 by Lemma 2.7 and hence m ¢ P*. The proof of
the restriction formula is similar. By the integrality property and Corollary 1,
there exists for n € B, a sequence nj,ng,... and simple roots in [ such that
oi=epleg2...M€ P;T. Since o is the only path in A0 such that e, = 0 for
all simple roots in I, we get the following sum over all paths in B, contained
in ;" M, = @D, Ay

11. The rank 2 case

We conclude with a description of B, m € P*, in the rank 2 case. Let
a,v be the simple roots and set a := |[{a,7V)|, b := |[(y,a")| and z := ab.
We assume in addition that z > 0. Consider the sequence {y;}icn defined by
yo =1, and

1
TYi-1

A small calculation shows (compare also [3]):

yi=1— if yi—1 # 0 and y; =0 otherwise.

LemMA 11.1. a) Ifz =1, thenyo=1 and y; =0 fori > 1.

b) If x =2, then yo = 1,y1 = 1/2 and y; =0 fori > 2.

c) Ift =3, thenyo = 1,y1 = 2/3,y2=1/2,y3 =1/3 and y; =0 for i > 4.

d) If r > 4, theny; > 1/2+ /1/4—1/z for all i > 0 and the sequence
{yi}ien is strictly decreasing.
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Remark 11.2. If y; # 0, then zy; > 1.
Set Y; := yoy1 . .. ¥;, and for a sequence nj, mj,ng,... > 0 of integers set
M = o' (bngynia — mi)Yai—z, Mg = ' 'b(amiyai1 — nit1)Yai-a.

THEOREM 11.3. Let mg € P* be such that mo(1) = A. For every ele-

ment © € By, there exists a unique sequence of integers ni,mi,ng,me,... such
that m: = fI1 fa f32 ... mo. This sequence satisfies the following inequalities:
amiyo > ng, bnoyy > ma, amays > ng, ... and

0 < m < OAVY4a(mi+ma+--)—2na+nz+--+),

1 < m < (A,av>+b(n2+n3+---)—2(m2+m3+-~~),

1 < ng <

AY) +a(me+ma+---) —2(ng +ng+ ),

Further, if a sequence satisfies these inequalities, then m: = f3' fo f12 ... mo #
0, and ey f f12fa? .. .m0 =0, eafy2f3"% ... .m0 =0, ey f5"? ... m0 = 0,... and
m: = max{0, — M}, — M}, — M2, — M2,...} is mazimal such that ey'm # 0O
and ny 1s maximal such that extm # 0.

Ezample. Suppose g is of type A2 and A\ = kwy + lwe (Where wy,w, are
the fundamental weights such that w, () = 0 and we(y) =0). Then

By, = {f;tlm\|0§n1 Sk}U{f;Llf;nlﬂ-)\|0§n1§k+m1,1§m1 <1}
U{f:;lllf;nlf’??"r)\|0§n1Sk+m1—2n2,1Sm1§l+n2’
1<ns <km an}

If 1 € Am) is of the first type, then e,m = 0; if 7w is of the second type,
then e = 0 for m > m; — ny; if 7 is of the third type, then eg}r = 0 for
m > max{ng,m; —ni}.

To prove the theorem by induction, we need the following
LEMMA 114. If 7= fP1fa f72 .. .mo # 0 is such that
(11.1) amiyo —ng >0, bngyr —me >0, amoys —n3 >0, ...
then m: = max{m € N | el'w # 0} = max{0, — M}, — M}, — M2,...}.

Proof of the theorem. We show first that the lemma implies the theorem.
To have m = 0, we need M?, M; > 0 for all ¢, which is equivalent to

bniyo—mi1 >0, amiyr —ng >0, bnoya —mg >0, ....

Since the sequence {y;} is not increasing, this proves inductively the equiva-
lence of (11.1) and ey fg" f3?...m0 = 0, eaf}?...mo = 0, etc. The second set
of inequalities is just to ensure that 7 # 0:
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If e, fmi f**' .. mo = 0, then IR I fy 7*t . .m = 0 if and only if
> (far iyt omo(1),7Y) = (A 7Y) +alms +mipn + ) = 2(nigs +--2).

