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Abstract. We study the combinatorics of the category F of finite-
dimensional integrable modules for the orthosymplectic Lie supergroup
OSp(r | 2n). In particular we present a positive counting formula for the
dimension of the space of homomorphism between two projective mod-
ules. This refines earlier results of Gruson and Serganova. Moreover we
construct an algebra AB whose module category shares the combina-
torics with F . This algebra arises as a subquotient of a suitable limit of
type D Khovanov algebras. It will turn out that A is isomorphic to the
endomorphism algebra of a minimal projective generator of F . In this
way we provide a direct link from F to the geometry of isotropic Grass-
mannians and Springer fibres of type B/D, and to parabolic categories
O of type B/D, with maximal parabolic of type A. We also indicate
why the category F is not highest weight in general.
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1. Introduction

Fix as ground field the complex numbers C. This is the first part of a
series of three papers, where we describe the category C of finite-dimensional
representations of the orthosymplectic Lie supergroup G = OSp(r|2n) re-
spectively the finite-dimensional integrable representations of the orthosym-
plectic Lie superalgebra g = osp(r|2n). In particular we are interested in
the combinatorics and the structure of the locally finite endomorphism ring
of a projective generator of this category. (To be more precise: a projec-
tive generator only exists as a pro-object, but we still call it a projective
generator and refer to [BD16, Theorem 2.4] for a detailed treatment.)

M.E. was financed by the DFG Priority program 1388. C.S. was partially supported
by the Max-Planck institute in Bonn.
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Our main result is an explicit description of the endomorphism ring of
a minimal projective generator for any block B in C. We first describe in
detail the underlying vector space in Theorem A, and then formulate the
endomorphism theorem in Theorem B. As a consequence we deduce that the
endomorphism algebra can be equipped with a Z-grading. The definitions
and results are illustrated by several examples. Theorem A provides an
elementary way to compute dimensions of homomorphism spaces between
projective objects, and Theorem B allows a concrete description of the cor-
responding categories. In small examples, we provide a description of the
category C in terms of a quiver with relations.

The proof of Theorem B will appear in Part II, but we explain here
the main ideas of the proof and the important and new phenomena which
appear on the way. We believe that they are interesting on their own and
also provide a conceptual explanation for the lack of desired properties of the
category C (in comparison to the type A case). The (rather long) technical
arguments required for the complete proof of Theorem B will appear in
Part II, together with several applications to the representation theory. We
also defer to part II the proof of Lemma 4.16, which is an easy observation
as soon as the theory of Jucys-Murphys elements for Brauer algebras is
available (which will be the case in Part II).

Understanding the representation theory of algebraic supergroups and in
particular their category C of finite-dimensional representations is an inter-
esting and difficult task with several major developments in recent years.
We refer to the articles [Ser14], [Bru14], [MW14] for a nice description and
overview of the state of art. Despite these remarkable results, in particular
for the general linear case, but also for the category O for classical Lie su-
peralgebras, there is still an amazingly poor understanding of the category
C outside of type A.

At least for the orthosymplectic case we can provide here some new in-
sights into the structure of these categories by giving a construction of en-
domorphism algebras of projective objects.

Our results are in spirit analogous to [BS12b] and many of the applications
deduced there for the general linear Lie algebra can be deduced here as well
(investigated in detail in Parts II and III). The orthosymplectic case however
requires new arguments and a totally new line of proof. There are several
subtle differences which make the case treated here substantially harder, the
proofs more involved and conceptually different. The categories are much
less well behaved than in type A. To prove the main Theorem B we first
need to develop the basic underlying combinatorics for the orthosymplectic
case, make it accessible for explicit calculations and also for categorifica-
tion methods, then use non-trivial results from the representation theory of
Brauer algebras and the Schur-Weyl duality for orthosymplectic Lie super-
groups, and finally connect both with the theory of Khovanov algebras of
type D. On the way we explain why (and to which extent) these categories
are not highest weight, but we still manage to describe their combinatorics
in terms of certain maximal parabolic Kazhdan-Lusztig polynomials of type
B (or equivalently D by [ES13a, 9.7]).
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The main results and the idea of the proof. To explain our results
in more detail, fix r, n ∈ Z≥0 and consider a vector superspace, that is a
Z2-graded vector space, V = V0 ⊕ V1 of superdimension (r|2n) with its Lie
superalgebra gl(V ) of endomorphisms, see Section 3 for a precise definition.
Then g = osp(r|2n) is the Lie super subalgebra of gl(V ) which leaves in-
variant a fixed non-degenerate super-symmetric bilinear form β on V (that
is a form of degree zero, symmetric on V0 and antisymmetric on V1), and
G = OSp(r|2n) is the corresponding supergroup of automorphisms preserv-
ing this form. In particular, the extremal cases r = 0 respectively n = 0
give the classical simple Lie algebras so(r) respectively sp(2n) with the cor-
responding orthogonal and symplectic groups.

For simplicity, we restrict ourselves in this introduction to the case where
r = 2m+ 1 is odd.

Now consider the category C′ of finite-dimensional representations of the su-
pergroup G′ = SOSp(r|2n), that is finite-dimensional representations for its
Lie algebra g in the sense of [Ser11], [Ser14] Like in the ordinary semisim-
ple Lie algebra case, simple objects in C′ are, up to a parity shift π, the
highest weight modules Lg(λ) which arise as quotients of Verma modules
whose highest weights λ are integral and dominant. Hence for each such λ
we have two irreducible representations, Lg(λ) and πLg(λ) in the category
C′. More precisely C′ decomposes into a sum of two equivalent categories
C′ = F ′ ⊕ π(F ′), such that the simple objects in F ′ are labelled by integral
dominant weights. In particular, it suffices to study the category F ′. Sim-
ilarly we obtain the categories C and F if we work G = OSp(r|2n). Under
our assumption an object in F is just an object in F ′ together with an action
of the nontrivial element σ ∈ G not contained in G′ by multiplication by ±
(In which case we leave out the decoration g in the notation).

In contrast to the ordinary semsimple Lie algebra case, finite-dimensional
representations of g are in general not completely reducible. Already the
tensor products V ⊗d of the natural representations V need not be.1 One
goal of our series of papers is to understand possible extensions between
simple modules.

The category F is an interesting abelian tensor category with enough pro-
jective and injective modules (which in fact coincide, [BKN11, Proposition
2.2.2]). We have therefore a non-semisimple Calabi-Yau category which has
additionally a monoidal structure.

The indecomposable projective modules are precisely the projective covers
P (λ) of the simple objects L(λ). Given a block B of C there is the notion of
atypicality or defect, def(B), which measures the non-semisimplicity of the
block. In case the atypicality is zero, the block is semisimple. In general
our Theorem B implies that the Loewy length of any projective module in
B equals 2 def(B) + 1. Up to equivalence, the block B is determined by its
atypicality, [GS10, Theorem 2], see also Remark 7.7.

1They are in fact semsimple in case of the general linear Lie superalgebra by the
Schur-Weyl duality theorem of Sergeev [Ser84] and Berele-Regev [BR87], see [BS12a, The-
orem 7.5], but in general not semisimple for osp(r|2n), see [ES14, (1.1), Remark 3.3].
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Remark. Our assumption on r comes into the picture here, since usually
people (including also the above cited references) would consider the cat-
egory of finite-dimensional representations for the group G′ = SOSp(r|2n)
instead of the group G = OSp(r|2n). In case r is odd, this makes no differ-
ence, since via the isomorphism of groups (1.4), the representation theory
does not change in the sense that any block for G′ gives rise to two equiva-
lent blocks for G each of which is equivalent to the original block for G′, see
Section 4.2.1. In the even case the interplay is more involved. We however
prefer to work with OSp(r|2n) instead of SOSp(r|2n), for instance because
it allows us to make the connection to Deligne categories [Del96], [CH15]
and Brauer algebras [Bra37].

For the rest of the introduction we identify now blocks for G′ with blocks for
G where the non-trivial element from Z/2Z in (1.4) acts as the identity.

Dimension formula. Let λ, µ be dominant integral weights for g. To
access the dimension of HomF (P (λ), P (µ)) we encode the highest weights λ
and µ in terms of diagrammatic weights λ and µ in the spirit of [BS11a], see
Definition 6.6. Such a diagrammatic weight is a certain infinite sequence of
symbols from {×, ◦,∧,∨}, with the property that two weights λ and µ are in
the same block (abbreviating that L(λ) and L(µ) are in the same block), if
and only if the core symbols × and ◦ of the associated diagrammatic weights
are at the same positions and the parity of the number of ∧’s agree, see also
Proposition 7.5 for a more precise statement. From Proposition 7.5 it also
follows that the set Λ(B) of diagrammatic weights attached to a block B is
contained in a diagrammatic block Λ in the sense of [ES13a, 2.2].

Following [ES13a] we attach to the diagrammatic weights λ and µ via
Definition 5.9 a pair of cup diagrams λ, µ. If they have the same core
symbols one can put the second on top of the first to obtain a circle diagram
λµ. Our main combinatorial result (Theorem 7.1, Theorem B) is a counting
formula for the dimensions:

Theorem A. The dimension of HomF (P (λ), P (µ)) equals the number of
orientations λνµ of λµ if the circle diagram λµ is defined and contains no
non-propagating line, and the dimension is zero otherwise.

By an orientation we mean another diagrammatic weight ν from the same
block which, when putting it into the middle of the circle diagram, makes
it oriented in the sense of Definition 5.17. In other words, we factorize the
symmetric Cartan matrix C (see Theorem 4.18) into a product C = AAT

with positive integral entries.
In [ES13a, 6.1] it was explained how to introduce an algebra structure

DΛ on the vector space with basis all oriented circle diagrams λνµ, where
λ, µ, ν ∈ Λ. This algebra is called the Khovanov algebra of type2 D attached
to the (diagrammatic) block Λ. By [ES13a, Theorem 6.2] it restricts to an
algebra structure on the vector space DΛ(B) spanned by all circle diagrams
λνµ with λ, µ ∈ Λ(B) via the obvious idempotent truncation. Let 1B be the

2Some readers might prefer to see here Khovanov algebras of type B appearing, but
as shown in [ES13a, 9.7], this is just a matter of perspective: a Khovanov algebra of type
Bn is isomorphic to one of type Dn+1.
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corresponding idempotent projecting onto this subalgebra and consider the
idempotent truncation 1BDΛ1B. To make the connection with the combi-
natorics of Theorem A, we prove in Proposition 7.3 that its oriented circle
diagrams which contain at least one non-propagating line, span an ideal I in
1BDΛ1B. We call this the nuclear ideal and its elements nuclear morphisms.

Now our main theorem is the following, where P = ⊕λ∈Λ(B)P (λ) is a
minimal projective generator of the chosen block B.

Theorem B. There is an isomorphism of algebras

1BDΛ1B/I ∼= Endfin
F (P ).

Here, Endfin
F (P ) = ⊕λ∈Λ(B) HomF (P (λ), P ) denotes the locally finite en-

domorphism ring of P . This locally finiteness adjustment is necessary, since
the labelling set Λ(B) of the indecomposable projective modules in B is in-
finite, and so we have to work with infinite blocks of diagrammatic weights.
But we like to stress that for any chosen finite sum ⊕λ∈J⊂Λ(B)P (λ), the
corresponding (ordinary) endomorphism ring is automatically finite dimen-
sional. In practise, the endomorphism ring can then be computed in a
quotient of an appropriate Khovanov algebra (of type B/D) attached to a
finite diagrammatic block.

Since DΛ is by construction a (non-negatively) Z-graded algebra, and I is
a graded ideal, we deduce that

Corollary C. 1BDΛ1B/I ∼= Endfin
F (P ) is a graded algebra.

In analogy to the general linear supergroup case, [BS12b], it is natu-
ral to expect that this grading is in fact a Koszul grading in the sense of
[MOS09] which is a version of [BGS96] for locally finite algebras with in-
finitely many idempotents. This expectation is easy to verify for OSp(3|2)
using the explicit description in Section 2.5, but it fails to be true in general,
see Section 9.4.

The Khovanov algebras DΛ of type D for finite diagrammatic blocks arose
originally from classical highest weight Lie theory, since they describe blocks
of parabolic category O of type B or equivalently of type D with maximal
parabolic of type A, see [ES13a, Theorem 9.1 and Theorem 9.22], and hence
describe the category of perverse sheaves on isotropic Grassmannians. They
also have an interpretation in the context of the geometry of the Springer
fibers of type D or C for nilpotent elements corresponding to two-row par-
titions, [ES12], [Wil15].

Our infinite diagrammatic weights Λ can be interpreted as elements in
an appropriate limit of a sequence of finite diagrammatic weights. As in
[BS11a] the resulting algebras DΛ could then also be viewed as limit alge-
bras DΛn for certain finite blocks Λn. Hence, up to the ideal I, our main
theorem connects the category F to classical (that means non-super) infinite-
dimensional highest weight Lie theory and classical (i.e. non-super) geome-
try in an appropriate limit. This is similar to the result for the general linear
supergroups. [BS12b, Theorem 1.2]. It is also a shadow of the socalled su-
per duality conjectures [CLW11], but in a subtle variation, since we deal
here with finite-dimensional representations instead of the highest weight
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category O. Moreover, taking this limit for type D Khovanov algebras is
technically slightly more difficult than in type A, since the (naive) paral-
lel construction mimicking the type A case would produce infinite weights
with infinite defect. To circumvent this problem we apply a rather brutal
diagrammatic trick and introduce so-called frozen vertices which force our
infinite cup diagramms to have a finite number of cups, which means the
defect stays finite. This procedure crucially depends on r and n. We expect
that this diagrammatic trick also provides the passage between the limit
categories introduced by Serganova in [Ser14] and the category F .

Gruson-Serganova combinatorics. The proof of Theorem A is heavily
based on the main combinatorial results of Gruson and Serganova, [GS10]
and [GS13], who also introduced a version of cup diagram combinatorics
for SOSp(r|2n) very similar to ours. An explicit translation between the
two set-ups is given below in (7.55). There are however some small, but
important differences in our approaches:

• Gruson and Serganova work with certain natural, but virtual mod-
ules in the Grothendieck group (the Euler characteristics E(λ)),
whereas our combinatorics relies on actual filtrations of the projec-
tive modules with the subquotients being shadows of cell modules
for the Brauer algebra.
• Gruson and Serganova’s formulas are alternating summation formu-

las, whereas ours are positive counting formulas.
• Gruson and Serganova work with the special orthosymplectic group,

whereas we work with the orthosymplectic group, which is better
adapted to the diagram combinatorics and connects directly to the
representation theory of Brauer algebras via [Ser14, Theorem 3.4],
[LZ15, Theorem 5.6].
• Gruson and Serganova’s cup diagram combinatorics unfortunately

does not give a direct connection to the theory of Hecke algebras
and Kazhdan-Lusztig polynomials, whereas our Khovanov algebra
of type D is built from the Kazhdan-Lusztig combinatorics of the
hermitian symmetric pair (Dn,An−1), see [LS12], [ES13a].

