Elliptic Functions and related topics

Problem sheet 2

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)

Let p(X) = 4(X-a)(X-b)(X-c) be a polynomial where $a, b, c \in \mathbb{C}$ are all distinct and let G be a function satisfying the differential equation $G'^2 = p(G)$. For some $\gamma \in \mathbb{C} \setminus \{0\}$ define the function $H = \sqrt{\gamma(G-a)}$.

(a) Show that H satisfies a differential equation of the form

$$H'^2 = AH^4 + BH^2 + C_2$$

where $A, B, C \in \mathbb{C}$ and $AC \neq 0$. Give the coefficients A, B, C explicitly in terms of the parameter γ and the zeros of p.

(b) Determine the parameter γ in terms of a, b, c so that the differential equation for H can be given in Legendre form

$$H^{\prime 2} = C(1 - H^2)(1 - k^2 H^2).$$

Also show the equation

$$k^2 = \frac{a-b}{a-c}$$

for one possible chice of γ .

Exercise 2. (4 points)

(a) Let $p(X) = a_0 X^3 + a_1 X^2 + a_2 X + a_3 \in \mathbb{C}[X]$ be a polynomial of degree 3. Find a linear substitution $Y := \alpha X + \beta$ such that p(Y) is in Weierstrass form, i.e.

$$p(Y) = 4X^3 - c_1 X - c_2.$$

(b) Let p be a polynomial of degree 3 in Weierstrass form. Show that the roots of p are all distinct if and only if Δ := c₁³ − 27c₂² ≠ 0. *Hint:* Show the equality Δ = 16(a − b)²(b − c)²(c − a)² where a, b, c are the complex roots of p.

Exercise 3. (4 points)

(a) For $0 \le x \le 1$ let

$$F(x) := \int_0^x \frac{1}{\sqrt{1-t^4}} dt$$

and let G be the inverse function of F. As you have seen in the lecture, F satisfies the addition formula

$$F(x) + F(y) = F\left(\frac{x\sqrt{1-y^4} + y\sqrt{1-x^4}}{1+x^2y^2}\right)$$

for all $x, y \ge 0$ which are small enough. Deduce from there the addition formula C(x)C'(x) + C(x)C'(x)

$$G(u+v) = \frac{G(u)G'(v) + G(v)G'(u)}{1 + G^2(u)G^2(v)}$$

for all $0 \le u, v$ sufficiently small.

(b) Now let G be a meromorphic function with poles in a set P_G satisfying the differential equation $G'^2 = 1 - G^4$ with the initial conditions G(0) = 0 and G'(0) = 1. Further let $v \in \mathbb{C}$ with G'(v) = 1. Prove that for all $m, n \in \mathbb{Z}$ and $u \in \mathbb{C} \setminus P_G$ we have G(u + (m + in)v) = G(u).

Exercise 4. (4 points)

Use Fagnano's theorem to show that the duplication of the arc of a lemniscate is constructible with ruler and compass.

Deadline: Tuesday, Oct. 21, 2014 at the beginning of the lecture.