Elliptic Functions and related topics

Problem sheet 14

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Recall the Maaß raising operator

$$
R_{k}:=2 i \frac{\partial}{\partial \tau}+k \operatorname{Im}(\tau)^{-1}
$$

from the previous problem sheet, which maps (possibly non-holomorphic) modular forms of weight k to (non-holomorphic) modular forms of weight $k+2$.
(a) Define the iterated Maaß raising operator R_{k}^{n} by $R_{k}^{0}:=\mathrm{id}$ and

$$
R_{k}^{n}:=R_{k+2(n-1)} \circ \ldots \circ R_{k+2} \circ R_{k}
$$

Prove the explicit formula

$$
R_{k}^{n}=\sum_{m=0}^{n}\binom{n}{m} \frac{\Gamma(k+n)}{\Gamma(k+n-m)} \operatorname{Im}(\tau)^{-m}(2 i)^{n-m} \frac{\partial^{n-m}}{\partial \tau^{n-m}}
$$

where Γ denotes the usual Gamma function.
(b) Let $k<0$ be an integer and $f: \mathbb{H} \rightarrow \mathbb{C}$ a weakly holomorphic modular form of weight k for some group Γ (i.e. f is holomorphic on \mathbb{H} and has at most a pole at the cusps of Γ). Show that $\frac{d^{1-k}}{d \tau^{1-k}} f$ is a weakly holomorphic modular form of weight $2-k$.

Exercise 2. (4 points)
Let f and g be modular forms of weights k and ℓ for $\mathrm{SL}_{2}(\mathbb{Z})$ and define

$$
[f, g](\tau):=\left(k f(\tau) g^{\prime}(\tau)-\ell f^{\prime}(\tau) g(\tau)\right),
$$

where $f^{\prime}:=\frac{1}{2 \pi i} \frac{d}{d \tau} f$.
(a) Show that $[f, g]$ is a cusp form of weight $k+\ell+2$ for $\mathrm{SL}_{2}(\mathbb{Z})$.
(b) Prove that the graded \mathbb{C}-vector space $M_{*}:=\bigoplus_{k>0} M_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ has a Lie algebra structure by means of the above bracket, i.e. that the above bracket
(i) is well-defined on M_{*},
(ii) is \mathbb{C}-bilinear,
(iii) satisfies the Jacobi identity $[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0$ for all $f, g, h \in M_{*}$,
(iv) satisfies $[f, f]=0$ for all $f \in M_{*}$.
(c) Find an expression for the Ramanujan τ function in terms of the divisor sums σ_{3} and σ_{5} which does not involve convolutions of one of these with itself, i.e. for example expressions of the form $\sum_{r+s=n} \sigma_{5}(r) \sigma_{5}(s)$.

Exercise 3. (4 points)
Let $f(\tau)=: \sum_{n=0}^{\infty} a(n)^{n}$ be a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. Find the Fourier coefficients of $T_{n}(f)$.

Exercise 4. (4 points)
Let f be a weight k cusp form for $\mathrm{SL}_{2}(\mathbb{Z})$, which is a simultaneous eigenform for all Hecke operators T_{n} and has leading coefficient 1. Show that the Fourier coefficients of f are algebraic integers of degree $\leq \operatorname{dim} S_{k}$.