Comparing Theorem A with [BS11b, (5.15)] and [BS12b, Theorem 2.1],
our formulas indicate that one could expect some highest weight structure
or at least some cellularity of each block B of F explaining our positive
counting formulas and appearance of Kazhdan-Lusztig polynomials. But
blocks of F are not highest weight and not even cellular in general, as the
example from Section 2 illustrates, and there are no obvious candidates
for cell modules. This is a huge difference to the case of gl(m|n), where
parabolic induction of a finite-dimensional representation of the Levi subal-
gebra gl(m|n)0 = gl(m) ⊕ gl(n) produces a finite-dimensional Kac module.
These modules are the standard modules for the highest weight structure
of the category of integrable finite-dimensional representations in that case,
see [Bru03, Theorem 4.47] or [BS12b, Theorem 1.1]. Such a parabolic sub-
algebra, and hence such a class of modules is however not available for
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g = osp(r|2n) if r ≥ 2, n ≥ 1. Nevertheless, we claim that our counting for-
mula arises from some natural filtrations on projective objects, whose origin
we like to explain now.

Tensor spaces and Brauer algebras. The tensor spaces V ⊗d for d ≥ 0
from above already contain in some sense the complete information about
the category F . Namely, each indecomposable projective P (λ) occurs in V ⊗d

for some large enough d, see e.g. [CH15, Lemma 7.5]. By weight considera-

tions and the action of σ one can easily check that HomG(V ⊗d, V ⊗d
′
) = {0}

if d and d′ have different parity (see also Remark 1). Hence to understand
the spaces of morphisms between projective modules in a fixed block B of
F , it suffices to consider the tensor spaces for each parity of d separately.
Moreover, since the trivial representation appears as a quotient of V ⊗ V
(via the pairing given by β), we have a surjection P ⊗ V ⊗ V→→P ⊗ C = P
which splits if P is projective. Thus we obtain

Lemma D. Let J ⊂ Λ(B) be a finite subset of weights such that all P (λ)
are in the same block B of F . Then P ′ = ⊕λ∈JP (λ) appears as a direct
summand of V ⊗d for some large enough d.

To achieve our goal (to determine the endomorphism ring of all such P ′)
we first consider endomorphisms of these tensor spaces V ⊗d. For this we use
a super analogue of a result from classical invariant theory of the semisimple
orthogonal and symplectic Lie algebras studied by Brauer in [Bra37].

For fixed d ∈ Z≥0 and δ ∈ C, the Brauer algebra Brd(δ) is an algebra struc-
ture on the vector space with basis all equivalence classes of Brauer diagrams
for d. A Brauer diagram for d is a partitioning of the set {±1,±2, . . . ,±d}
into two element subsets. One can display this by identifying ±j with the
point (j,±1) in the plane and connect two points in the same subset by
an arc inside the rectangle [1, d] × [−1, 1]. Here is an example of a Brauer
diagram for d = 11:

(1.1)

Given two Brauer diagrams D1 and D2 we can stack D2 on top of D1.
The result is again a Brauer diagram D after we removed possible internal
loops and the process is independent of the chosen visualization. Setting
D1D2 = δcD, where c is the number of internal loops removed, defines the
associative algebra structure Brd(δ) on the vector space with basis given by
Brauer diagrams. Here is an example of the product of two basis vectors:

• = δ
(1.2)

We use the following important result.
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Proposition E ([Ser14, Theorem 3.4], [LZ14a, Theorem 5.6]). Let δ =
r − 2n. Then the canonical algebra homomorphism

Brd(δ) →→ EndOSp(r|2n)(V
⊗d). (1.3)

is surjective.

Hereby a Brauer diagram D acts on a tensor product v1 ⊗ v2 ⊗ · · · ⊗ vd
as follows: We identify the d tensor factors with the bottom points of the
diagrams. Whenever there is a cap (connecting horizontally two bottom
points) we pair the corresponding vectors using β and obtain a scalar multi-
ple w of the vector vi1⊗· · ·⊗vit , where t equals d minus the number of caps
and vij=vik if the jth top point not connected to another top point (by a
cup) is connected with the kth point at the bottom not connected by a cap.
Finally we insert for each cup a pair of new factors arising as the image of
1 under counit map C 7→ V ⊗ V , see e.g. [Ser14, (3.3)] or [ES14] for details.

We like to stress that the map (1.3) fails to be surjective in general if we
work with G = SOSp(2m|2n) or its Lie algebra osp(2m|2n), see e.g. [LZ15]
and [ES14, Remark 5.8].

To be able to control the category C by the action of the Brauer algebra
on tensor spaces we prefer to work with OSp(r|2n) instead of the more com-
monly studied semsisimple supergroup SOSp(r|2n) or with its Lie algebra
g. This requires then however a translation and adaption of the results from
the literature (including [GS10], [GS13]) to OSp(r|2n). In case r = 2m+ 1
is odd this is an easy task, since we have

OSp(2m+ 1|2n) ∼= SOSp(2m+ 1|2n)× Z/2Z, (1.4)

where the generator of the cyclic group is minus the identity. If r = 2m is
even, we only have a semidirect product

OSp(2m|2n) ∼= SOSp(2m|2n) o Z/2Z, (1.5)

and the situation is rather involved. A larger part of the present paper is de-
voted to this problem. We believe that in contrast to the case of SOSp(r|2n),
the blocks for OSp(r|2n) are completely determined by their atypicality, see
Remark 7.7.

Remark. Instead of considering only single tensor product spaces V ⊗d as
in (1.3), one might prefer to work with the tensor subcategory (V,⊗) of
F(OSp(r|2n)) generated by V (for any fixed nonnegative integers r, n).
Then the surjection (1.3) can in fact be extended to a full monoidal functor
from the Brauer category Br(δ) to (V,⊗), see e.g. [CW12]. An object in
the Brauer category (which is just a natural number d) is sent to V ⊗d and
a basis morphism (that is a Brauer diagram as in (1.1) but not necessarily
with the same number of bottom and top points) is sent to the corresponding
intertwiner. Hence the Brauer category controls all intertwiners. Again, this
statement is not true for the special orthosymplectic groups, not even for the
odd cases SOSp(2m + 1|2n), since one can find some integer d with a non-

trivial morphism from V ⊗d to V ⊗(d+1), see Remark 9.1. Such a morphism
however can not come from a morphism in the Brauer category, since for a
diagram in the Brauer category the number of dots on the top and on the
number of dots on the bottom of the diagram have the same parity. The
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Brauer category can also be identified with Deligne’s universal symmetric
category Rep(Oδ), [Del96], as used e.g. in [CH15], [Ser14].

We therefore chose to work with G = OSp(r|2n) instead of the more com-
monly studied supergroup SOSp(r|2n).

As a direct consequence of (1.3) and Lemma D, we can find an idempotent
e = ed,δ in Brd(δ) such that the following holds

Proposition F. Let I, P ′ = ⊕λ∈JP (λ) be as in Lemma D. There is a
surjective algebra homomorphism

Φ = Φd,δ : eBrd(δ)e →→ EndF (P ′) (1.6)

identifying the primitive idempotents in both algebras.

Comes and Heidersdorf obtain in [CH15, Theorem 7.3] a classification of
the indecomposable summands in V ⊗d in terms of idempotents of the Brauer
algebra and our (yet another) cup diagram combinatorics for the Brauer al-
gebra developed in [ES13b]. They moreover prove in [CH15, Lemma 7.15]
that the indecomposable projective summands P (λ) correspond to cup dia-
grams with maximal possible number, namely min{m,n}, of cups. Unfortu-
nately their theorem provides no way to read off the weight λ from the cup
diagram. In part II we will show that a diagrammatic trick as in [BS12a,
Lemma 8.18] for the walled Brauer algebra can be applied in our set-up
as well (with roughly the same proof) and provides a correspondence that
allows to read off the highest weights of the projective summands.

More precisely, let c be the cup diagram corresponding to a projective
summand P g(λ) in V ⊗d via [CH15, Lemma 7.15]. Let ν be the corresponding
diagrammatic weight, that is the unique diagrammatic weight ν such that
c = ν, see Remark 5.12. Now given such a diagrammatic weight ν let ν† be
the diagrammatic weight obtained by changing all ∧’s into ∨’s and all ∨’s
into ∧’s. Then the correspondence is given by the following:

Proposition G. In the set-up from above we have ν† = λ∞, with λ∞ the
infinite diagrammatic weight attached to λ via (5.41).

For Examples see Section 9. Note that for P ′ as in Lemma D, Proposi-
tion G provides a description of the idempotent e in (1.6).

The shadow of a quasi-hereditary or cellular structure. Fortunately,
the representation theory of Brd(δ) for arbitrary δ ∈ Z is by now reason-
ably well understood thanks to the results in [Mar09], [CDVM09], [CDV11],
[ES13b] and [ES15]. In particular it is known that Brd(δ) is a quasi-hereditary
algebra if δ 6= 0 and still cellular in case δ = 0, [Mar09], see also [ES13b].
For the sake of simplicity let us assume for the next paragraph that δ 6= 0.
Let Pd be the usual labelling set of simple modules for Brd(δ) by partitions,
see [Mar09], [CDV11], and denote by Ld(α), Pd(α), and ∆d(α) the simple
module, its projective cover and the corresponding standard module respec-
tively attached to α ∈ Pd. Then standard properties for quasi-hereditary
algebras, the BGG-reciprocity, see [Don98, A2.2 (iv)], and the existence of
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a duality preserving the simple objects, give us that

dim HomBrd(δ)(Pd(α), Pd(β)) = [Pd(β) : L(α)]

=
∑
η∈Pd

[∆d(η) : L(α)](Pd(β) : ∆(η))

=
∑
η∈Pd

(Pd(α) : ∆(η))(Pd(β) : ∆(η)) (1.7)

where [M : L] denotes the multiplicity of a simple module L in a Jordan-
Hölder series of M and (P : ∆) denotes the multiplicity of ∆ appearing as
a subquotient in a standard filtration of P . As first observed in [Mar09],
see also [CDV11], all the occurring multiplicities are either 0 or 1 and given
by some parabolic Kazhdan-Lusztig polynomial (which is in fact monomial)
evaluated at 1.

Now since Brd(δ) is quasi-hereditary with standard modules ∆d(α), the
idempotent truncation eBrd(δ)e is cellular, with cell modules ∆d(α)e, see
[KX98, Proposition 4.3]. Hence the endomorphism algebra in question is by
Proposition F a quotient of a cellular algebra. Unfortunately, we have the
following:

Quotients of cellular algebras need not be cellular.

However, there is still some extra structure. Given a projective eBrd(δ)e-
module Pd(λ) with λ† ∈ J and e as in Proposition F, and a fixed filtration

with subquotients certain cell modules ∆eBrd(δ)e(ν†), then this filtration
induces a filtration3 of the projective module P (λ†) ∈ F via the algebra
homomorphism Φd,δ.

The shape of the successive subquotients, ∆F (λ†, ν†) = ∆(λ†, ν†) do how-
ever in general not only depend on ν†, but also on λ†, that means on the
projective module we chose. (A priori, in case of higher multiplicities, two
subquotients might even differ although they arise from isomorphic cell mod-
ules in Pd(λ). But this turns out to be irrelevant for our counting and so we
can ignore it.) It is the multiplicities of these quotients of the cell modules
which we count in our main Theorem A. In particular we still have a well-
defined positive counting formula for the multiplicities for each given pair
(λ, ν), although we do not have standard or cell modules we have still some
control.

The failure of quasi-heriditarity and cellularity of the category F is encoded
in the kernel of the maps Φd,δ.

We need now to connect this information with Theorem A and describe the
kernel.

Graded version Brgr
d (δ) of the Brauer algebra Brd(δ). To determine

the number (Pd(α) : ∆d(η)) one can, as in [CDV11] or [ES13b], first assign to
the partition α and η a diagrammatic weight, denoted by the same letter and
compute the corresponding cup diagram α using the rules in Definition 5.9.

3More generally given a finite-dimensional algebra A and a quotient algebra A/I with
surjection Ψ : A → A/I, any A-module filtration of Aeλ for an idempotent eλ induces a
filtration on A/IΨ(eλ) by taking just the image.
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Then the multiplicity in question is non-zero (and therefore equal to 1) if
and only if αη is oriented in the sense of (5.48), see [ES13a, (8.64)].

Now consider the endomorphism ring Bd(δ) := EndBrd(δ)(⊕α∈PdPd(α)) of
a minimal projective generator of Brd(δ). That is Bd(δ) is the basic algebra
underlying Brd(δ). Then a basis of Bd(δ) can be labelled by pairs of oriented
cup diagrams of the form (αη, βη) or equivalently by oriented circle diagrams

αηβ, where α, η, β ∈ Pd.
By [ES13a, Section 6.2], there is an algebra structure Bgr

d (δ) on the vector
space spanned by such circle diagrams using the multiplication rules of the
type D Khovanov algebras from [ES13a]. Using the degree function on circle
diagrams from (5.48), this turns Bd(δ) into a Z-graded algebra Bgr

d (δ). By
[ES13b] together with [ES15, Theorem A], this gives a new realization of
the basic Brauer algebra, namely a graded lift of our basic algebra Bd(δ):

Theorem H. The algebra Bgr
d (δ) is isomorphic to the basic Brauer algebra

Bd(δ) as ungraded algebras.

In fact this grading can also be extended to provide a grading on Brd(δ),
but for our purposes it suffices to work with the basic algebra Bd(δ).

Explicit endomorphism algebra. Given the diagrammatic description
Bgr
d (δ) of Bd(δ), the idempotent truncation eBrgr

d (δ)e (which is by defini-
tion a subalgebra) is easily described by only allowing certain cup diagrams
depending on e, in fact precisely the λ corresponding to elements in J . How-
ever, the description of the kernel of Φd,δ is more tricky. For (1.3) this kernel
was described in [LZ14b], but their description is not very suitable for our
purposes. Instead we obtain a similar result as in [BS12a, Theorem 8.1 and
Corollary 8.2] (although the proof is quite different), which will be explained
in Part II. It implies that the kernel is controlled by the ideal I of nuclear
endomorphisms.

To summarize: for any choice of block B and set of weights J as in
Lemma D and Φd,δ as in Proposition F, we will map in Part II the circle
diagrams from Brgr

d (δ), picked out by eBrgr
d (δ)e, to the corresponding basis

element of some Khovanov algebra D∆ using the identification from Propo-
sition G and the identification from Definition 6.6 of integral highest weights
with diagrammatic weights. We will show that under this assignment the
kernel of Φd,δ restricted to eBrd(δ)e is mapped to the ideal I of nuclear circle
diagrams. As a result we deduce then finally Theorem B.

