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Exercise 1. (4 points)
As you have seen in the lecture, the group SL2(Z) is generated by the matrices
T := ( 1 1

0 1 ) and S := ( 0 �1
1 0 ).

(a) Describe an algorithm that decomposes a given matrix � = ( a b
c d ) 2 SL2(Z)

into a product of S and T .

(b) Write the following matrices as a product of T and S,

A =

✓
0 �1
1 �1

◆
, B =

✓
�3 �5
5 8

◆
, C =

✓
2 7
1 4

◆
.

Exercise 2. (4 points)
For N 2 N define the sets

�0(N) := {( a b
c d ) 2 SL2(Z) : c ⌘ 0 (mod N)}

�1(N) := {( a b
c d ) 2 �0(N) : a ⌘ d ⌘ 1 (mod N)}

�(N) := {( a b
c d ) 2 �1(N) : b ⌘ 0 (mod N)} .

(a) Show that all the above sets are finite-index subgroups of SL2(Z) and that
moreover, �(N) is a normal subgroup of SL2(Z).

(b) For a prime p, determine [SL2(Z) : �(p)].

Exercise 3. (4 points)

(a) Show that the group SL2(Z) (and therefore all its subgroups) acts from the left
on the projective line over Q, P1(Q) := Q [ {1} via Möbius transformations
with the usual settings for the operations involving 1 (e.g., a

1 := 0 etc.).

(b) For p, q distinct primes, determine the number of orbits as well as a system of
orbit representatives for the action of �0(p),�0(p2), and �0(pq) on P1(Q).

Remark: These orbits are called cusps of the respective group.

Exercise 4. (4 points)
By adding the cusps introduced in Exercise 3, the quotient space �0(N) \ H can
be turned into a compact Riemann surface X0(N) (you don’t need to prove this).
Use this to prove (without appeal to the valence formula), that dimC(S2(�0(N)) =



genus(X0(N)), where Sk(�) denotes the space of cusp forms of weight k for the
group �.
Hint: Show that every cusp form of weight 2 defines a holomorphic di↵erential on
X0(N) and then use that the dimension of the space of holomorphic di↵erentials on
a compact Riemann surface equals the surface’s genus.

Deadline: Tuesday, Jan. 20, 2014 at the beginning of the lecture.
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