Elliptic Functions and related topics

Problem sheet 4

Dr. L. Rolen, Dr. M. H. Mertens

Throughout, let $L=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ denote a full lattice in \mathbb{C}.
Exercise 1. (4 points)
Let f be entire function. Show that
(a) if for every $\omega \in L$ there is a polynomial P_{ω} such that $f(z+\omega)=f(z)+P_{\omega}(z)$, then f is itself a polynomial,
(b) if for every $\omega \in L$ there exists a constant $c(\omega) \in \mathbb{C}$ such that $f(z+\omega)=$ $c(\omega) f(z)$, then there are $a, b \in \mathbb{C}$ such that $f(z)=a \cdot \exp (b z)$ for all $z \in \mathbb{C}$.

Exercise 2. (4 points)
Classify all elliptic functions that have simple poles in the points $\frac{\omega}{2}, \omega \in L \backslash 2 L$, and are holomorphic otherwise.

Exercise 3. (4 points)
Let $\wp=\wp_{L}$ denote the Weierstraß \wp-function of the lattice L.
(a) Show the differential equation

$$
\wp^{\prime \prime}(z)=6 \wp(z)^{2}+2\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right) .
$$

(b) Find a non-trivial polynomial $P(X, Y)$ such that $P\left(\wp^{\prime}, \wp^{\prime \prime}\right)=0$.

Hint: For part (b) it is OK to use a computer algebra system like Magma, Sage, Maple... to multiply out the polynomials.

Exercise 4. (4 points)
Let $G_{k}=G_{k}(L), k \geq 4$ even, denote the weight k Eisenstein series of the lattice L.
(a) Show that that $G_{k}(\mathbb{Z} \oplus i \mathbb{Z})=0$ for $k \not \equiv 0(\bmod 4)$ and $G_{k}\left(\mathbb{Z} \oplus \frac{1+i \sqrt{3}}{2} \mathbb{Z}\right)=0$ for $k \not \equiv 0(\bmod 6)$.
(b) Let $\tau \in \mathbb{H}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Prove the transformation law

$$
G_{k}(\mathbb{Z} \oplus \tau \mathbb{Z})=(c \tau+d)^{-k} G_{k}\left(\mathbb{Z} \oplus \frac{a \tau+b}{c \tau+d} \mathbb{Z}\right)
$$

Deadline: Tuesday, Nov. 04, 2014 at the beginning of the lecture.