We like to stress that although our results are similar to the results from
[BS12b], [BS12a], the line of arguments is in some sense opposite. Whereas
in [BS12a] the known input was the finite-dimensional representation the-
ory of gl(m|n) from which the existence of the graded walled Brauer alge-
bra was deduced, the known input now is the graded Brauer algebra from
[ES15], from which then the information about the representation theory
of OSp(r|2n) is deduced. In particular, our arguments here rely on a good
understanding of the (graded) Brauer algebra. Moreover, the combinatorics
needed here does not (yet) have a conceptual description in terms of crys-
tal bases and categorifications, although first steps in this direction can be
found for the Brauer algebra in [ES13b] and for the category O for g in
[BW13].
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Figure 1. Indecomposable projectives in 1BDΛ1B versus 1BDΛ1B/I.
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2. An illustrating example: F(SOSp(3|2))

Before we start we describe blocks of F(SOSp(3|2)) in terms of a quiver
with relations using Theorems A and B, see also Section 4.2.1 for the precise
passage to F(OSp(3|2)).

In this case m = n = 1 and δ = 1. By [GS10, Lemma 7 (ii)], all blocks are
semisimple or equivalent to the principal block B (of atypicality 1) containing
the trivial representation. Hence we restrict ourselves to this block. The
explicit description of this category is not new, but was obtained already by
Germoni in [Ger00, Theorem 2.1.1]. We reproduce the result here using our
diagram algebras.

2.1. The indecomposable projectives and the algebra. By Defini-
tion 4.2, the block B contains the simple modules Lg(λ) of (with our choice
of Borel) highest weight λ, where λ ∈ {λa | a ≥ 0} with λ0 = (0 | 0) in the
standard basis and λa = (a | a− 1) if a > 0. We abbreviate the correspond-
ing module by L(a) and let P (a) be its projective cover. We assign to P (a)
via Definitions 6.6 and 5.9 the cup diagram λa as shown in the second line
of Figure 1 (with infinitely many rays to the right), see also Section 9.2.

The oriented circle diagrams built from the given cup diagrams are dis-
played in Figure 2. They are obtained by putting one of the cup diagrams
upside down on top of another one and then equip the result with an orienta-
tion as in (5.48). These diagrams then form a basis of the algebra 1BDΛ1B.
The multiplication is given by the rules from [ES13a, Section 6.2].

The last two (framed) oriented circle diagrams in Figure 2 are exactly
those which contain at least one non-propagating line. They span the nuclear
ideal I, in 1BDΛ1B, see Lemma 7.3.

The algebra 1BDΛ1B can be equipped with a positive Z-grading, via
(5.48), such that the basis vectors are homogeneous of degree as displayed in
Figure 2 with homogeneous ideal I. It descends to a grading on 1BDΛ1B/I,
and hence gives a grading on the category B.
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deg

0
∧ ∧ ∧ ∨ ∨ ···

10

∨ ∧ ∨ ∨ ∨ ···

11

∨ ∨ ∧ ∨ ∨ ···

12

∨ ∨ ∨ ∧ ∨ ···

13

1
∨ ∨ ∧ ∨ ∨ ···

f0

∨ ∧ ∨ ∨ ∨ ···

f1

∨ ∨ ∧ ∨ ∨ ···

f2

∨ ∨ ∨ ∧ ∨ ···

f3

∨ ∨ ∧ ∨ ∨ ···

g0

∨ ∧ ∨ ∨ ∨ ···

g1

∨ ∨ ∧ ∨ ∨ ···

g2

∨ ∨ ∨ ∧ ∨ ···

g3

2
∨ ∨ ∧ ∨ ∨ ···

g0 ◦ f0

∧ ∨ ∨ ∨ ∨ ···

g1 ◦ f1

∨ ∧ ∨ ∨ ∨ ···

f0◦g0=g2◦f2=f1◦g1

∨ ∨ ∧ ∨ ∨ ···

g3 ◦ f3 = f2 ◦ g2

∨ ∨ ∧ ∨ ∨ ···

f2 ◦ f0

∨ ∨ ∧ ∨ ∨ ···

g0 ◦ g2

Figure 2. The homogeneous basis vectors of 1BDΛ1B.

2.2. The block B in terms of a quiver with relations. From the defini-
tion of the multiplication, see [ES13a], we directly deduce, using Theorem B,

an explicit description of the locally finite endomorphism ring Endfin
F (P ):

Theorem A. The algebra 1BDΛ1B/I is isomorphic (as graded algebras) to
the path algebra of the following infinite quiver (with grading given by putting
all arrows in degree 1)

0
f0

��
2

g0

VV

g1ww

f2
((
3

g2

hh
f3
((
4

g3

hh
f4 ++

5 · · ·
g4

hh

1

f1
77

(2.8)

modulo the (homogeneous) ideal generated by (the homogeneous relations)
fi+1◦fi = 0 = gi◦gi+1, gi+1◦fi+1 = fi◦gi for i ≥ 0 and g0◦f1 = 0 = g1◦f0,
f0 ◦ g0 = g1 ◦ f1 = g2 ◦ f2 and f2 ◦ f0 = 0 = g0 ◦ g2. Here, the last
two relations are the relations from I. In particular, the category of finite-
dimensional modules of this algebra is equivalent to the principal block B of
F(SOSp(3|2)).

The structure of the indecomposable projective modules for 1BDΛ1B is
displayed in the third line of Figure 1, where each number stands for the
corresponding simple module. The height where the number of a simple
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module occurs, indicates the degree it is concentrated in, when we consider
it as a module for the graded algebra. We displayed the grading filtration
which in this case however agrees with the radical and the socle filtration.
In comparison, the fourth line shows the structure of the indecomposable
projective modules for 1BDΛ1B/I .

The description of the category F(SOSp(3|2)) in Theorem A reproduces
Germoni’s result. The algebra 1BDΛ1B/I in this example also occurs under
the name zigzag algebra (of type D∞) in the literature, [CL10, 2.3]. In
contrast to the general case of F(OSp(r|2n)), it is representation finite as
shown in [Ger00].

2.3. The failure of quasi-hereditarity and cellularity. By [ES13a, Sec-
tion 6], DΛ is quasi-hereditary, and so 1BDΛ1B is a cellular algebra, [KX98,
Proposition 4.3]. Hence we have cell modules ∆(λ) = ∆1BDΛ1B(λ), indexed
by some labelling set (in fact certain weights λ ∈ Λ, but we ignore this
here). We indicate in Figure 1 (by grouping the composition factors) these
cell modules. Note that there are two cell modules with simple head labelled
by 1, since the truncation of our quasi-hereditary algebra D is not compatible
with the quasi-hereditary ordering. Hence although DΛ is quasi-hereditary,
the truncation 1BDΛ1B is only cellular. Factoring out the ideal I of nuclear
morphisms means we kill some of the simple composition factors. The re-
sult is displayed then in the last line in Figure 1. One can also see there for
instance that the cell module ∆(2) gives rise to a different subquotient in
P (0) than in P (3), namely in the notation from Section 1 we have

∆(2) =
2

0 3
 ∆(0, 2) =

2
0

and ∆(3, 2) =
2
3

(2.9)

We leave it to the reader to show that this algebra is not cellular.

2.4. The Calabi-Yau property. We observe that the resulting projective
modules for 1BDΛ1B/I are self-dual and they are in fact the maximal self-
dual quotients of the indecomposable projective modules for 1BDΛ1B. Hence
the projective modules become injective, a property which is well-known to
hold in B, see [BKN11]. More conceptually let τ̃ : 1BDΛ1B → C be the
linear (trace) map defined on basis vectors b from Figure 2 by

τ̃(b) =

1 if b is of the form λνλ (i.e. it has reflection symmetry
in the horizontal reflection line), and deg(b) = 2,

0 otherwise.

and consider the corresponding bilinear map τ defined on basis vectors as

τ : 1BDΛ1B × 1BDΛ1B → C (2.10)

τ(b1, b2) = τ̃(b1b2), (2.11)

This is by definition a symmetric form, which is however degenerate with
radical rad(τ) spanned by the nuclear morphisms f2◦f0, g0◦g2. In particular
1BDΛ1B/I = 1BDΛ1B/ rad(τ) is a noncommutative (symmetric) Frobenius
algebra. Hence we have the following

The block B is the maximal Calabi-Yau quotient (with respect to τ) of the
category of finite-dimensional 1BDΛ1B-modules.
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A corresponding characterisation holds for arbitrary blocks and arbitrary
m,n and will be studied in detail in a subsequent paper.

2.5. Koszulity. By constructing an explicit (infinite) linear projective res-
olutions for each simple module one can check in this special example, that
the algebra 1BDΛ1B/I here is a locally finite Koszul algebra in the sense of
[MOS09]. In general, the algebras from Theorem B are however not Koszul,
see Section 9.4.

3. The orthosymplectic supergroup and its Lie algebra

For the general theory of Lie superalgebras we refer to [Mus12].

3.1. Lie superalgebras. By a (vector) superspace we always mean a finite-
dimensional Z/2Z -graded vector space V = V0 ⊕ V1. For any homo-
geneous element v ∈ V we denote by |v| ∈ {0, 1} its parity. The in-
teger dimV0 − dimV1 is called the supertrace of V , and we denote by
sdimV = dimV0 | dimV1 its superdimension. Given a superspace V let
gl(V ) be the corresponding general Lie superalgebra, i.e. the superspace
EndC(V ) of all endomorphism with the superbracket defined on homoge-
neous elements by

[X,Y ] = X ◦ Y − (−1)|X|·|Y |Y ◦X. (3.12)

If V has superdimension a | b then gl(V ) is also denoted by gl(a | b). It can be
realized as the space of (a+ b)× (a+ b)-matrices viewed as superspace with
the matrix units on the block diagonals being even, and the other matrix
units being odd elements, and the bracket given by the supercommutator
(3.12).

We fix now r, n ∈ Z≥0 and a superspace V = V0 ⊕ V1 of superdimension
r | 2n equipped with a non-degenerate supersymmetric bilinear form 〈−,−〉,
i.e. a bilinear form V × V → C which is symmetric when restricted to
V0×V0, skew-symmetric on V1×V1 and zero on mixed products. From now
on we fix also m ∈ Z≥0 such that r = 2m or r = 2m + 1. We denote by
δ = r − 2n, the supertrace of the natural representation.

Definition 3.1. The orthosymplectic Lie superalgebra g = osp(V ) is the
Lie supersubalgebra of gl(V ) consisting of all endomorphisms which respect
a fixed supersymmetric bilinear form. Explicitly, a homogeneous element
X ∈ osp(V ) has to satisfy for any homogeneous v ∈ V

〈Xv,w〉+ (−1)|X|·|v| 〈v,Xw〉 = 0. (3.13)

In case one prefers a concrete realization in terms of endomorphism of a
superspace one could choose a homogeneous basis vi of V and consider the
supersymmetric bilinear form given by the (skew)symmetric matrices

J sym =

1 0 0
0 0 1m
0 1m 0

 and J skew =

(
0 1n
−1n 0

)
where 1k denotes the respective identity matrix and r is either equal to
2m + 1 or equal to 2m, in the latter case the first column and row of J sym
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are removed. Then g can explicitly be realized as the Lie super subalgebra

of matrices

(
A B
C D

)
in gl(r|2n) where

AtJ sym + J symA = BtJ sym − J skewC = DtJ skew + J skewD = 0.

Then g0 (resp. g1) is the subset of all such matrices with B = C = 0 (resp.
A = D = 0). In particular, g0

∼= so(r) ⊕ sp(2n) with its standard Cartan
h = h0 of all diagonal matrices. We denote therefore g also by osp(r|2n).

Let

X = X(g) =
m⊕
i=1

Zεi ⊕
n⊕
j=1

Zδj . (3.14)

be the integral weight lattice. Here the εi’s and δj ’s are the standard basis
vectors of h∗ picking out the i-th respectively (r + j)-th diagonal matrix
entry. We fix on h∗ the standard symmetric bilinear form (εi, εj) = δi,j ,
(εi, δj) = 0, (δi, δj) = −δi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We define the
parity (an element in Z/2Z) of the ε’s to be 0 and the parity of the δ’s to
be 1 and extend linearly to the whole weight lattice. In the following by a
weight we always mean an integral weight. We will often denote weights as
(m+n)-tuples (a1, a2, . . . , am | b1, b2, . . . , bn), with the coefficients of the ε’s
to the left and those of the δ’s on the right of the vertical line.

Then g decomposes into root spaces that is into weight spaces with respect
to the adjoint action of h,

g = h⊕
⊕
α∈∆

gα.

One can check that gα is either even or odd. Hence we can talk about
even roots and odd roots. Explicitly, the roots for osp(2m|2n) respectively
osp(2m+ 1|2n) are the following, with 1 ≤ i ≤ r, 1 ≤ j ≤ n,

∆(2m|2n) = {±εi ± εi′ ,±δj ± δj′ | i 6= i′} ∪ {±εi ± δj}, (3.15)

∆(2m+ 1|2n) = {±εi,±εi ± εi′ ,±δj ± δj′ | i 6= i′} ∪ {±δj ,±εi ± δj},
where all signs can be chosen independently, and the indices are such that
the expressions exist. (In each case the first set contains the even and the
second the odd roots).

3.2. Supergroups and super Harish-Chandra pairs. Let G(r|2n) be
the affine algebraic supergroup OSp(r|2n) over C. Using scheme-theoretic
language, G(r|2n) can be regarded as a functor G from the category of
commutative superalgebras over C to the category of groups, mapping a
commutative superalgebra A = A0 ⊕A1 to the group G(A) of all invertible
(r + 2n)× (r + 2n) orthosymplectic matrices over A, see [Ser11, Section 3].
This functor is representable by an affine super Hopf algebra (i.e. a finitely
generated supercommutative super Hopf algebra) R = C[G], and there is a
contravariant equivalence of categories between the categories of algebraic
supergroups and of affine super Hopf algebras extending the situation of
algebraic groups in the obvious way, see e.g. [Fio03], [Mas13]. By restricting
the functor G to commutative algebras defines an (ordinary) algebraic group
G0 represented by R/I = C[G]/I, where I is the ideal generated by the odd
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part of R. In case of G(r|2n) this algebraic group is just O(r) × Sp(2n).
Similarly, we also have the affine algebraic supergroup G′ = SOSp(r|2n)
over C with algebraic group SO(r) × Sp(2n). They both have osp(r|2n)
as the associated Lie superalgebra. We refer to [Ser11, Section 3] for more
details on these constructions.

We are interested in the category C(r|2n) of finite-dimensional G-modules
or equivalently the category of integrable g-modules, that is Harish-Chandra
modules for the super Harish-Chandra pair (g, G, a), where a is the adjoint
action, see [Vis11]. To make this more precise we recall some facts.

Definition 3.2. A super Harish-Chandra pair is a triple (g, G0, a) where
g = g0⊕g1 is a Lie superalgebra, G0 is an algebraic group with Lie algebra g0,
and a is a G0-module structure on g whose differential is the adjoint action of
g0. A Harish-Chandra module for such a triple or shorter a (g, G0, a)-module
is then a g-module M with a compatible G0-module structure (that means
the derivative of the G0-action agrees with the action of g0). We denote by
(g, G0, a)−mod the category of finite-dimensional (g, G0, a)-modules.

