Elliptic Functions and related topics

Problem sheet 6

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Recall the definition of the Bernoulli numbers,

$$
\frac{t}{e^{t}-1}=: \sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n}, \quad(|t|<2 \pi) .
$$

Prove that
(a) $B_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}_{0}$,
(b) $B_{1}=-\frac{1}{2}$ and $B_{2 n+1}=0$ for all $n \in \mathbb{N}$,
(c) Calculate $B_{2 n}$ for $n \in\{0, \ldots, 6\}$.

Exercise 2. (4 points)

Let Δ be the normalized discriminant function, i.e.

$$
\Delta(\tau)=\sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+O\left(q^{5}\right), \quad q:=e^{2 \pi i \tau}
$$

(a) Use the results from Exercise 1 of Problem sheet 5 about the relations among the Eisenstein series to show that

$$
\Delta(\tau)=\frac{1}{1728}\left(E_{4}(\tau)^{3}-E_{6}(\tau)^{2}\right)=\frac{691}{762048}\left(E_{12}(\tau)-E_{6}(\tau)^{2}\right)=\frac{691}{432000}\left(E_{4}(\tau)^{3}-E_{12}(\tau)\right)
$$

(b) Show the congruence $\tau(n) \equiv \sigma_{11}(n)(\bmod 691)$ for all $n \in \mathbb{N}$.

Hint: Using a computer to check the constants is acceptable.
Exercise 3. (4 points)
Prove the following identity,

$$
\int_{1}^{\infty} \frac{1}{\sqrt{4 x^{3}-4 x}} d x=\int_{0}^{1} \frac{1}{\sqrt{1-t^{4}}} d t=\frac{\Gamma\left(\frac{1}{4}\right)^{2}}{4 \sqrt{2} \pi}
$$

where $\Gamma(s):=\int_{0}^{\infty} t^{s-1} e^{-t} d t$ denotes the gamma function.
Hint: The first equality is just a simple substitution, for the second, write $\Gamma\left(\frac{1}{4}\right)$ as a double integral and use polar coordinates to compute in another way.

Exercise 4. (4 points)
Let $L=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ be a full lattice in \mathbb{C} and $\wp=\wp_{L}$ the corresponding Weierstraß \wp-function.
(a) For all $z, w \in \mathbb{C}$ such that $z, w, z \pm w \notin L$ prove that

$$
\wp(z+w)-\wp(z-w)=-\frac{\wp^{\prime}(z) \wp^{\prime}(w)}{(\wp(z)-\wp(w))^{2}} .
$$

(b) Use the Addition theorem and the differential equation for the \wp-function to find a polynomial $0 \neq P \in R[X, Y, Z]$, where $R=\mathbb{Z}\left[g_{2}, g_{3}\right]$ such that $P(\wp(z), \wp(w), \wp(z+w))=0$ for all $z, w \in \mathbb{C}$ such that $z, w, z+w \notin L$.
Hint: It is advisable to use a computer to find that polynomial.

Deadline: Tuesday, Nov. 18, 2014 at the beginning of the lecture.

