Elliptic Functions and related topics

Problem sheet 11

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Let f be an arithmetic function (i.e., $f: \mathbb{N} \rightarrow \mathbb{C}$). We call f multiplicative, if $f(m n)=f(m) \cdot f(n)$ whenever m and n are coprime, and completely multiplicative, if the above is true for all $m, n \in \mathbb{N}$. For $s \in \mathbb{C}$ with sufficiently large real part we define the Dirichlet series associated to f by

$$
D_{f}(s):=\sum_{n=1}^{\infty} f(n) n^{-s}
$$

(We assume that for $\operatorname{Re}(s)>\sigma_{a} \in \mathbb{R}$, the above series is absolutely convergent).
(a) Show that if f is multiplicative, then it holds that

$$
D_{f}(s)=\prod_{p}\left(\sum_{\ell=0}^{\infty} f\left(p^{\ell}\right) p^{-\ell s}\right)
$$

where the product runs over all primes and $\operatorname{Re}(s)>\sigma_{a}$. We call this identity an Euler product.
Hint: Consider the product over all primes $p \leq N$ for some $N \in \mathbb{N}$ and show that the difference of the left and right hand side goes to 0 for $N \rightarrow \infty$.
(b) Show that if f is completely multiplicative, then the above Euler product simplifies to

$$
D_{f}(s)=\prod_{p}\left(1-f(p) p^{-s}\right)^{-1}
$$

(c) Suppose that f is multiplicative and satisfies the recurrence relation

$$
f\left(p^{r+1}\right)=f(p) f\left(p^{r}\right)-p f\left(p^{r-1}\right)
$$

for all primes p and $r \in \mathbb{N}$. Show that in this case, the Euler product in (a) simplifies to

$$
D_{f}(s)=\prod_{p}\left(1-f(p) p^{-s}+p^{1-2 s}\right)^{-1} .
$$

Hint: First prove that for any multiplicative arithmetic function we have $f(1)=1$.

Exercise 2. (4 points)
Let $f: \mathbb{H} \rightarrow \mathbb{C}$ be a holomorphic function which is defined by the Fourier series

$$
f(\tau):=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n \tau}
$$

and satisfies the functional equation $f\left(-\frac{1}{\tau}\right)=\tau^{k} f(\tau)$ for some even number $k \geq 4$ (we call such a function a cusp form of weight k). One can show that $a(n) \leq C_{f} n^{\frac{k}{2}}$ for some positive constant C_{f} which depends on f. Thus the Dirichlet series $D_{a}(s)$ is absolutely convergent for $\operatorname{Re}(s)>\frac{k}{2}$. Show that the function

$$
\mathbb{D}_{f}(s):=(2 \pi)^{-s} \Gamma(s) D_{a}(s)
$$

has an analytic continuation to \mathbb{C} and satisfies the functional equation

$$
\mathbb{D}_{f}(s)(k-s)=i^{k} \mathbb{D}_{f}(s)
$$

Hint: Substitute $t=2 \pi m y$ in the integral representation of the Γ-function to obtain $\mathbb{D}_{f}(s)=\int_{0}^{\infty} f(i y) y^{s-1} d y$ and then use the functional equation to show that $\mathbb{D}_{f}(s)=$ $\int_{1}^{\infty} f(i y)\left[y^{s}+i^{k} y^{k-s}\right] \frac{d y}{y}$.

Exercise 3. (4 points)
Let χ be a primitive Dirichlet character $(\bmod N)$ and define for $t>0$

$$
\theta(\chi, t):= \begin{cases}\sum_{n=1}^{\infty} \chi(n) e^{-\pi t n^{2}} & \text { if } \chi \text { is even } \\ \sum_{n=1}^{\infty} n \chi(n) e^{-\pi t n^{2}} & \text { if } \chi \text { is odd } .\end{cases}
$$

Prove the functional equations $\theta(\chi, t)=\frac{g(\chi)}{\sqrt{N^{2} t}} \theta\left(\bar{\chi}, \frac{1}{N^{2} t}\right)$ for even χ and $\theta(\chi, t)=$ $-i N^{-2} t^{-\frac{3}{2}} g(\chi) \theta\left(\bar{\chi}, \frac{1}{N^{2} t}\right)$ for odd χ.

Exercise 4. (4 points)
Show that the Mellin transform of $\theta(\chi, t)$ from Exercise 3 converges for all $s \in \mathbb{C}$ and that it equals $\pi^{-s} \Gamma(s) L\left(\chi, 2 s-\delta_{\chi}\right)$, where $\delta_{\chi}=0$ if χ is even and $\delta_{\chi}=1$ if χ is odd, for $\operatorname{Re}(s)>\frac{1}{2}$.

Deadline: Tuesday, Jan. 13, 2014 at the beginning of the lecture.