Given any super Harish-Chandra pair (g, G0, a) one can construct a Hopf
superalgebra R = C[G] such that g is the Lie algebra of the supergroup
G and R/I = C[G0]. Namely R = HomU(g0)(U(g),C[G0]), where U(h)
denotes the universal enveloping (super)algebra of a Lie superalgebra h, and
where U(g0) acts by left invariant derivations on C[G0], see [Ser11, (3.1)]
for precise formulas and the description of the Hopf algebra structure - with
the dependence on the action a. This assignment Φ : (g, G0, a) 7→ G for
any super Harish-Chandra pair can be extended in fact to the following
equivalence of categories, see [Vis11], [Bal11] for the super case, but the
arguments are very much parallel to the classical case from [Kos77].

Proposition 3.3. The assignment Φ : (g, G0, a) 7→ G induces the following:

(1) The category of super Harish-Chandra pairs is equivalent to the cat-
egory of algebraic supergroups.

(2) Moreover the category of finite-dimensional (g, G0, a)-modules, de-
noted by (g, G0, a)−mod, is equivalent to the category G−mod of
finite-dimensional G-modules.

The category C(G) of finite-dimensional G-modules has enough projec-
tives and enough injectives, [Ser11, Lemma 9.1], in fact projective and in-
jective modules agree, [BKN11, Proposition 2.2.2].

4. Finite-dimensional representations

We are interested in the category of Harish-Chandra modules for the
particular super Harish-Chandra pairs arising from the (special) orthosym-
plectic supergroups. Since the action a in this cases is always the adjoint
action, we will usually omit it in the notation. From now on we fix r, n ∈ Z≥0

and use the following abbreviations:

g = osp(r|2n) G = OSp(r|2n), G′ = SOSp(r|2n),

C = C(OSp(r|2n)) C′ = C(SOSp(r|2n))

The simple objects in C′ are (viewed as Harish-Chandra modules) highest
weight modules, and every simple object is up to isomorphism and parity
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shift uniquely determined by its highest weight, see e.g. [Ser11, Theorem
9.9]. More precisely, the category C′ decomposes into a direct sum of two
equivalent subcategories

C′ = F(SOSp(r|2n))⊕ΠF(SOSp(r|2n))

namely F(SOSp(r|2n)) and its parity shift ΠF(SOSp(r|2n)), where the cat-
egory F(SOSp(r|2n)) contains all objects such that the parity of any weight
space agrees with the parity of the corresponding weight. Similarly, the
categories C decomposes into F = F(OSp(r|2n)) and its parity shift, where
F consists of those modules that lie in F(SOSp(r|2n)) when restricted to
SOSp(r|2n). Therefore it suffices to restrict ourselves to study the sum-
mands

F ′ = F(SOSp(r|2n)) respectively F = F(OSp(r|2n)),

which we will consider now in more detail.

4.1. Finite-dimensional representations of SOSp(r|2n). We first con-
sider the case of the special orthosymplectic group. With a fixed Borel sub-
algebra in G′, every irreducible module in F ′ (viewed as integrable module
for g) is a quotient of a Verma module, in particular a highest weight module
L(λ) for some highest weight λ, see [Ser11, Theorem 9.9]. The occurring
highest weights are precisely the dominant weights. The explicit dominance
condition on the coefficients of λ in our chosen basis (3.14) depends on the
choice of Borel we made, since in the orthosymplectic case Borels are not
always pairwise conjugate. We follow now closely [GS13] and fix the slightly
unusual choice of Borel with maximal possible number of odd simple roots,
see [GS10], with the simple roots given as follows:

For osp(2m+ 1|2n):

if m ≥ n :

{
ε1 − ε2, ε2 − ε3, . . . , εm−n − εm−n+1,

εm−n+1 − δ1, δ1 − εm−n+2, εm−n+2 − δ2, . . . , εm − δn, δn.

if m < n :

{
δ1 − δ2, δ2 − δ3, . . . , δn−m−1 − δn−m,

δn−m − ε1, ε1 − δn−m+1, δn−m+1 − ε2, . . . , εm − δn, δn.

For osp(2m|2n):

if m > n :

 ε1 − ε2, ε2 − ε3, . . . , εm−n−1 − εm−n,
εm−n − δ1, δ1 − εm−n+1, εm−n+1 − δ2, . . . , δn − εm,

δn + εm.

if m ≤ n :

 δ1 − δ2, δ2 − δ3, . . . , δn−m − δn−m+1,
δn−m+1 − ε1, ε1 − δn−m+2, δn−m+2 − ε2, . . . , δn − εm,

δn + εm.

This choice of Borel has the advantage that the dominance conditions
look similar to the ordinary ones for semisimple Lie algebras and moreover
is best adapted to our diagrammatics. To formulate it, let ρ be half of the
sum of positive even roots minus the sum of positive odd roots, explicitly
given as follows.
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For g = osp(2m+ 1|2n): In this case δ
2 = m− n+ 1

2 and

ρ =

{(
δ
2 − 1,− δ

2 − 2, . . . , 1
2 ,−

1
2 , . . . ,−

1
2

∣∣ 1
2 , . . . ,

1
2

)
if m ≥ n,(

−1
2 , . . . ,−

1
2

∣∣− δ
2 ,−

δ
2 − 1, . . . , 1

2 , . . . ,
1
2

)
if m < n.

For g = osp(2m|2n): In this case δ
2 = m− n and

ρ =

{(
δ
2 − 1, δ2 − 2, . . . , 1, 0, . . . , 0

∣∣ 0, . . . , 0) if m > n,(
0, . . . , 0

∣∣− δ
2 ,−

δ
2 − 1, . . . , 1, 0, . . . , 0

)
if m ≤ n.

Remark 4.1. Note that n = 0 gives ρ = (m− 1,m− 2, . . . , 0) in the even
orthogonal case and ρ = (m − 1

2 ,m−
3
2 , . . . ,

1
2) in the odd orthogonal case;

and ρ = (n, n− 1, . . . , 1) in case m = 0. These are precisely the values for ρ
for the semisimple Lie algebras of type Dm, Bm, Cn.

Definition 4.2. For our choice of Borel, a weight λ ∈ X(g) is dominant if

λ+ ρ =
m∑
i=1

aiεi +
n∑
j=1

bjδj (4.16)

satisfies the following dominance condition, see [GS10].

For g = osp(2m+ 1|2n):

(i) either a1 > a2 > · · · > am ≥ 1
2 and b1 > b2 > · · · > bn ≥ 1

2 ,

(ii) or a1 > a2 > · · · > am−l−1 > am−l = · · · = am = −1
2 and

b1 > b2 > · · · > bn−l−1 ≥ bn−l = · · · = bn = 1
2 ,

For g = osp(2m|2n):

(i) either a1 > a2 > · · · > am−1 > |am| and b1 > b2 > · · · > bn > 0,
(ii) or a1 > a2 > · · · > am−l−1 ≥ am−l = · · · = am = 0 and

b1 > b2 > · · · > bn−l−1 > bn−l = · · · = bn = 0.

The set of dominant weights is denoted X+(g).

Note X+(osp(2m+ 1|2n)) ⊂ 1
2 + Zm+n and X+(osp(2m|2n)) ⊂ Zm+n.

Definition 4.3. Assume r = 2m. If λ ∈ X+(g), written in the form 4.16,
satisfies am 6= 0, then we write λ = λ+ if am > 0, and we write λ = λ− if
am < 0.

Definition 4.4. Weights satisfying (i) are called tailless and the number
l + 1 from Definition 4.2 is the tail length, tail(λ), of λ.

Example 4.5. The zero weight is always dominant with maximal possible
tail length, namely tail(0) = min{m,n}.

For λ ∈ X+(g) let P g(λ) be the projective cover of Lg(λ), see [BKN11]
for a construction, and Ig(λ) its injective hull. Then the P g(λ) (respectively
Ig(λ)), with λ ∈ X+(g), form a complete non-redundant set of representa-
tives for the isomorphism classes of indecomposable projective (respectively
injective) objects in F ′.
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4.2. Finite-dimensional representations of OSp(r|2n). We recall the
classification of the simple finite-dimensional representations of G using the
one for G′.

For this let σ ∈ Z/2Z be the non-unit element. Via (1.5) it corresponds
to an element in OSp(2m|2n), also called σ, which acts as an involution on
SOSp(2m|2n) preserving the maximal torus. On weights it acts as σ(εm) =
−εm and σ(εi) = εi, σ(δi) = δi for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n. We have
OSp(2m|2n) = SOSp(2m|2n) ∪ σ SOSp(2m|2n).

To construct the irreducible representations we use a very special case
of Harish-Chandra induction which we recall now. Let (g, H, a) be a super
Harish-Chandra pair and H ′ a subgroup of H such that (g, H ′, a′ = a|H′)
is also a super-Harish Chandra pair. Then there is a (Harish-Chandra)
induction functor

Indg,H
g,H′ : (g, H ′, a′)−mod −→ (g, H, a)−mod, (4.17)

where Indg,H
g,H′ N = {f : H → N | f(xh) = xf(h), h ∈ H,x ∈ H ′} is the

usual induction for algebraic groups, [Jan03, 3.3]. The H-action is given by
the right regular action and the g-action is just the g-action on N . This

functor Indg,H
g,H′ is left exact. It sends injective objects to injective objects,

[Jan03, Proposition 3.9], and it is right adjoint to the restriction functor

Resg,H
′

g,H , [Jan03, Proposition 3.4].

We apply this to the two super Harish-Chandra pairs (g, G′) and (g, G).

4.2.1. The odd case: SOSp(2m + 1|2n). In the odd case, the element σ is
central and thanks to (1.4) we can describe the simple objects in F :

Proposition 4.6. For G = OSp(2m+ 1|2n) the set

X+(G) = X+(g)× Z/2Z = {(λ, ε) | λ ∈ X+(g), ε ∈ {±}}

is a labelling set for the isomorphism classes of irreducible G-modules in
F . The simple module L(λ,±) is hereby just the simple G′-module Lg(λ)
extended to a module for G by letting σ act by ±1.

Note that Indg,G
g,G′ L

g(λ) ∼= L(λ,+) ⊕ L(λ,−). By construction, the cat-

egory F decomposes as F+ ⊕ F−, where F± is the full subcategory of
F containing all representations with composition factors only of the form
L(λ,±), and moreover F± ∼= F ′.

Remark 4.7. In particular we have for λ, µ ∈ X+(g)

HomF (I(λ,+), I(µ,−)) = {0} = HomF (I(λ,−), I(µ,+)), (4.18)

HomF (P (λ,+), P (µ,−)) = {0} = HomF (P (λ,−), P (µ,+)), (4.19)

and the nonzero morphism spaces are controlled by those for g:

HomF (P (λ,±), P (µ,±)) = HomF ′(P
g(λ), P g(µ)). (4.20)

Corollary 4.8. Given (λ, ε) and (µ, ε′) in X+(G) it holds: L(λ, ε) and
L(µ, ε′) are in the same block of F if and only if ε = ε′ and Lg(λ) and Lg(µ)
are in the same block of F ′.
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4.2.2. The even case: OSp(2m|2n). In the even case the situation is slightly
more involved, since σ is not central. We first construct the irreducible
representations using Harish-Chandra induction.

Remark 4.9. Note that the natural vector representation V = C2m+1|2n

can be identified with L(ε,−1). In particular, σ acts on a d-fold tensor
product V ⊗d by −1 iff d is odd and by 1 iff d is even. This implies that
there is no G-equivariant morphism from V ⊗d to V ⊗d

′
in case d 6≡ d′mod 2.

Definition 4.10. For G = OSp(2m|2n) we introduce the following set:

X+(G) = {(λ, ε) | λ ∈ X+(g)/σ and ε ∈ Stabσ(λ)},
where Stabσ denotes the stabilizer of λ under the group generated by σ.

Notation 4.11. To avoid overloading of notation we usually just write λ
instead of (λ, ε) if the representatives of λ have trivial stabilizer. Otherwise
the orbit has a unique element. In this case the stabilizer has two elements
and we often write (λ,+) for (λ, e) and (λ,−) for (λ, σ). In addition we
write λG for the σ-orbit of λ ∈ X+(g). We will omit this superscript if the
orbit consists of a single element.

Proposition 4.12. Consider g = osp(2m|2n), G = OSp(2m|2n), and G′ =
SOSp(2m|2n). Assume

λ =

m∑
i=1

aiεi +

n∑
j=1

bjδj − ρ ∈ X+(g) (4.21)

and let Lg(λ) ∈ F ′ be the corresponding irreducible highest weight represen-

tation of G′ with injective cover Ig(λ). Then with Indg,G
g,G′ from (4.17) the

following holds:

(1) for induced irreducible representations:
(a) If am 6= 0 then the (osp(2m|2n),OSp(2m|2n))-module

L(λG) = L(λG, e) := Indg,G
g,G′ L

g(λ) (4.22)

is irreducible. Moreover,

Indg,G
g,G′ L

g(λ) ∼= Indg,G
g,G′ L

g(σ(λ)). (4.23)

(b) If am = 0 then

Indg,G
g,G′ L

g(λ) =: L(λ,+)⊕ L(λ,−) (4.24)

is a direct sum of L(λ,+), and L(λ,−), two non-isomorphic
irreducible (osp(2m|2n),OSp(2m|2n))-modules. As G′-modules
they are isomorphic to Lg(λ).

(2) for induced injective representations:

(a) If am 6= 0 then I(λG) := Indg,G
g,G′ I

g(λ) is the indecomposable

injective hull of L(λG).

(b) If am = 0 then Indg,G
g,G′ I

g(λ) ∼= I(λ,+)⊕ I(λ,−), where I(λ,±)

denotes the injective hull of L(λ,±).
(3) The same formulas hold for the indecomposable projective objects.

As a consequence we obtain the following:
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Proposition 4.13. The set {L(λ, ε) | (λ, ε) ∈ X+(G)} is a complete non-
redundant set of representatives for the isomorphism classes of irreducible
G-modules in F .

Proof of Propositions 4.12 and 4.13. The arguments for part (1) of Propo-
sition 4.12 and the classification of irreducible representations in Proposi-
tion 4.13 are precisely as in the classical case, see e.g. [GW09, 5.5.5]. By
construction and the proof there,

Resg,G
′

g,G L(λ,±) ∼= Lg(λ) and Resg,G
′

g,G L(λG) ∼= Lg(λ)⊕ Lg(σ(λ)) (4.25)

where (λ,±) is as in (1)(b) respectively λ as in (1)(a). More precisely, it
is proved that the modules L(λ,±) are isomorphic to Lg(λ) as G′-modules;
with the action extended to G such that σ acts on the highest weight vector
by multiplication with the scalar 1 or −1 (but see also Lemma 4.16 and
Remark 4.7).

