Elliptic Functions and related topics

Problem sheet 11

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)

Let f be an arithmetic function (i.e., $f : \mathbb{N} \to \mathbb{C}$). We call f multiplicative, if $f(mn) = f(m) \cdot f(n)$ whenever m and n are coprime, and completely multiplicative, if the above is true for all $m, n \in \mathbb{N}$. For $s \in \mathbb{C}$ with sufficiently large real part we define the Dirichlet series associated to f by

$$D_f(s) := \sum_{n=1}^{\infty} f(n) n^{-s}.$$

(We assume that for $\operatorname{Re}(s) > \sigma_a \in \mathbb{R}$, the above series is absolutely convergent).

(a) Show that if f is multiplicative, then it holds that

$$D_f(s) = \prod_p \left(\sum_{\ell=0}^{\infty} f(p^{\ell}) p^{-\ell s} \right),$$

where the product runs over all primes and $\operatorname{Re}(s) > \sigma_a$. We call this identity an *Euler product*.

Hint: Consider the product over all primes $p \leq N$ for some $N \in \mathbb{N}$ and show that the difference of the left and right hand side goes to 0 for $N \to \infty$.

(b) Show that if f is completely multiplicative, then the above Euler product simplifies to

$$D_f(s) = \prod_p (1 - f(p)p^{-s})^{-1}.$$

(c) Suppose that f is multiplicative and satisfies the recurrence relation

$$f(p^{r+1}) = f(p)f(p^r) - pf(p^{r-1})$$

for all primes p and $r \in \mathbb{N}$. Show that in this case, the Euler product in (a) simplifies to

$$D_f(s) = \prod_p (1 - f(p)p^{-s} + p^{1-2s})^{-1}.$$

Hint: First prove that for any multiplicative arithmetic function we have f(1) = 1.

Exercise 2. (4 points)

Let $f: \mathbb{H} \to \mathbb{C}$ be a holomorphic function which is defined by the Fourier series

$$f(\tau) := \sum_{n=1}^{\infty} a(n) e^{2\pi i n \tau}$$

and satisfies the functional equation $f(-\frac{1}{\tau}) = \tau^k f(\tau)$ for some even number $k \ge 4$ (we call such a function a *cusp form of weight k*). One can show that $a(n) \le C_f n^{\frac{k}{2}}$ for some positive constant C_f which depends on f. Thus the Dirichlet series $D_a(s)$ is absolutely convergent for $\operatorname{Re}(s) > \frac{k}{2}$. Show that the function

$$\mathbb{D}_f(s) := (2\pi)^{-s} \Gamma(s) D_a(s)$$

has an analytic continuation to $\mathbb C$ and satisfies the functional equation

$$\mathbb{D}_f(s)(k-s) = i^k \mathbb{D}_f(s).$$

Hint: Substitute $t = 2\pi my$ in the integral representation of the Γ -function to obtain $\mathbb{D}_f(s) = \int_0^\infty f(iy) y^{s-1} dy$ and then use the functional equation to show that $\mathbb{D}_f(s) = \int_1^\infty f(iy) [y^s + i^k y^{k-s}] \frac{dy}{y}$.

Exercise 3. (4 points)

Let χ be a primitive Dirichlet character (mod N) and define for t > 0

$$\theta(\chi, t) := \begin{cases} \sum_{n=1}^{\infty} \chi(n) e^{-\pi t n^2} & \text{if } \chi \text{ is even,} \\ \sum_{n=1}^{\infty} n \chi(n) e^{-\pi t n^2} & \text{if } \chi \text{ is odd.} \end{cases}$$

Prove the functional equations $\theta(\chi, t) = \frac{g(\chi)}{\sqrt{N^2 t}} \theta(\overline{\chi}, \frac{1}{N^2 t})$ for even χ and $\theta(\chi, t) = -iN^{-2}t^{-\frac{3}{2}}g(\chi)\theta(\overline{\chi}, \frac{1}{N^2 t})$ for odd χ .

Exercise 4. (4 points)

Show that the Mellin transform of $\theta(\chi, t)$ from Exercise 3 converges for all $s \in \mathbb{C}$ and that it equals $\pi^{-s}\Gamma(s)L(\chi, 2s - \delta_{\chi})$, where $\delta_{\chi} = 0$ if χ is even and $\delta_{\chi} = 1$ if χ is odd, for $\operatorname{Re}(s) > \frac{1}{2}$.

Deadline: Tuesday, Jan. 13, 2014 at the beginning of the lecture.