Elliptic Functions and related topics

Problem sheet 3

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)

Let $\Omega = \mathbb{Z}\omega_1 \oplus \cdots \oplus \mathbb{Z}\omega_n$ be a full lattice in \mathbb{R}^n endowed with the standard scalar product. By the definition of a lattice, the *n*-tuple $(\omega_1, \ldots, \omega_n)$ forms a basis of \mathbb{R}^n , so let $(\omega'_1, \ldots, \omega'_n)$ denote the corresponding Gram-Schmidt-orthogonalized basis (i.e. $\omega'_j = \omega_j + \sum_{i < j} \mu_{i,j}\omega_i$ for certain $\mu_{i,j}$ such that $\langle \omega'_i, \omega'_j \rangle = 0$ for $i \neq j$). Show that for every $\omega \in \Omega \setminus \{0\}$ we have the inequality

$$\|\omega\| \ge \min \{\|\omega_1'\|, \dots, \|\omega_n'\|\}.$$

Exercise 2. (4 points) Let $\omega_1 := 5 + 2i\sqrt{7}$ and $\omega_2 := \frac{7}{2} + i\frac{3\sqrt{7}}{2}$ and define the lattice $\Omega := \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$.

- (a) Show that $\Omega = \mathbb{Z} \oplus \left(\frac{1+i\sqrt{7}}{2}\right)\mathbb{Z}$.
- (b) Using Exercise 1, determine

$$\min(\Omega) := \min\{|\omega| \ : \ \omega \in \Omega \setminus \{0\}\}$$

and

$$S(\Omega) := \{ \omega \in \Omega \setminus \{0\} : |\omega| = \min(\Omega) \},\$$

Exercise 3. (4 points)

Find integers m_1, m_2, m_3 , not all zero, such that

(*)
$$\left| m_1 \sqrt{2} + m_2 \left(\sqrt{3} + i \sqrt{5} \right) + m_3 i \sqrt{7} \right| < 1$$

and that $m_1^2 + m_2^2 + m_3^2$ is minimal under the condition (*).

Exercise 4. (4 points)

Let $\Omega = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ be a full lattice in \mathbb{C} and let $\omega = m_1\omega_1 + m_2\omega_2 \in \Omega$. Show the equivalence of the following statements.

- (i) There exists an $\omega' \in \Omega$ such that $\Omega = \mathbb{Z}\omega \oplus \mathbb{Z}\omega'$.
- (*ii*) m_1 and m_2 are coprime.
- (iii) If $n \in \mathbb{Z}$, n > 1, then $\frac{1}{n}\omega \notin \Omega$.

Deadline: Tuesday, Oct. 28, 2014 at the beginning of the lecture.