Since the functor Indg,G
g,G′ sends injective objects to injective objects, and

is right adjoint to the restriction functor, [Jan03, Propositions 3.4. and
3.9], the statements (2) of Proposition 4.12 can be deduced as follows. Let
µ ∈ X+(g) with

µ =

m∑
i=1

a′iεi +

n∑
j=1

b′jδj − ρ. (4.26)

If am 6= 0 in (4.21) we obtain for any simple G-module L ∈ F

HomF (L, Indg,G
g,G′ I

g(λ))

∼=

{
HomF ′(L

g(µ)⊕ Lg(σ(µ)), Ig(λ)) if L = L(µG), i.e. a′m 6= 0,

HomF ′(L
g(µ), Ig(λ)) = {0}, if L = L(µ,±), i.e. a′m = 0,

where the isomorphism holds by adjunction and the first paragraph of the
proof. Whereas if am = 0, we have

HomF (L, Indg,G
g,G′ I

g(λ))

∼=

{
HomF ′(L

g(µ)⊕ Lg(σ(µ)), Ig(λ)) = {0}, if L = L(µG), i.e. a′m 6= 0,

HomF ′(L
g(µ), Ig(λ)), if L = L(µ,±), i.e. a′m = 0,

where the first homomorphism space vanishes since Ig(λ) is the injective
hull of Lg(λ). This proves part (2) in Proposition 4.12.

To prove the analogous statements (3) for indecomposable projective mod-
ules, recall that any indecomposable projective is also injective, [BKN11,
Proposition 2.2.2]. Hence P (λG) ∼= I(Φ(λG)) and P (λ,±) ∼= I(Φ(λ,±)) for
some function Φ : X+(g) → X+(g). By [BKN11, Proposition 2.2.1], the
function Φ can be computed as follows: let N = dim g1 = 8mn and consider
the 1-dimensional g0-module

∧N g1 of weight ν. Then there is an isomor-
phism of G′-modules P g(λ) ∼= Ig(λ + ν). Set µ = λ + ν. Then, using the
explicit description (3.15) of the odd roots in osp(2m|2n), one can easily
check that in ν the coefficient for εm vanishes, and therefore am 6= 0 if and
only if a′m 6= 0 in the notation of (4.21) and (4.26). Hence, Φ preserves the
condition am 6= 0. Therefore, the formulas for induced projective modules
agree with the formulas for the induced injective modules. �
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We have restriction formulas for the projective-injective modules:

Lemma 4.14. Let λ ∈ X+(g). There are isomorphisms of G′-modules

Resg,G
′

g,G I(λG) ∼= Ig(λ)⊕ Ig(σ(λ)) if λ 6= σ(λ) and

Resg,G
′

g,G I(λ,±) ∼= Ig(λ) otherwise.

Similarly for the indecomposable projective objects.

Proof. Let P ∈ F be indecomposable projective. Then HomG(P,− ) is exact.

For our special case, the induction functor Indg,G
g,G′ is exact as well, [Jan03,

3.8.(3), see also 4.9] using (1.5), and right adjoint to the restriction functor,

hence we obtain that Resg,G
′

g,G P is projective. The restriction formulas for

projective modules follow then using adjunction from (4.22) and (4.24). Us-
ing the identification with indecomposable injective objects (as in the last
part of the proof of Proposition 4.13), the claims follow also for these. �

Lemma 4.15. Assume λ ∈ X+(g) with am = 0 in the notation from (4.21).
Then as G′-modules I(λ,+) ∼= I(λ,−), similarly for P (λ,±).

Proof. We first claim that our Harish-Chandra induction commutes with
Lie algebra induction in the following sense. Let M be a finite-dimensional
Harish-Chandra module for (g0, G

′). Then there is a natural isomorphism
of Harish-Chandra modules for (g, G) as follows

U(g)⊗U(g0) (Indg0,G
g0,G′

M) ∼= Indg,G
g,G′(U(g)⊗U(g0) M).

u⊗ f 7→ fu, (4.27)

where fu(g) = u ⊗ f(g) for any g ∈ G. The map is obviously well-defined
and injective, and therefore also an isomorphism by a dimension count using
that U(g) is free over U(g0) of finite rank.

By Proposition 4.12 (2) (b) we obtain P (λ,+)⊕P (λ,−) ∼= Indg,G
g,G′ P

g(λ).

On the other hand, by [BKN11, Proof of Proposition 2.2.2], the indecompos-
able (g, G′)-module P g(λ) is a summand of U(g)⊗U(g0) L0(λ), where L0(λ)
is the irreducible (g0, G

′)-Harish-Chandra module of highest weight λ.
Together with (4.27) and Proposition 4.12 we get that P (λ,±) is a sum-

mand of

U(g)⊗U(g0) (Indg0,G
g0,G′

L0(λ)) ∼= U(g)⊗U(g0) (L0(λ,+)⊕ L0(λ,−))

By carefully following the highest weight vectors through the isomorphism
we obtain that P (λ,±) is in fact a summand of U(g) ⊗U(g0) L0(λ,±). By
Proposition 4.12 (1) (b) the action of σ on L0(λ,+) is given by a scalar,
hence it acts by the same scalar on the highest weight vector of U(g)⊗U(g0)

L0(λ,+), and thus also on the highest weight vector of P (λ,±). The anal-
ogous statements hold then for I(λ,±) as well (again via the identification
Φ from the proof of Proposition 4.13). �

The following separates the indecomposable projective modules P (λ,±)
into two groups, depending on the sign:

Lemma 4.16. Let G = OSp(2m|2n). Consider the set X+(g)sign = {λ ∈
X+(g) | am = 0} in the notation from (4.21). Then the sign in the labelling
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of the irreducible modules from (4.24) can be consistently chosen such that
the following holds for any λ, µ ∈ X+(g)sign:

HomF (I(λ,+), I(µ,−)) = {0} = HomF (I(λ,−), I(µ,+)), (4.28)

HomF (P (λ,+), P (µ,−)) = {0} = HomF (P (λ,−), P (µ,+)). (4.29)

Proof. The proof of this Lemma will be given in Part II of this series. It
is a consequence of the action of the Jucys-Murphy elements of the Brauer
algebra. The proof is a rather easy induction argument, but requires a few
combinatorial facts about the action of Jucys-Murphy elements. �

We deduce now a few dimension formulas for homomorphism spaces.

Proposition 4.17. Let λ, µ ∈ X+(g). With the notations from Proposi-
tion 4.12, in particular (4.21) and (4.26), we have the following.

(1) If am = 0 6= a′m then

dim HomF (I(λ,±), I(µG)) = dim HomF ′(I
g(λ), Ig(µ)) (4.30)

= dim HomF ′(I
g(λ), Ig(σ(µ)) (4.31)

dim HomF (I(µG), I(λ,±)) = dim HomF ′(I
g(µ), Ig(λ)) (4.32)

= dim HomF ′(I
g(σ(µ)), Ig(λ)) (4.33)

(2) If am > 0 < a′m or am < 0 > a′m then

dim HomF (I(λG), I(µG)) = dim HomF ′(I
g(λ), Ig(µ)) (4.34)

= dim HomF ′(I
g(σ(λ)), Ig(σ(µ)) (4.35)

(3) If am = 0 = a′m then

dim HomF (I(λ,±), I(µ,±)) = dim HomF ′(I
g(λ), Ig(µ)), (4.36)

dim HomF (I(λ,±), I(µ,∓)) = {0}, (4.37)

The analogous formulas hold for indecomposable projective objects.

Proof. For the first statement (4.30) we calculate using Proposition 4.12,
adjunction of restriction and induction and Lemma 4.14

dim HomF (I(λ,±), I(µG)) = dim HomF (I(λ,±), Indg,G
g,G′ I

g(µ))

= dim HomF ′(Resg,G
′

g,G I(λ,±), Ig(µ))

= dim HomF ′(I
g(λ), Ig(µ)).

Similarly, (4.31) holds. Again, the same formulas hold for projective objects.
On the categories F and F ′ there is the usual duality d, [Mus12, 13.7.1],
given by taking the sum of the vector space dual of the weight spaces with
the action of g, G, G′ twisted by the Chevalley automorphism. This du-
ality sends simple objects to simple objects and their injective hulls to the
projective covers. Applying d to (4.30) resp.(4.31) gives (4.32) and (4.33).

For the statement (4.34) we calculate

dim HomF (I(λG), I(µG)) = dim HomF (I(λG), Indg,G
g,G′ I

g(µ))

= dim HomF ′(Resg,G
′

g,G I(λG), Ig(µ))

= dim HomF ′(I
g(λ)⊕ Ig(σ(λ)), Ig(µ))

= dim HomF ′(I
g(λ), Ig(µ)),
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again using Proposition 4.12, adjunction and Lemma 4.14 for the first to
third equalities. The last one follows from the Gruson-Serganova combina-
torics, [GS13], see Proposition 8.1 (1). Hence, (4.34) and similarly (4.35)
follow.

The second part of (3) is exactly (4.28). For the first part we calculate

dim HomF ′(I
g(λ), Ig(µ)) = dim HomF ′(Resg,G

′

g,G I(λ,±), Ig(µ))

= dim HomF ′(I(λ,±), Indg,G
g,G′ I

g(µ)) = dim HomF (I(λ,±), I(µ,±)),

where we used again Lemma 4.14, adjunction, Proposition 4.12 and finally
(4.28). Again, the analogous formulas for the projectives hold as well. �

4.3. The Cartan matix. We apply the results so far to deduce the sym-
metry of the Cartan matrix:

Proposition 4.18. Consider G = OSp(r|2n) for fixed m,n. The Cartan
matrix of F is symmetric, i.e. for any λ, µ ∈ X+(G) we have an equality of
multiplicities of irreducible modules in a Jordan-Hölder series:

[P (λ) : L(µ)] = [P (µ) : L(λ)], (4.38)

and therefore dim HomF (P (λ), P (µ)) = dim HomF (P (µ), P (λ)).

Proof. We first claim the analogous formulas for F ′. So given λ, µ ∈ X+(g),
the multiplicity [P g(λ) : Lg(µ)] is the coefficient of the class of Lg(µ) when we
express the class of [P g(λ)] in terms of the classes of the irreducible modules
of F ′ in the Grothendieck group of F ′. Now by [GS13] we have another
class of linearly independent elements in the Grothendieck group, namely
the Euler-characteristics Eg(ν), where ν runs through all tailless elements
in X+(g) and the classes [P g(λ)] are all in the Z-lattice spanned by these,
with coefficients denoted by (P g(λ) : Eg(ν)), see [GS13, Theorem 1]. Hence

[P g(λ) : Lg(µ)] =
∑
ν

(P g(λ) : Eg(ν))[Eg(ν) : Lg(µ)]

=
∑
ν

[Eg(ν) : Lg(λ)][Eg(ν) : Lg(µ)]

= [P g(µ) : Lg(λ)],

where the second equality is the BGG-reciprocity, [GS13, Theorem 1], and
the third equality holds then by symmetry. Hence the analogue of (4.38) for
F ′ holds. Now dim HomF ′(P

g(λ), Lg(λ)) = 1, since Lg(λ) is a highest weight
module, and therefore dim HomF ′(P

g(λ), P g(µ)) = [P g(µ) : Lg(λ)]. Hence
the proposition holds for F ′. (Alternatively one could use that P g(λ) ∼=
Ig(λ) and apply the usual simple preserving duality on F ′). Proposition 4.12
implies that dim EndF (L) = 1 for any irreducible object in F . Then the
statement from the proposition follows directly from the statement for F ′
and the formulas for the dimensions of homomorphism spaces (Lemma 4.16
and Proposition 4.17). �

4.4. Hook partitions. Let still G = OSp(r|2n) for r = 2m + 1 or r =
2m and recall (from Propositions 4.6 and 4.10 and (4.2)) the labelling sets
X+(G) respectively X+(g) for the isomorphism classes of irreducible objects
in F and F ′ respectively.
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Figure 3. The translation between weights and hook partitions.

A different common labelling of the simple modules in F ′ is given by hook
partitions, see e.g. [CW12]. To make the connection, recall that a partition,
denoted4 by pγ, is a weakly decreasing sequence of non-negative integers,
pγ = (pγ1 ≥ pγ2 ≥ · · · ). We denote by pγt its transpose partition, i.e.
pγti = |{k | λk ≥ i}|. A partition pγ is called (n,m)-hook if pγn+1 ≤ m. The
partition pγ = (8, 7, 6, 3, 3, 1) is for instance (5, 7)-hook and (5, 5)-hook, but
not (2, 5)-hook, see Figure 3. Note that the empty partition ∅ is (n,m)-hook
for any n,m ≥ 0. and corresponds to the zero weight via the following.

Definition 4.19. Given an (n,m)-hook partition pγ we associate weights

wt(pγ) ∈ X+(osp(2m+ 1|2n)), respectively wt(pγ) ∈ X+(osp(2m|2n))

defined, via (4.21), as follows, (with 1 ≤ i ≤ m, 1 ≤ j ≤ n):

• in the odd case wt(pγ) = (a1, a2, . . . , am | b1, b2, . . . , bn)− ρ, where

bj = max

{
pγj − j −

δ

2
+ 1,

1

2

}
and ai = max

{
pγti − i+

δ

2
,−1

2

}
,

• in the even case wt(pγ) = (a1, a2, . . . , am | b1, b2, . . . , bn)− ρ, where

bj = max

{
pγj − j −

δ

2
+ 1, 0

}
and ai = max

{
pγti − i+

δ

2
, 0

}
.

The ai and bj give a different way to describe (n,m)-hook partitions by

encoding the number of boxes below and to the right of the b δ2c-shifted
diagonal (which we just call diagonal). For example let λ = (8, 7, 6, 3, 3, 1).
Consider it as a hook partition, for instance as (5, 7)-hook respectively (5, 5)-
hook, and mark the diagonal which intersects the inflexion point of the hook
(it is exactly the diagonal, where the boxes have content δ

2 + 1
2 respectively

δ
2 + 1, where the content is the row minus the column number of the box).

• In the even case on the other hand ai counts the number of boxes in
column i strictly below the diagonal. While bj counts the number
of boxes in row j on and to the right of this diagonal. In the first
two cases of Figure 3 we get a = (7, 5, 4, 1, 0, 0, 0), respectively a =
(5, 3, 2, 0, 0), and on the other hand b = (6, 4, 2, 0, 0), respectively
b = (8, 6, 4, 0, 0).
• In the odd case this implies that ai counts the number of boxes in

column i on and below the diagonal minus 1
2 . On the other hand bj

4We chose this notation to distinguish partitions from integral weights
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counts the number of boxes in row j strictly to the right of this diag-
onal minus 1

2 and takes the absolute value of this expression. In the

third case above in Figure 3 this gives a = (15
2 ,

11
2 ,

9
2 ,

3
2 ,

1
2 ,−

1
2 ,−

1
2)

and b = (11
2 ,

7
2 ,

3
2 ,

1
2 ,

1
2).

(Note that we also count the numbers of boxes which can be put in the
region between the marked diagonal and the partition, i.e. above or to the
left of the diagram depending on the given diagonal.)

Definition 4.20. A signed (n,m)-hook partition is an (n,m)-hook partition
pγ with pγn+1 ≥ m or a pair (pγ, ε) of an (n,m)-hook partition with pγn+1 <
m and a sign ε ∈ {±}.