To prove that the sequence is unique, we construct the sequence ni,my,no, ...
as follows: Choose n; maximal such that extm # 0, choose m; maximal such
that egtellm # 0, etc. We have seen that the sequence my,no,... satisfies
the inequalities, and the inequality for n; is also clearly satisfied. Since the
mi,ng,... are positive, the construction shows that the sequence is unique.
Clearly, m; is maximal such that eyt # 0, and the statement about the
maximal m € N such that eJ'7 # 0 follows by the lemma. O

Proof of the lemma. We proceed by induction on the length of the se-
quence. So we may assume that (11.1) is equivalent to

m n n —
exfa 1% ... mo =0, eafy?...m=0,....

Let ¢, and gog be the increasing functions on [0, 1] defined by
LR omo(t) = fa fyt . mo(t) — @4 (),

and ... mo(t) = fy*t .. mo(t) — @ (t)a. If ey (fT% ... m) = 0, then

(11.2) o (8) < (fa fy+t . mo(t), )

for all t € [0,1], and we have equality if gog is not constant on an arbitrary
small neighborhood of ¢t. Now in the situation of the lemma we have

(11.3) ha(t) = (m(t), ") = (f72fa2 ... mo(t), &¥) + by (t) — 205 (t).

By assumption (and 11.2) we know that (f72 72 ... 7(t), a¥)— g (t) > 0. Since
cp7 is not decreasing, we know that if the functlon ha(t) attains its minimum
for the first time at ¢ = ¢y, then ¢, is not constant near ¢y and hence

(11.4) (fy2fae .. .m(to), @) — pa(to) =0
and —m = min{hqa(t) | t € [0,1]} = min{bp’ (t) — 4(t) | t € [0,1]}. Set

— i i R 1
pi = min {byai—2¢% (t) — wu(t)}, @i := tgéq]{ayzz 195,(t) — 5T ()}

SUBLEMMA 11.5. a) Let p: = Pt 1Yo 3 and set q: = qiba:i_lYgi_g
Then p < M, and p < q, and if p < M’ then p=q.

b) Let q: = ¢;bx* Yoo and set p: = pip12'Yai_1. Then q < M. and
q <p, and if ¢ < M} then q = p.

Proof of the sublemma. Obviously for a):

p < 2 Yai_a(bh (1)y2iz — ©4(1)) = ME.
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By (11.2), (fmi fy+* .. mo(t),7") = ¥ (t), and hence

(11.5) p<z'"'Va3 in {b(fa" f57 - -mo(t), 7" )y2i2 — Pa(t)}-
The function in (11.5) is equal to

byzi—a(FT41(t) . .. mo(£),7") — @hF1(8) + @b (8) (zy2i-2 — 1) — b ()y2i—2-

By assumption (see 11.2) the first part is nonnegative, and it is zero at ¢t = to if
gofy"'l is not constant on an arbitrary small neighborhood of to. So as in (11.4),
the minimum is equal to the minimum of the second part. It follows by (11.5):

(11.6) p < l‘i_lei—strelf(i)lh{wi(t)(myzi—z—1)—by2i—2¢§+1(t)}

= b Yai2 tg%(iﬁ]{ayzz'—l%(t) — ()} =g
It remains to prove that p =q if p < Mfy Let ¢y € [0,1] be minimal such that
’, is constant for t > co. If p < M, then p is attained for some tg < ¢y, and
in addition we may assume that ¢’ is not constant in a small neighborhood
of to. Hence we have (fT...mo(to),7") = ¥ (to) (see 11.2) and equality for
t = to in (11.5) and (11.6). The proof of b) is similar. O

End of the proof of the lemma. We have proved already that

e — i 1oy 1
m trerf(l)g]{b%(t) Pa(t)}-

By Lemma 11.5 this implies —m < Mg, M} for all i. If —m < M, M, for all 4,
then we obtain by induction and the equality in (11.5) for m = f71 ... fJ* f3**mo:

-m = ctrer[léﬁ]{byzs—%%(t) —¢a(t)}
_ . Ms Vy _ 8
= Ctlelféﬁ]{byZS—Z (fa WO(t), Y ) Pa (t)}

= Ctgf(i)q]{by2s—2(7fo(t), 7') + () (zy2s—2 — 1)} = 0,
since (zyas—2—1) > 0 (Remark 11.2) and (mo(t),7") > 0. The same arguments
show that if m = f71fm1 12 . fs "1 mg, then m = 0, which finishes the
proof of the lemma.
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