Elliptic Functions and related topics

Problem sheet 3

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)

Let $\Omega=\mathbb{Z} \omega_{1} \oplus \cdots \oplus \mathbb{Z} \omega_{n}$ be a full lattice in \mathbb{R}^{n} endowed with the standard scalar product. By the definition of a lattice, the n-tuple ($\omega_{1}, \ldots, \omega_{n}$) forms a basis of \mathbb{R}^{n}, so let $\left(\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right)$ denote the corresponding Gram-Schmidt-orthogonalized basis (i.e. $\omega_{j}^{\prime}=\omega_{j}+\sum_{i<j} \mu_{i, j} \omega_{i}$ for certain $\mu_{i, j}$ such that $\left\langle\omega_{i}^{\prime}, \omega_{j}^{\prime}\right\rangle=0$ for $i \neq j$). Show that for every $\omega \in \Omega \backslash\{0\}$ we have the inequality

$$
\|\omega\| \geq \min \left\{\left\|\omega_{1}^{\prime}\right\|, \ldots,\left\|\omega_{n}^{\prime}\right\|\right\}
$$

Exercise 2. (4 points)
Let $\omega_{1}:=5+2 i \sqrt{7}$ and $\omega_{2}:=\frac{7}{2}+i \frac{3 \sqrt{7}}{2}$ and define the lattice $\Omega:=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$.
(a) Show that $\Omega=\mathbb{Z} \oplus\left(\frac{1+i \sqrt{7}}{2}\right) \mathbb{Z}$.
(b) Using Exercise 1, determine

$$
\min (\Omega):=\min \{|\omega|: \omega \in \Omega \backslash\{0\}\}
$$

and

$$
S(\Omega):=\{\omega \in \Omega \backslash\{0\}:|\omega|=\min (\Omega)\} .
$$

Exercise 3. (4 points)
Find integers m_{1}, m_{2}, m_{3}, not all zero, such that

$$
\text { (*) } \quad\left|m_{1} \sqrt{2}+m_{2}(\sqrt{3}+i \sqrt{5})+m_{3} i \sqrt{7}\right|<1
$$

and that $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$ is minimal under the condition $(*)$.
Exercise 4. (4 points)
Let $\Omega=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ be a full lattice in \mathbb{C} and let $\omega=m_{1} \omega_{1}+m_{2} \omega_{2} \in \Omega$. Show the equivalence of the following statements.
(i) There exists an $\omega^{\prime} \in \Omega$ such that $\Omega=\mathbb{Z} \omega \oplus \mathbb{Z} \omega^{\prime}$.
(ii) m_{1} and m_{2} are coprime.
(iii) If $n \in \mathbb{Z}, n>1$, then $\frac{1}{n} \omega \notin \Omega$.

Deadline: Tuesday, Oct. 28, 2014 at the beginning of the lecture.

