Elliptic Functions and related topics

Problem sheet 8

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
consider the elliptic curves E and \bar{E} over \mathbb{Q} defined by the equations

$$
E: Y^{2}=X^{3}+a X+b \quad \text { and } \quad \bar{E}: Y^{2}=X^{3}+\bar{a} X+\bar{b}
$$

where

$$
\bar{a}=-2 a \quad \text { and } \quad \bar{b}=a^{2}-4 b .
$$

Let $T=(0,0) \in E(\mathbb{Q})$ and $\bar{T}=(0,0) \in \bar{E}(\mathbb{Q})$ and define the two maps

$$
\phi: E \rightarrow \bar{E}, P \mapsto \begin{cases}\left(\frac{y^{2}}{x^{2}}, \frac{y\left(x^{2}-b\right)}{x^{2}}\right) & \text { if } P=(x, y) \neq \mathcal{O}, T \\ \mathcal{O} & \text { if } P=\mathcal{O} \text { or } P=T\end{cases}
$$

and

$$
\psi: \bar{E} \rightarrow E, \bar{P} \mapsto \begin{cases}\left(\frac{\bar{y}^{2}}{\mathcal{A} \bar{x}^{2}}, \frac{\bar{y}\left(\bar{x}^{2}-\bar{b}\right)}{8 \bar{x}^{2}}\right) & \text { if } \bar{P}=(\bar{x}, \bar{y}) \neq \overline{\mathcal{O}}, \bar{T} \\ \mathcal{O} & \text { if } \bar{P}=\overline{\mathcal{O}} \text { or } \bar{P}=\bar{T}\end{cases}
$$

Show that the composition $\psi \circ \phi$ (resp. $\phi \circ \psi$) is the multiplication-by-2 map on E (resp. \bar{E}).

Exercise 2. (4 points)
For $\kappa>0$ let $R(\kappa):=\{x \in \mathbb{Q}: H(x) \leq \kappa\}$.
(a) Show that $\# R(\kappa) \leq 2 \kappa^{2}+1$.
(b) Prove that

$$
\lim _{\kappa \rightarrow \infty} \frac{\# R(\kappa)}{\kappa^{2}}=\frac{12}{\pi^{2}}
$$

Hint: You may (and should) use the following formula from Analytic Number Theory (a proof is not required),

$$
\sum_{n \leq x} \frac{\varphi(n)}{n}=\frac{x}{\zeta(2)}+O(\log x)
$$

where φ denotes Euler's totient function, i.e. $\varphi(n)$ is the number of integers $x \in\{1, \ldots, n-1\}$ with $\operatorname{gcd}(x, n)=1$.

Exercise 3. (4 points)
Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be distinct points on an elliptic curve E over \mathbb{Q} defined by the equation

$$
Y^{2}=X^{3}+a X+b,
$$

where a, b are integers which satisfy $P_{1} \pm P_{2} \neq \mathcal{O}$. Define $P_{3}=\left(x_{3}, y_{3}\right)=P_{1}+P_{2}$ and $P_{4}=\left(x_{4}, y_{4}\right)=P_{1}-P_{2}$.
(a) Express the quantities $x_{3}+x_{4}$ and $x_{3} x_{4}$ in terms of x_{1} and x_{2}.
(b) Prove that there is a constant κ, depending only on a and b, such that it holds for all rational points P_{1} and P_{2} on E that

$$
h\left(P_{1}+P_{2}\right)+h\left(P_{1}-P_{2}\right) \leq 2 h\left(P_{1}\right)+2 h\left(P_{2}\right)+\kappa .
$$

Hint: Replace P_{1} and P_{2} by $P_{1}+P_{2}$ and $P_{1}-P_{2}$ and use that known bound $h(2 P) \geq 4 h(P)-\kappa_{0}$.

Exercise 4. (4 points)
One can define a group law on a singular cubic curve as well using the same geometric procedure as in Exercise 1 of Problem sheet 7 and excluding the singular points. The group of non-singular points of a singular cubic curve C is denoted by $C_{n s}$. Let C be defined by the equation $Y^{2}=X^{3}$ (whose only singularity is at $(0,0)$). Prove that the map

$$
\phi: C_{n s}(\mathbb{Q}) \rightarrow \mathbb{Q}, P \mapsto \begin{cases}\frac{x}{y} & \text { if } P=(x, y) \neq \mathcal{O} \\ 0 & \text { if } P=\mathcal{O}\end{cases}
$$

is an isomorphism of abelian groups so that in particular the group $C_{n s}(\mathbb{Q})$ is not finitely generated.

Deadline: Tuesday, Dec. 2, 2014 at the beginning of the lecture.

