Elliptic Functions and related topics

Problem sheet 9

Dr. L. Rolen, Dr. M. H. Mertens

Exercise 1. (4 points)
Let G, H be abelian groups and $\phi: G \rightarrow H$ and $\psi: H \rightarrow G$ be homomorphisms such that $[H: \phi(G)]$ and $[G: \psi(H)]$ are both finite. Suppose that there is an integer $m \geq 2$ such that

$$
\begin{array}{ll}
\psi \circ \phi(g)=m \cdot g & \text { for all } g \in G, \\
\phi \circ \psi(h)=m \cdot h & \text { for all } h \in H .
\end{array}
$$

Prove that then $[G: m G]$ is finite and, more specifically, that

$$
[G: m G] \leq[G: \psi(H)][H: \phi(G)] .
$$

Exercise 2. (4 points)
For a sequence of natural numbers N_{r}, its zeta-function is defined by

$$
Z(T):=\exp \left(\sum_{r=1}^{\infty} N_{r} \frac{T^{r}}{r}\right) .
$$

Let a be a natural number.
(a) Show that for

$$
N_{r}^{(a)}:= \begin{cases}a & r \text { even }, \\ 0 & r \text { odd },\end{cases}
$$

the zeta function is a rational function in T if and only if a is even.
(b) Find a polynomial equation whose number of solutions over $\mathbb{F}_{p^{r}}$ equals $N_{r}^{(2)}$.

Exercise 3. (4 points)
Let q be a prime power and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{*}$ be a fixed additive character. For multiplicative characters $\chi, \chi_{1}, \chi_{2}: \mathbb{F}_{q}^{*} \mapsto \mathbb{C}^{*}$, recall the definitions of the Gauß sum $g(\chi):=\sum_{x \in \mathbb{F}_{q}} \chi(x) \psi(x)$ and the Jacobi sum $J\left(\chi_{1}, \chi_{2}\right):=\sum_{x \in \mathbb{F}_{q}} \chi_{1}(x) \chi_{2}(1-x)$. Prove the following assertions supposing that χ, χ_{1}, χ_{2} are non-trivial, ε denotes the trivial character of \mathbb{F}_{q}^{*}, and $\bar{\chi}$ denotes the conjugate character.
(a) $g(\varepsilon)=-1 ; J(\varepsilon, \varepsilon)=q-2 ; J(\varepsilon, \chi)=-1 ; J(\chi, \bar{\chi})=-\chi(-1)$;
$J\left(\chi_{1}, \chi_{2}\right)=J\left(\chi_{2}, \chi_{1}\right) ;$
(b) $g(\chi) g(\bar{\chi})=\chi(-1) q ;|g(\chi)|=\sqrt{q}$;
(c) $J\left(\chi_{1}, \chi_{2}\right)=\frac{g\left(\chi_{1}\right) g\left(\chi_{2}\right)}{g\left(\chi_{1} \chi_{2}\right.}$ if $\chi_{1} \neq \chi_{2}$.

Exercise 4. (4 points)
Let $p \equiv 1(\bmod 4)$ be a prime and let $\chi_{4}: \mathbb{F}_{p}^{*} \rightarrow \mathbb{C}^{*}$ be a multiplicative character of exact order 4 . Show that $\chi(4)=\chi(-1)=1$ if $p \equiv 1(\bmod 8)$ and that $\chi(-1)=$ $\chi(4)=-1$ if $p \equiv 5(\bmod 8)$. Conclude that $\chi(-4)=1$ in all cases.

Deadline: Tuesday, Dec. 9, 2014 at the beginning of the lecture.