The following easy identification allows us to work with hook partitions
plus signs (in the odd case) respectively with signed hook partitions (in the
even case) instead of dominant weights:

Lemma 4.21. The assignments pγ 7→ wt(pγ) defines a bijection

Ψ = Ψ2m+1,2n : {(n,m)− hook partitions} × Z/2Z 1:1↔ X+(G) (4.39)

(pγ,±) 7→ (wt(pγ),±)

in case G = OSp(2m+ 1|2n), and in case G = OSp(2m|2n) a bijection

Ψ = Ψ2m,2n : {(n,m)− signed hook partitions} 1:1↔ X+(G)

pγ 7→ wt(pγ)

(pγ,±) 7→ (wt(pγ),±)).

In either case: given λ ∈ X+(G), we denote by pλ the unique hook partition
such that pλ respectively (pλ,±) is the preimage of λ under Ψ and call it the
underlying hook partition.

Proof. Take an (n,m)-hook partition pγ. To see that the maps are well-
defined it suffices to show that wt(pγ) us a dominant weight for g (since we
can clearly ignore the signs).

Let us first consider the case Ψ2m,2n. Since pγ is a partition we have
ai+1 < ai and bj+1 < bj whenever they are defined and non-zero. For the
map to be well-defined it remains to show that the number of zero a’s is
equal or one larger than the number of zero b’s.

Claim: For s ≤ min{m,n} we have am−s > 0 implies bn−s > 0. If
bn−s = 0 then pγn−s−m+n−n+s+1 ≤ 0, hence pγn−s ≤ m−s−1 and so
pγ has at most n−s−1 rows of length m−s. This means pγtm−s ≤ n−s−1
and thus am−s = pγtm−s − n+m−m+ s ≤ n− s− 1− n+ s = −1 which is
a contradiction and the claim follows. This shows that there are at least as
many zero a’s as b’s. It suffices now to show that am−r = 0 forces bn−r+1 = 0.
So assume am−r = 0. Since am−n−1 = pγtm−n−1 − n + m − m + n − 1 =
pγtm−n−1 + 1 > 0 we see that am−r = 0 implies r ≤ n and so bn−r+1 must
exist. If bn−r+1 = pγn−r+1−m+n−n+ r−1 + 1 > 0,then pγn−r+1 > m− r
which implies pγtm−r ≤ n−r+1 and therefore am−r = pγtm−r−n+m−m+r ≥
n−r+1−n+r ≥ 1 which is a contradiction. Hence the map is well-defined
and obviously injective.

Clearly the weights in the image satisfy am ≥ 0. For the description of
the image it suffices to show that if (a |b) ∈ X+(g) satisfies the dominance
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condition from Definition 4.2 with am > 0 in case (i) then it comes from
a hook partition. It is enough to see it defines a partition, since bj is only
defined for 1 ≤ j ≤ n and ai for 1 ≤ i ≤ m, hence if it is a partition it must
be (n,m)-hook. For that it suffices to see that ai 6= 0 with i = δ

2 + k for
some k implies bk ≥ 1. Write i = m− s then this is equivalent to (am−s 6= 0
implies bn−s ≥ 1), since k = i− d

2 = i−m+n = n− s. But this was exactly
the claim above. The arguments for Ψ2m+1,2n are analogous, but this last
step is even easier. �

Definition 4.22. The tail length tail(λ) of λ ∈ X+(G) or equivalently of
the underlying hook partition, is equal to min{m,n} − d, where d is the
number of boxes on the diagonal of the hook partition.

It is easy to check that this notion agrees with the notion of tail from
Definition 4.4. Note that tail(λ) counts the number of missing boxes on the
diagonal of the hook partition, in particular, it is maximal possible for the
empty partition, i.e. the zero weight.

We will present now a new (and more convenient) way of encoding dom-
inant weights and the labeling set of irreducible finite-dimensional repre-
sentations of G in terms of diagrammatic weights. This is in the spirit of
[BS12b] built on the combinatorics introduced in [ES13a].

5. Diagrammatics

We attach now a certain diagrammatic weight to each simple object in
F(G). This will allow us to develop a diagrammatic description of the
morphism spaces between indecomposable projective objects in the corre-
sponding categories F(G).

5.1. Diagrammatic weights attached to X+(G). To establish the com-
binatorics consider the non-negative number line L and call its integral
points vertices.

Definition 5.1. An (infinite) diagrammatic weight or just a diagrammatic
weight λ is a diagram obtained by labelling each of the vertices by exactly
one of the symbols × (cross), ◦ (nought), ∨ (down), ∧ (up); for the position
zero we do not distinguish the labels ∧ and ∨ and use instead the label 3.
The vertices labelled ◦ or × are called core symbols and the diagram obtained
from λ by removing all symbols ∧, ∨ and � is called its core diagram.

For a diagrammatic weight λ we denote by # × (λ), # × (λ), # ∧ (λ),
#∨(λ) the number of crosses, noughts, downs and ups respectively occurring
in λ.

Definition 5.2. A diagrammatic weight λ is called

• finite if # ∨ (λ) + # ∧ (λ) + #× (λ) <∞, and
• of partition type if # ∨ (λ) + # ◦ (λ) + #× (λ) <∞, and
• super or of finite type if # ∧ (λ) + # ◦ (λ) + #× (λ) <∞.

Hence a finite weight has only noughts far to the right, and a weight of
finite type has only ∨’s far to the right, and a weight of partition type has
only ∧’s far to the right. For instance, consider the diagrammatic weights

∨ ◦ × ∧ × ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∨ ∧ ? ? ? ? · · · (5.40)



COMBINATORICS OF OSp(r|2n) 29

where the ?’s and the dots indicate either only ◦’s, only ∨’s or only ∧’s
respectively. Then the resulting three weights λfin, λfint, and λpart are finite,
finite type or partition type respectively.

Definition 5.3. Two diagrammatic weights λ and µ are linked or in the
same block if their core diagrams coincide, and in addition the parities of
the total number of ∧’s agree, in formulas

# ∧ (λ) ≡ # ∧ (µ) mod 2.

in case there is no 3.

We now assign to each (n,m)-hook partition γ a diagrammatic weight .

Definition 5.4. For any partition pγ and δ = r − 2n set

S(pγ) =

(
δ

2
+ i− pγi − 1

)
i≥1

. (5.41)

This is a strictly increasing sequence of half-integers (i.e. from Z + 1
2)

if r is odd, and of integers in case r is even. In case r is odd we identify
the vertices of L order-preserving with Z≥0 + 1

2 . That means we have then

vertices 1
2 ,

3
2 , . . .. In case r is even, we identify the vertices of L order-

preserving with Z≥0.

Definition 5.5. To the sequence S(pγ) we then assign an infinite diagram-
matic weight pγ∞ by attaching to the vertex p the label

◦ if p nor −p occurs in S(γ),
∨ if −p, but not p, occurs in S(γ),
∧ if p, but not −p, occurs in S(γ),
× if both, −p 6= p occur in S(γ),
3 if p = 0 occurs in S(γ).

(5.42)

Note that there are only finitely many labels different from ∧, hence these
resulting diagrammatic weights are all of partition type. Moreover, in this
one can only get ◦ or ∧ at position zero.

The empty partition gives in case of odd r the following diagrams

◦
1
2

· · · ◦
m−n

δ
2

∧ ∧ · · · ∧ ∧
2n

? ? · · · if δ > 0,

×
1
2

· · · ×
n−m

− δ
2

∧ ∧ · · · ∧ ∧
2m

? ? · · · if δ < 0.

(5.43)

(The circles around the ∧ in ? should be ignored for the moment. They will
play an important role later). In case r is even, the empty partition gives
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the following diagrammatic weights

◦
0

· · · ◦
m−n

δ
2

∧ ∧ · · · ∧
2n

? · · · if δ ≥ 0,

3

0

× · · · ×
n−m

− δ
2

∧ · · · ∧
2m−1

? · · · if δ < 0,

(5.44)

Again, the circle around the ∧ in ? should be ignored for the moment. We
refer to Section 9.2 for more examples.

Lemma 5.6. Let λ ∈ X+(G). We have S(λ)i < 0 (respectively S(λ)i ≥ 0)
in (5.41) iff the i-th row in the underlying Young diagram ends above or on
(respectively strictly below) the δ

2 -shifted diagonal.

Proof. Note that S(λ)i < 0 iff δ
2 + i − pλi − 1 < 0 or equivalently pλi >

i+ δ
2 − 1. �

The tail length of λ ∈ X+(G) can be expressed again combinatorially.

Corollary 5.7. The length of the tail of λ equals tail(λ) = n − s where
s = # ∨ (λ∞) + #× (λ∞).

Proof. If m ≥ n then there is a box on the diagonal in row i iff S(λ)i < 0.
This implies that there are exactly s boxes on the shifted diagonal, hence
tail(λ) = n − s. If on the other hand m < n then again s is the number of
rows that end above or on the shifter diagonal, but we have to subtract the
first n −m rows, thus there are s − (n −m) boxes on the diagonal, hence
tail(λ) = m− s+ (n−m) = n− s. �

The following characterizes the weights with non-zero tail in the even
case.

Corollary 5.8. Assume r = 2m and let λ ∈ X+(g) with the notation from
(4.21). Consider the underlying (n,m)-hook partition pλ and the diagram-
matic weight pλ∞ given by S(pλ). Then the following are equivalent:

am > 0⇔ pλn+1 = m⇔ Indg,G
g,G′ L

g(λ) is irreducible⇔ S(pλ)n+1 = 0.

Moreover, in this case the associated diagrammatic weight pλ∞ has label ∧
at position zero, and tail(λ) = 0.

Proof. Obviously am > 0 is equivalent to pλn+1 = m by Definition 4.19, and

hence to tail(λ) = 0 by definition. It is moreover equivalent to Indg,G
g,G′ L

g(λ)

being irreducible by Proposition 4.12. On the other hand pλn+1 = m if and
only if S(pλ)n+1 = m− n+ n+ 1− pλn+1 − 1 = m− pλn+1 = 0 (which then
obviously causes an ∧ at position zero). �

5.2. Cup diagrams. Given a diagrammatic weight λ which is finite, of
finite type or of partition type, we like to assign a unique cup diagram. For
this we say that two vertices in a diagrammatic weight are neighboured if
they are only separated by vertices with labels ◦’s and ×’s.
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Definition 5.9. The infinite decorated cup diagram or just cup diagram,
denoted λ, associated with a diagrammatic weight λ (finite, finite type or
partition type) is obtained by applying the following steps in order.

(Cup 1) First connect neighboured vertices labelled ∨∧ successively by a cup
(ignoring already joint vertices) as long as possible. (The result is
independent of the order in which the connections are made).

(Cup 2) Attach to each remaining ∨ a vertical ray.
(Cup 3) Connect from left to right pairs of two neighboured ∧’s by cups

(viewing 3 as an ∧).
(Cup 4) If a single ∧ remains, attach a vertical ray.
(Cup 5) Finally put a decoration • on each cup created in step (Cup 3) and

each ray created in (Cup 4).

The arcs for the connections should always be drawn without intersections.

Remark 5.10. Observe that the conditions finite, of finite type and of
partition type make sure that the algorithm producing the cup diagram is
well-defined. In case of a partition type diagrammatic weight the steps (Cup
1) and (Cup 4) can be removed and the diagram will never have dotted or
undotted rays, but infinitely many dotted cups. In case the diagram is of
finite type it will have only rays far to the right.

Examples 5.11. The three diagrammatic weights λfin, λfint, and λpart from
(5.40) give the following three cup diagrams.

∨ ◦ × ∧ × ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∨ ∧ ? ? ? ? · · ·
λfin : ◦ × × ◦ ◦ ◦ ◦ · · ·

λfint : ◦ × × · · ·

λpart : ◦ × × · · ·

(5.45)

The empty partition gives always an infinite cup diagram (for the dia-
grammatic weight see (5.43) and (5.44)):

In the case of G = OSp(2m+ 1|2n):


◦
1
2

· · · ◦ ◦
δ
2

· · ·
if δ > 0,

×
1
2

· · · × ×
− δ

2
+1

· · ·
if δ < 0.

(5.46)
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pγ pγ∞ tail(pγ)

2∧ ∧ ∨ ∧ ∧ ∧ ? · · ·

1∨ ∧ ∨ ∧ ∧ ∧ ? · · ·

1× ◦ ∨ ∧ ∧ ∧ ? · · ·

1∧ ∨ ∨ ∧ ∧ ∧ ? · · ·

0∨ ∨ ∨ ∧ ∧ ∧ ? · · ·

Figure 4. Super cup diagrams pγ∞ associated to hook par-
titions in the case SOSp(7|6).

In the case of G = OSp(2m|2n):
◦
0

· · · ◦ ◦
δ
2

· · ·
if δ ≥ 0

0

× · · · × ×
− δ

2
+1

· · ·
if δ ≤ 0,

(5.47)

Remark 5.12. Note that, by construction, there might be cups nested
inside each other, but such cups cannot be dotted. By construction, there
is also never a • to the right of a ray. Given any such cup diagram c there
is a unique diagrammatic weight λ such that λ = c. Namely λ is the unique
diagrammatic weight such that, when put on top of c, the core symbols
match and all cups and rays are oriented in the unique degree zero way as
displayed in (5.48).

Definition 5.13. We call cups or rays with a decoration • dotted and those
without decorations undotted . The total number (possibly infinite) of un-
dotted plus dotted cups in a cup diagram c is called its defect or atypicality
and denoted def(c) and define the defect def(λ) of a diagrammatic weight
of finite type to be the defect def(λ) of its associated cup diagram.

5.3. (Nuclear) circle diagrams. A pair of compatible cup diagrams can
be combined to a circle diagram:

Definition 5.14. Given λ, µ, ν diagrammatic weights. We call the ordered
pair (λ, µ) a circle diagram if λ and µ have the same core diagrams. We
usually denote this circle diagrams by λµ and think of it as a diagram
obtained from putting the cup diagram µ upside down on top of the cup
diagram λ.

For examples we refer to Figure 2, where the diagrammatic weight in the
middle of each circle diagram should be ignored. The connected components
in a circle diagram are (ignoring dots) either lines or circles.
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Remark 5.15. It is easy to check that the total number x of cups and caps
in a connected component of a circle diagram is always even if the component
is a circle or a propagating line, and is odd if it is a non-propagating line.
(The statement is obvious for lines and circles where x ≤ 2. If x ≤ 2 then
one can find a kink built out of one cup and one cap, can remove this from
the circle diagram and then argue by induction).

We now introduce the following important set of nuclear circle diagrams

Definition 5.16. Given two diagrammatic weights λ, µ we call the circle
diagram λµ nuclear if it contains at least one line which is not propagating.

In Figure 2, the last two circle diagrams (again ignoring the diagrammatic
weight in the middle) are nuclear, the others not.

5.4. Orientations and degree. Assume λ is a diagrammatic weight and λ
its associated decorated cup diagram. An orientation of λ is a diagrammatic
weight ν such that λ and ν have the same core diagram and if we put ν on
top of λ (identifying along the corresponding vertices), then all cups and
rays in the resulting diagram are ‘oriented’ in one of the ways displayed in
(5.48). An oriented infinite decorated cup diagram is such a pair (λ, ν).

