Elliptic Functions and related topics

Problem sheet 5

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
(a) Find polynomials $P, Q \in \mathbb{Q}[X, Y]$ such that $G_{12}=P\left(G_{4}, G_{6}\right)$ and $G_{14}=$ $Q\left(G_{4}, G_{6}\right)$.
(b) For $\tau \in \mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$ and $k \geq 2$ an integer show the formula

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(\tau+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{r=1}^{\infty} r^{k-1} e^{2 \pi i r \tau} .
$$

Hint: Use the partial fraction decomposition of the contangent function.
Exercise 2. (4 points)
(a) Let L be a lattice that is stable under conjugation, i.e. $\bar{L}=L$. Show that $\overline{\wp_{L}(z)}=\wp_{L}(\bar{z})$ and $\overline{\wp_{L}^{\prime}(z)}=\wp_{L}^{\prime}(\bar{z})$, so that in particular, $\wp(z)$ is real for all $z \in \mathbb{C} \backslash L$ which are real or purely imaginary, and $\wp(z)$ is real resp. purely imaginary if $z \in \mathbb{C} \backslash L$ is so as well.
(b) Show that the following statements are all equivalent:
(i) $g_{2}(L)$ and $g_{3}(L)$ are both real.
(ii) For all $k \geq 4, G_{k}(L)$ is real.
(iii) Either all of the values e_{1}, e_{2}, e_{3} are real or exactly one of them is real and the other two are complex conjugates of each other.
(iv) L is stable under conjugation.

Exercise 3. (4 points)
Let $L=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ be a rectangular lattice, i.e. such that $\frac{1}{i} \omega_{1}>0$ and $\omega_{2}>0$ and let $z \in \mathbb{C} \backslash L$. Show that $\wp(z)$ is real if and only if there is an $\omega \in L$ such that

$$
z \in \frac{\omega}{2}+\mathbb{R} \quad \text { or } \quad z \in \frac{\omega}{2}+i \mathbb{R}
$$

Exercise 4. (4 points)
Let $L=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ be a rectangular lattice as in Exercise 3. Show that \wp maps the open rectangle V with vertices $0, \frac{\omega_{1}}{2}, \frac{\omega_{3}}{2}, \frac{\omega_{2}}{2}$, biholomorphically to the lower half plane $\mathbb{H}^{-}:=\{z \in \mathbb{C}: \operatorname{Im} z<0\}$ by proving the following assertions.
(a) $\wp(V) \subseteq \mathbb{H}^{-}$.
(b) $\wp\left(\frac{\omega_{3}}{2}+V\right)=\wp(V) \subseteq \mathbb{H}^{-}$and $\wp\left(\frac{\omega_{1}}{2}+V\right)=\wp\left(\frac{\omega_{2}}{2}+V\right) \subseteq \mathbb{H}$.
(c) $\wp: V \rightarrow \mathbb{H}^{-}$is biholomorphic.

Deadline: Tuesday, Nov. 04, 2014 at the beginning of the lecture.

