Elliptic Functions and related topics

Problem sheet 10

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Let $R:=\mathbb{Z}[i]$ denote the ring of Gaussian integers. For all rational primes p determine whether p is inert (i.e. p is a prime in R as well), split (i.e. p factors into two distinct primes in $R, p=\pi \pi^{\prime}$), or ramified (i.e. $p=\varepsilon \pi^{2}$ for some prime π and some unit ε in R) in R.
Exercise 2. (4 points)
Let d be a square-free integer and let $K:=\mathbb{Q}(\sqrt{d})$.
(a) Show that the ring of integers in K, which is defined as
$\mathbb{Z}_{K}:=\{\alpha \in K: \alpha$ is the root of a monic polynomial with integer coefficients $\}$ is given by

$$
\mathbb{Z}_{K}= \begin{cases}\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \quad(\bmod 4) \\ \mathbb{Z}[d] & \text { if } d \equiv 2,3 \quad(\bmod 4)\end{cases}
$$

(b) For $d<0$, find generators of the group \mathbb{Z}_{K}^{*}.

Exercise 3. (4 points)
Let \mathbb{Z}_{K} be the ring of integers in a number field K and $\mathfrak{a} \unlhd \mathbb{Z}_{K}$ be an ideal of \mathbb{Z}_{K}. Then $\mathbb{Z}_{K} / \mathfrak{a}$ is a finite ring whose cardinality is called the norm of \mathfrak{a}, denoted by $N \mathfrak{a}$ (no proof required). Let $\psi: \mathbb{Z}_{K} / \mathfrak{a} \rightarrow \mathbb{C}^{*}$ be an additive charcter which is nontrivial on any subgroup $\mathfrak{b} / \mathfrak{a}$ of $\mathbb{Z}_{K} / \mathfrak{a}$, where $\mathfrak{b} \unlhd \mathbb{Z}_{K}$ is an ideal properly containing \mathfrak{a}. Let $\chi:\left(\mathbb{Z}_{k} / \mathfrak{a}\right) \rightarrow \mathbb{C}^{*}$ be a multiplicative character and take $\chi(x)=0$ whenever $x \in \mathbb{Z}_{K} / \mathfrak{a}$ is not comprime to \mathfrak{a}. Finally, define the generalized Gauß sum

$$
g(\chi)=g(\chi, \psi):=\sum_{x \in \mathbb{Z}_{K} / \mathfrak{a}} \chi(x) \psi(x) .
$$

Show that $\sum_{x \in \mathbb{Z}_{K} / \mathfrak{a}} \chi(x) \psi(a x)=\bar{\chi}(a) g(\chi, \psi)$ for all $a \in\left(\mathbb{Z}_{K} / \mathfrak{a}\right)^{*}$.
Exercise 4. (4 points)
Assume the notation and definitions in Exercise 3. We call a multiplicative character χ primitive modulo \mathfrak{a}, if χ is non-trivial on any subgroup of $\mathbb{Z}_{K} / \mathfrak{a}$ consisting of elements which are congruent to $1 \bmod \mathfrak{b}(\mathfrak{b}$ as above). For this exercise, let χ be primitive modulo \mathfrak{a}.
(a) Show that, the formula in Exercise 3 (a) holds for all $a \in \mathbb{Z}_{K} / \mathfrak{a}$.
(b) Prove that $g(\chi, \psi) g(\bar{\chi}, \psi)=\chi(-1) N \mathfrak{a}$ and $|g(\chi, \psi)|=\sqrt{N a}$.

Deadline: Tuesday, Dec. 16, 2014 at the beginning of the lecture.