We usually just draw the cup diagram with the orientation on top and
think of it in a topological way. The dots on cups and caps could be thought
of as orientation reversing points justifying why we have to put two ∧’s or
two ∨’s at the endpoints of a dotted cup.

0

∨ ∧

1

∧ ∨

0

3 ∧

1

3 ∨

0
∨ ∧

1
∧ ∨

0
3 ∧

1
3 ∨

0

∨

0

3

0
∨

0
3

0

∧ ∧

1

∨ ∨

0

3 ∧

1

3 ∨

0
∧ ∧

1
∨ ∨

0
3 ∧

1
3 ∨

0

∧

0

3

0
∧

0
3

(5.48)

For instance, the cup diagram in (5.45) together with the weight in (5.45) is
an oriented cup diagram. In fact λλ is always an oriented cup diagram for
any diagrammatic weight λ. Note that (5.45) has 26 possible orientations,
namely precisely given by those weights which we obtain by taking any
subset of the cups in (5.45) and change the corresponding label in ν from

∨ to ∧ respectively ∧ to ∨. In general a cup diagram c has precisely 2def(c)

number of orientations.

Definition 5.17. A triple (λ, ν, µ) of diagrammatic weights is an oriented
circle diagram if λµ is a circle diagram and ν is an orientation of both λ and
µ. We usually write such a triple as λνµ and display it as the diagram λµ
with some labelling in the middle turning it into an oriented diagram in the
sense that locally every arc looks like one of the form (5.48).

We refer to Figure 2 for all possible orientations on circle diagrams ob-
tained from the cup diagrams in Figure 1.
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Lemma 5.18. If a circle diagram can be oriented, then there are precisely
2x possible orientations, where x is the number of circles in the diagram.

Remark 5.19. Note that not every circle diagram can be oriented. As
shown in [ES13b, Lemma 4.8] to be orientable one needs at least that each
circle in λµ has an even number of •’s. By [ES13b, Lemma 4.8] a circle
diagram which is not nuclear and does not contain a ray at position zero
can be oriented if and only if each component (circle or line) has an even
number of dots. One easily checks that if it contains a ray at position zero
then it is orientable if and only if each other component (circle or line) has
an even number of dots (but the line passing through zero need not have an
even number of dots).

Definition 5.20. The degree of an oriented cup diagram λν or an oriented
circle diagram λνµ is the sum of the degrees of its components of the form
(5.48), where the degree of each component is listed below each picture.

It follows directly from the definitions that λλ is the unique orientation
of λ of degree zero and all other orientations have positive degrees. In
[ES13b] we called cups or caps of degree 0 anticlockwise and those of degree
1 clockwise. Then the degree is just the number of clockwise cups plus
clockwise caps. For examples we refer again to Figure 2.

6. Diagrammatic weights

The goal of this section is to assign to each irreducible finite-dimensional
OSp(r|2n)-module in F a certain cup diagram which then allows us to make
the connection with Khovanov’s algebra and to formulate and prove the main
theorem (Theorem 7.1).

6.1. Fake cups. Our infinite diagrammatic weights λ∞ attached to pγ ∈
X+(g) via (5.5) and their decorated cup diagrams γ∞ are slightly more
general than those allowed in [ES13b] in the sense that they might have
infinite defect. Diagrammatic weights with infinite defect were carefully
avoided however in [BS11a] and in [ES13b], since the associated Khovanov
algebra would not be well-defined. Note moreover that γ∞ only depends on

γ and δ
2 , but not on m,n itself. We will next introduce a dependence on

m,n which also also has the effect of giving a certain finiteness condition
which allows us to avoid working with infinite defects. This will finally put
us into the framework from [ES13b] and will be enable us to talk about the
Khovanov algebra associated to a block of OSp(r|2n). The defect will then
correspond to the usual notion of atypicality of weights in the context of Lie
superalgebras.

We start by incorporating the dependence on m and n.

Definition 6.1. Given pλ ∈ X+(g) with associated infinite cup diagram
pγ∞, a cup C is a fake cup if C is dotted and there are at least tail(pγ)
dotted cups to the left of C. The vertices attached to fake cups are called
frozen vertices. We indicate the frozen vertices by ?.

Remark 6.2. Note that Corollary 5.7 gives a formula to compute the tail
length tail(pγ). For instance, tail(∅) equals min{m,n} and there are in-
finitely many frozen vertices to the right of the vertices indicated by ? in
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(5.43) and (5.44). By definition, fake cups are never nested insider another
cup, since dotted cups are never nested. Moreover, all dotted cups to the
right of a fake cup are obviously also fake cups.

For the empty partition the frozen vertices are indicated in (5.43) and
(5.44), where the dependence on m and n is also illustrated; see also Sec-
tion 9.2 for more examples.

6.2. The super diagrammatic weight λ?. Recall the infinite diagram-
matic weight pγ∞ attached to a hook partition pγ. Given λ ∈ X+(g) we
define the super diagrammatic weight pλ? as the one obtained from pλ∞ by
replacing all the frozen labels by ∨’s except of the leftmost one, which we
leave as an ∧ (respectively �).
Example 6.3. For instance consider G = OSp(6|4), that is m = 3, n = 2.
First consider λ ∈ X+(g) with corresponding hook partition pλ = (4, 2, 1).
Then we have

pλ∞ :3 ◦ ∧∨∧???? · · ·  pλ? : 3 ◦ ∧∨∧∧∨∨∨ · · · (6.49)

where we indicated the relevant positions by a horizontal line. For the hook
partition pλ = (4, 1, 1) we obtain

pλ∞ : ◦ ∧∧∨∧???? · · ·  pλ? : ◦ ∧∧∨∧∧∨∨∨ · · · (6.50)

Note that in case G = OSp(7|4), the weights λ ∈ X+(g) with hook partitions
pλ = (5, 2, 1) respectively (5, 1, 1) give rise to the same four diagrams as
above, but placed on the positive half-integer line instead of the positive
integer line.

If pγ∞ has a ◦ at position zero or if pγ∞ is supported on half-integers,
then we more precisely write (pλ?, ε) instead of just pλ?, where ε ∈ {1, 2} is
the parity of the number of ∧’s, that is #∧(pγ)+#×(pγ) ≡ ε mod 2. If ε′ is
the opposite parity to ε, then denote by (pλ?, ε′) the diagram obtained from
pλ? by replacing all labels at frozen vertices with ∨’s. By definition, the cup
diagrams for (pλ?, ε) and (pλ?, ε′) differ precisely by a dot on the leftmost
ray. (Note that this ray is not attached to the zero vertex by assumption.)

Example 6.4. As above let G = OSp(6|4) and assume the situation (6.50).

pλ∞ : ◦ ∧∧∨∧???? · · ·  
(pλ?, 2) : ◦ ∧∧∨∧∧∨∨∨ · · ·
(pλ?, 1) : ◦ ∧∧∨∧∨∨∨∨ · · ·

If pλ∞ has an ∧ at position zero, but does not satisfy one of the equivalent
conditions from Corollary 5.8, then write again (pλ?, ε) instead of just pγ?,
where ε ∈ {1, 2} such that #∧ (pλ) + #× (pγ) ≡ ε mod 2. If ε′ is the parity
opposite to ε, then denote by (pγ?, ε′) the diagram obtained from pλ? by
replacing all labels at frozen vertices with ∨’s and also turn the ∧ at position
zero into a ∨ (this one is not frozen by assumption).

Example 6.5. Let G = OSp(6|4) and assume the situation (6.49). Then

pλ∞ :3 ◦ ∧∨∧???? · · ·  
(pλ?, 2) : 3 ◦ ∧∨∧∧∨∨∨ · · ·
(pλ?, 1) : 3 ◦ ∧∨∧∨∨∨∨ · · ·
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6.3. The diagrammatic weight associated to irreducible modules.
We now can assign to each dominant weight a diagram weight.

Definition 6.6. Consider G = SOSp(r|2n). Given λ ∈ X+(G) with under-
lying hook partition pλ, we define the (super) diagrammatic weight attached
to λ, and also denoted by λ, as follows

λ =


pλ? if λ = Ψ(pλ), (6.51a)

(pλ?, 1) if λ = Ψ((pλ,+)), (6.51b)

(pλ?, 2) if λ = Ψ((pλ,−)), (6.51c)

where we use the identifications from Lemma 4.21.

Remark 6.7. As a result we have attached to any λ ∈ X+(G) a cup diagram
λ which has an infinite number of undotted rays, tail length many dotted
cups, and at most one dotted ray. Observe that λ coincides with λ∞, except
that each fake cup is replaced by two vertical rays (with the leftmost ray
possibly dotted). In other words, we keep the undotted cups, but force
the diagram to have exactly as many dotted cups as the length of the tail
by taking the first tail(λ) dotted cups. Note also that the core diagram
of the diagrammatic weight λ is the same as the core diagram of λ∞ from
Definition 5.5.

For more examples we refer to Section 9.1

Remark 6.8. The weight diagrams attached to the pair (λ,±) can be
viewed as super analogues of the notion of associated partitions which was
used by Weyl to label pairs of irreducible representations for O(r) which
restrict to isomorphic representations for SO(r), see Section 9.1 for more
details.

Remark 6.9. One can show that (for fixed G) the assignment which sends
λ ∈ X+(G) to the diagrammatic weight λ is injective.

Proposition 6.10. Assume r = 2m and let λ ∈ X+(g). Then there are the
following two cases:

(1) Indg,G
g,G′ L

g(λ) = L(λ) is irreducible. Then, at position zero, the at-

tached diagrammatic weight λ has a 3 and the cup diagram λ has a
ray.

(2) Indg,G
g,G′ L

g(λ) ∼= L(λ,+)⊕L(λ,−). Then the diagrammatic weight λ

has a ◦ or a 3 at position zero. In the latter case λ has a dotted cup
starting at the zero position.

Proof. In the situation (1) Corollary 5.8 implies that there is a 3 at position
zero and the tail is zero. Hence the dotted cup attached to the zero position
in λ∞ is fake, and thus gives a ray in λ. Situation (2) is equivalent to
pλn+1 < m and ◦ or 3 can occur at position zero. Assume first tail(pλ) = 0,
this means pλn ≥ m. Then S(pλ)n = δ

2 +n−1−pγn = m−n+n−1−pγn < 0,

and S(pλ)n+1 = δ
2 + n + 1 − 1 − pγn+1 = m − n + n − pγn+1 > 0. Since

the sequence S(pλ) is strictly increasing, the value zero does not occur and
therefore we have ◦ at position zero. in particular, if 3 occurs than we must
have tail(pλ) > 0, in which case the dotted cup attached to zero in pλ∞ is
not fake and so λ has a dotted cup starting at the zero position. �
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Corollary 6.11. Assume λ = (λg,±) and µ = (µg,±) ∈ X+(G). Then
λµ is orientable if and only if each component contains an even number of
dots. Moreover the number of possible orientations equals 2c, where c is the
number of closed components in λµ.

Proof. By Remark 5.19 the “if” statement holds as well as the claim about
the number of orientations. On the other hand, again by Remark 5.19,
orientability implies that each closed component and each line not passing
through zero must have an even number of dots. Now by Proposition 6.10,
both, λ and µ, have a dotted cup attached to zero and so to be orientable,
the line passing through zero also needs to have an even number of dots. �

6.4. Blocks and diagrammatic linkage.

Definition 6.12. We say that two elements λ, µ ∈ X+(G) are diagrammat-
ically linked if their attached super diagrammatic weights λ and µ are in the
same block in the sense of Definition 5.3.

Lemma 6.13. Given λ ∈ X+(G) then def(λ) = n−#×(λ) with the notation
from Definition 5.13. In particular, if λ and µ give rise to the same core
diagram then def(λ) = def(µ).

Proof. Note that passing from pλ? to λ does not change the total number
of cups in the corresponding cup diagram. Now, the number of undotted
cups in pλ? equals # ∨ (λ∞), whereas the number of dotted cups is by
construction equal to tail(λ) = n− s, where s = #∨ (λ∞) + #× (λ∞). The
claim follows. �

Lemma 6.14. Two diagrammatically linked elements λ, µ ∈ X+(G) have
the same defect.

Proof. Since they have by definition the same core diagram this follows
directly from Lemma 6.13. �

Proposition 6.15. Let G = OSp(r|2n). Assume λ, µ ∈ X+(G) such that
the circle diagram λµ is not nuclear. If λ belongs to case (6.51b) and µ
belongs to (6.51c) (or vice versa) then this circle diagram is not orientable.
Moreover λ and µ are only diagrammatically linked if they both have a 3 at
position zero and the same core diagram.

Proof. Suppose first that we are in the odd case or λ and µ have ◦ at
position zero. Then λ and µ are not diagrammatically linked, since the
parity of #∧(λ) and of #∧(µ) are different by assumption. By (5.48) every
orientation ν of λ satisfies # ∧ (ν) ≡ # ∧ (λ) mod 2. Hence any orientation
λνµ implies # ∧ (λ) ≡ # ∧ (µ) mod 2 which is a contradiction.

Otherwise suppose we are in the even case and λ and µ have a 3 at
position zero. Then they are by Definition 5.3 diagrammatically linked if
they both have the same core diagram. Now assume λνµ is oriented, then
we can count 3 as an ∧ or as a ∨ such that the diagram locally looks like
a diagram of the form (5.48) (noting that by Proposition 6.10 both λ and
µ have no ray at position zero). In either case it implies that # ∧ (λ) ≡
# ∧ (µ) mod 2, which is a contradiction. �
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The following is only applicable in case G = OSp(2m|2n), since otherwise
(λ,+), (λ,−) are in different diagrammatic blocks.

Proposition 6.16. Consider elements µ, (λ,+), (λ,−) ∈ X+(G) and the
corresponding diagrammatic weights which we denote by the same notation.
(they cover exactly the three cases in Definition 6.6). Assume that these
weights are in the same diagrammatic block.

(1) Then µ(λ,+) is not nuclear if and only if µ(λ,−) is not nuclear.
(2) In this case we have moreover that the number of possible orienta-

tions of µ(λ,+) equals the number of possible orientations of µ(λ,−).
(3) This number of possible orientations is non-zero if and only if every

closed component in µ(λ,±) and each line not passing through zero
contains an even number of dots in which case it equals 2c where c
is the number of closed components.

Proof. The first statement is obvious, since (λ,+) differs from (λ,−) only
by a dot. By Proposition 6.10, the cup diagrams (λ,+) and (λ,−) have
both a dotted cup at the position zero, whereas µ has a ray at position

zero. This implies that µ(λ,±) have both a propagating line through zero
in case they are not nuclear. By construction, this propagating line contains
the (leftmost) ray in which (λ,+) differs from (λ,−). But since 3 can be
considered as an ∧ or as a ∨ with respect to orientations, every orientation
of µ(λ,+) is also one of µ(λ,−) and vice versa. This shows (2). For the
third one note that a closed component is orientable precisely if and only it
if has an even number of dots. �

7. Homomorphisms between projectives via Khovanov algebras

Our main theorem gives now a description of the underlying vector space
of HomF (P (λ), P (µ)) for any λ, µ ∈ X+(G), which in particular includes
an explicit counting formula for the dimension of the spaces of morphisms
between two indecomposable projective objects. In the special case G =
OSp(2m+ 1|2n) this gives Theorem A from the introduction.

