Elliptic Functions and related topics

Problem sheet 2

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Let $p(X)=4(X-a)(X-b)(X-c)$ be a polynomial where $a, b, c \in \mathbb{C}$ are all distinct and let G be a function satisfying the differential equation $G^{\prime 2}=p(G)$. For some $\gamma \in \mathbb{C} \backslash\{0\}$ define the function $H=\sqrt{\gamma(G-a)}$.
(a) Show that H satisfies a differential equation of the form

$$
H^{\prime 2}=A H^{4}+B H^{2}+C,
$$

where $A, B, C \in \mathbb{C}$ and $A C \neq 0$. Give the coefficients A, B, C explicitly in terms of the parameter γ and the zeros of p.
(b) Determine the parameter γ in terms of a, b, c so that the differential equation for H can be given in Legendre form

$$
H^{\prime 2}=C\left(1-H^{2}\right)\left(1-k^{2} H^{2}\right)
$$

Also show the equation

$$
k^{2}=\frac{a-b}{a-c}
$$

for one possible chice of γ.
Exercise 2. (4 points)
(a) Let $p(X)=a_{0} X^{3}+a_{1} X^{2}+a_{2} X+a_{3} \in \mathbb{C}[X]$ be a polynomial of degree 3. Find a linear substitution $Y:=\alpha X+\beta$ such that $p(Y)$ is in Weierstrass form, i.e.

$$
p(Y)=4 X^{3}-c_{1} X-c_{2} .
$$

(b) Let p be a polynomial of degree 3 in Weierstrass form. Show that the roots of p are all distinct if and only if $\Delta:=c_{1}^{3}-27 c_{2}^{2} \neq 0$.
Hint: Show the equality $\Delta=16(a-b)^{2}(b-c)^{2}(c-a)^{2}$ where a, b, c are the complex roots of p.

Exercise 3. (4 points)
(a) For $0 \leq x \leq 1$ let

$$
F(x):=\int_{0}^{x} \frac{1}{\sqrt{1-t^{4}}} d t
$$

and let G be the inverse function of F. As you have seen in the lecture, F satisfies the addition formula

$$
F(x)+F(y)=F\left(\frac{x \sqrt{1-y^{4}}+y \sqrt{1-x^{4}}}{1+x^{2} y^{2}}\right)
$$

for all $x, y \geq 0$ which are small enough. Deduce from there the addition formula

$$
G(u+v)=\frac{G(u) G^{\prime}(v)+G(v) G^{\prime}(u)}{1+G^{2}(u) G^{2}(v)}
$$

for all $0 \leq u, v$ sufficiently small.
(b) Now let G be a meromorphic function with poles in a set P_{G} satisfying the differential equation $G^{\prime 2}=1-G^{4}$ with the initial conditions $G(0)=0$ and $G^{\prime}(0)=1$. Further let $v \in \mathbb{C}$ with $G^{\prime}(v)=1$. Prove that for all $m, n \in \mathbb{Z}$ and $u \in \mathbb{C} \backslash P_{G}$ we have $G(u+(m+i n) v)=G(u)$.

Exercise 4. (4 points)
Use Fagnano's theorem to show that the duplication of the arc of a lemniscate is constructible with ruler and compass.

Deadline: Tuesday, Oct. 21, 2014 at the beginning of the lecture.