7.1. The main theorem. Recall the vector space I from Definition 5.16.

Theorem 7.1. Consider G = OSp(r|2n) for fixed m,n. For any λ, µ ∈
X+(G) we have an isomorphisms of vector spaces

HomF (P (λ), P (µ)) ∼= B(λ, µ)/Iλ,µ. (7.52)

Here, B(λ, µ) is the vector space with basis all oriented circle diagrams of the
form λνµ for some diagrammatic weights ν, and Iλ,µ is the vector subspace
spanned by its set of nuclear diagrams, hence

B(λ, µ)/Iλ,µ = {λνµ | λνµ ∈ B and λµ 6∈ I} . (7.53)

Proof. Theorem 7.1 follows directly from the Dimension Formula (Theo-
rem 8.4) . �

The following is a shadow of the duality explained in [MW14, 5.5]:
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Corollary 7.2. Let G = OSp(2m + 1|2n) and Gt = OSp(2n + 1|2m). Let
λ, µ ∈ X+(G) and λt, µt ∈ X+(Gt) be the corresponding element with the
same sign, but transposed partition. Then

HomF(G)(P (λ), P (µ)) ∼= HomF(Gt)(P (λt), P (µt)).

Proof. This follows directly from the theorem, since the associated diagram-
matic weight for λt is obtained from that of λ by swapping ◦ with × and
× with ◦. This swapping is however irrelevant for the dimension count-
ing, since it does (up to core symbols) not change the corresponding cup
diagram. and possible orientations. �

Before we prove the Dimension Formula in Theorem 8.4 (and hence The-
orem 7.1) we first explain how to put an algebra structure on the space⊕

λ,µ B(λ, µ)/Iλ,µ as required in Theorem B.

7.2. The algebra structure and the nuclear ideal. Let G = OSp(r|2n)
and consider a fixed block B of F . Let P = ⊕λP (λ) be a minimal projective
generator, that is the direct sum runs over all λ ∈ X+(G) such that P (λ) ∈
B. By Proposition 7.5 below, the corresponding set Λ(B) of diagrammatic
weights is contained in a block Λ in the sense of Definition 5.3. Let DΛ be
the Khovanov algebra of type D attached to Λ as defined in [ES13a]. Let
1B =

∑
λ∈Λ(B) be the idempotent in DΛ corresponding to Λ(B), see [ES13a,

Theorem 6.2]. We consider now the algebra 1BDΛ1B. By definition it has a
basis given by all oriented circle diagrams λνµ, where λ, µ ∈ Λ(B). We first
observe the following crucial fact:

Lemma 7.3. The subspace IB of 1BDΛ1B spanned by all nuclear basis vec-
tors is an ideal.

Proof. Let x ∈ IB be a basis vector. Hence we can find λ, µ ∈ Λ′ such
that x ∈ B(λ, µ) ∩ IB and x contains at least one non-propagating line.
It is enough to show that cx, xc ∈ I for any basis element c of 1BDΛ1B.
The algebra DΛ has an anti-automorphism which sends a basis element aνb
to b∗νa∗ in the notation from Definition 5.17, see [ES13a, Corollary 6.4].
Obviously this descends to an anti-automorphism of 1BDΛ1B which preserve
IB. Therefore, it is enough to show bc ∈ IB.

Consider the non-propagating lines in b. Then the number of those ending
at the top equals the number of those ending at the bottom since the weights
in Λ′ are linked and have the same defect by Lemma 6.14. Hence assume
there is at least one such line L ending at the bottom.

From the surgery procedure defining the algebra structure we see directly
that any surgery involving such a line and a circle either preserves this prop-
erty ([ES13a, first two cases in Remark 5.13] and [ES13a, Remark 5.15]), or
produces zero ([ES13a, last two cases in Remark 5.13] and [ES13a, Recon-
nect in 5.2.3]). Hence the claim follows. �

Then thanks to Theorem 7.1, there is a canonical isomorphism of vector
spaces Endfin

F (P ) ∼= 1BDΛ1B/IB, sending a basis vector to the corresponding

basis vector of 1BDΛ1B denoted in the same way. In particular, Endfin
F (P )
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inherits an algebra structure from the Khovanov algebra DΛ via this identifi-
cation. In part II of this series we show (a more general version of Theorem B
that the two algebras are isomorphic.

7.3. Dictionary to GS-weights. To prove Proposition 7.1 we have to con-
nect the diagram calculus developed in [GS13] to our calculus. For later
reference and to make a precise connection to [GS13] we give an explicit
dictionary, although we could prove the result more directly. The GS-
diagrammatic weight GS(λ) associated with λ ∈ X+(g) is a certain labelling
L with the symbols <, >, ×, ◦, ⊗ with almost all vertices labelled ◦. Gruson
and Serganova obtain this labelling as the image of a composite of two maps

GS : X+(g) −→ {GS−diagrams with tail}
−→ {coloured GS−diagrams without tail} (7.54)

We refer to [GS13] for details, but will briefly recall the construction in
Section 7.6 below. (The additional signs appearing in [GS13] and in the
weights for X+(g) do not play any role for us thanks to (4.23) and therefore
we can ignore them.)

For convenience we list now the explicit map T which translates from
GS-weights GS(λ) to our diagrammatic weights λ∞ = T(GS(λ)) and vice
versa. The following dictionary gives us the translation, with the first line
containing the label in GS(λ) and the second line the corresponding label
in the diagrammatic weight T (GS(λ)):

GS(λ) < > × ◦ ⊗ at 0: ⊗ > ◦
T(GS(λ)) × ◦ ∨ ∧ ∧ 3 ◦ 3

(7.55)

Even though the vertex 1
2 will play a special role in the proofs to come, only

the vertex 0 in the even case has a special assignment rule.

7.4. Comparison of the two cup diagram combinatorics. Gruson and
Serganova assigned to any GS(λ)-weight also some cup diagram (without any
decorations). We claim that our combinatorics refines their combinatorics
in the following sense (with the felicitous consequence that the assignment
from X+(G) to cup diagrams is injective):

Proposition 7.4. Let λ ∈ X+(g) with associated hook diagram pλ.

(1) The assignment T, from (7.55) satisfies

T(GS(λ)) = pλ∞. (7.56)

(2) Moreover, the cup diagram attached to GS(λg) in the sense of [GS13]
agrees with our cup diagram pλ∞ when forgetting the decorations and
fake cups, and with pλ? when forgetting the decoration and all rays.

(3) Under this correspondence the cups attached to ⊗’s correspond pre-
cisely to the dotted, non-fake cups in pλ∞, and to the dotted cups in
pλ?.

Proof. It suffices to prove the statements involving pλ∞, since the others
follow then directly from the definition of pλ?. The proof is given in the
next section. �
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7.5. Blocks in terms of diagrammatic blocks. Before we prove this
result, we deduce some important consequence:

Proposition 7.5. Let λ, µ ∈ X+(G). Then P (λ) and P (µ) (and hence
then also L(λ) and L(µ)) are in the same block if and only if λ∞ and µ∞

have the same core diagrams in the sense of Definition 5.1 and additionally
# ∧ (pλ?) ≡ # ∧ (pµ?) mod 2 in case no 3 occurs.

Proof. Observe that the assignment T sends core symbols in the sense of
[GS13] to the core symbols in the sense of Definition 5.1.

Let us first assume G = OSp(2m+ 1|2n). Then by Definition 4.6 we have
λ = (λg, ε) and µ = (µg, ε′) for some λg, µg ∈ X+(g). Now by Corollary 4.8,
P g(λ) and P g(µ) are in the same block if and only if ε = ε′ (that means σ acts
by the same scalar) and P (λg) and P (µg) are in the same block for F ′. By
[GS13], the latter holds precisely if the associated weight diagrams GS(λg)
and GS(µg) have the same core diagram in the sense of [GS13], and hence
by Proposition 7.4 λ∞ and µ∞ have the same core diagrams in the sense of
Definition 5.1. Therefore P (λ) and P (µ) are in the same block if and only if
λ∞ and λ∞ have the same core diagrams and #∧ (pλ?) ≡ #∧ (pµ?) mod 2,
since this parity is given by ε.

Let now G = OSp(2m|2n). Assume HomF (P (λ), P (µ)) 6= {0} then by
Lemma 4.17 and Proposition 6.15 HomF ′(resP (λ), resP (µ)) 6= {0}. By
Lemma 4.14 resP (λ) and resP (µ) give rise to weight diagrams in the sense
of [GS13] which have the some core diagrams, hence λ∞ and µ∞ have the
same core diagrams thanks to Proposition 7.4. If the core diagram contains
a ◦ at zero, then the corresponding weights pγ? with this same core diagram
fall into two classes, the ones where #∧ (pγ?) is even (and so it corresponds
to some (γ,+) ∈ X+(G)) and the ones where # ∧ (pγ?) is odd (and so
it corresponds to some (γ,−) ∈ X+(G)). By Proposition 4.17 (3) both
sets in fact give rise to a block, since they form a block if we consider
the corresponding weights in γ ∈ X+(g). Hence the claim follows in this
case. For λ ∈ X+(G) let P g(λg) by the unique summand in resP (λ) such
that λg ∈ X+(g) satisfies am ≥ 0 in the notation (4.21). Now, if the core
diagram contains a � at zero, then the same argument as above gives that
HomF (P (λ), P (µ)) 6= {0} implies that the core diagrams must be the same.
On the other hand if the core diagrams are the same, P g(λg) and P g(µg)
are in the same block by [GS13] and hence are connected by a sequence
of homomorphisms between projective modules which can be chosen of the
form P g(νg) for some ν, but this gives then by Proposition 4.17 a sequence
of non-zero morphisms connecting P (λ) and P (µ). The claim follows. �

Corollary 7.6. Let λ, µ ∈ X+(G). If P (λ) and P (µ) are in the same block
B of F then def(λ) = def(µ). In particular, we can talk about the defect of
a block B of F .

Remark 7.7. Using the Dictionary to [GS13] which we will develop in
(7.55), one can show that the defect is precisely the atypicality of the block
in the sense of Lie superalgebras. We expect that, in contrast to the SOSp-
case treated in [GS10, Theorem 2], the blocks depend up to equivalence of
categories only on the atypicality, see Section 9 for examples.
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To prove Proposition 7.4 we first need to recall some of the construction
from [GS13].

7.6. The Gruson-Serganova combinatorics. We start by recalling the
construction of the map GS from [GS13]. Recall the notion of vertices on L
as in Section 5.1. The first map in (7.54) takes a weight λ ∈ X+(g) writes
λ + ρ in the form (4.16) and puts at the vertex p of L then αp symbols >
and βp symbols <, where

αp = |{1 ≤ j ≤ m | aj = ±p}| and βp = |{1 ≤ i ≤ n | bi = ±p}|
and a symbol ◦ if αp = βp = 0. We use the abbreviation × for a pair > and
< at a common vertex. We call the resulting diagram a GS-diagram with
tail.

Case: osp(2m+ 1|2n): In this case the the dominance condition is equiv-
alent to the statement that there is at most one symbol, >, <, × or ◦ at
each vertex p > 1

2 and at 1
2 at most one < or >, but possibly many ×. If

there are only ×’s at 1
2 we have to put an indicator which is (+) if aj = 1

2 for
some j and (−) otherwise. For instance, the diagram for the trivial weight
are the following for n > m, m = n, m > n respectively.

×
...
×
×
> > ··· > > ◦ ◦ ···

m−n

n

×
×
...
×
×(−) ◦ ◦ ◦ ···

n

×
...
×
×
< < ··· < < ◦ ◦ ···

n−m

m

(7.57)

The tail length is the number of × at the leftmost vertex, subtracting one if
the indicator is (+) and the tail are all symbols × at position 1

2 except for
one if the indicator is (+).

Case: osp(2m|2n): The dominance condition in this case is equivalent to
the statement that there is at most one symbol, >, <, × or ◦ at each vertex
p > 0 and at 0 either ◦ or at most one > but possibly many ×. If there
is a ◦ at 0 one has to remember a sign to distinguish am > 0 and am < 0
(denoted by [±] in [GS13]). For instance the trivial weight corresponds to
the following for m > n, n ≥ m respectively.

×
...
×
×
> > ··· > > ◦ ◦ ···

m−n

n

×
×
...
×
× < < ··· < < ◦ ◦ ···

n−m

m (7.58)

Note that the tail length in this case is the number of × at the leftmost
vertex.

For the second map (7.54) we have to turn the diagram with tail into a
coloured weight diagram. In case of osp(2m+1|2n) proceed as follows: First
remove the tail of the diagram, but remember the number l = tail(λ), of
symbols removed (note that in case of an indicator this can mean that one
symbol × at position 1

2 is kept). Ignoring the core symbols < and >, connect
neighboured pairs × ◦ (in this order) successively by a cup. Then number
the vertices not connected to a cup and not containing < or > from the left
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by 1, 2, 3, . . .. Then relabel those positions with number 1, 3, 5, . . . , 2l−1 etc.
by ⊗. (The symbol ⊗ should indicate that at least apart from the special
case of the left most vertex a × was actually moved and placed on top of a
◦). Finally connect neighboured pairs ⊗ and ◦ successively by a cup.

The resulting diagram with all labels at cups removed is the GS-cup dia-
gram attached to λ. In [GS13] these new labels ⊗ are called coloured and we
call the attached cups coloured; note they are by construction never nested
inside other cups. The resulting labelling of L (after all cups are removed)
is the coloured GS-diagram without tail attached to λ.

In case of osp(2m+1|2n) proceed in the same way but viewing the vertex
0 as the vertex 1

2 and always using the rule that if there are only × at posi-
tion zero we use the rule that the indicator is (+). Note that whether am is
strictly larger or smaller than 0 does not play a role in the construction of
the diagram.

The following gives an easy example:

Lemma 7.8. With the assignment T, from (7.55), we have T(GS(0)) = 0∞,
and Proposition 7.4 holds for λ = 0.

Proof. . Case osp(2m+ 1|2n): The weights from the diagrams (7.57) with
tail are transferred into the cup diagram with m, respectively n in the last
case, coloured cups placed next to each other starting at position − δ

2 + 1,

0, and δ
2 respectively. On the other hand, our diagrammatics assigns to the

empty partition the diagrammatic weights (5.43) and hence produce a cup
diagrams with n, respectively m in the last case, dotted cups placed next to
each other starting at position − δ

2 + 1, 0 and δ
2 respectively, see (5.46). The

corresponding coloured weight diagram contains the >’s and <’s as and only
◦ and ⊗ at the positions of the cups. Applying T this translates into the
diagrammatic weights (5.43). Hence the claim is true in case osp(2m+1|2n):

. Case osp(2m|2n): In this case the diagrams (7.58) with tail are trans-
formed into a cup diagram with n, respectively m − 1 in the second case,
coloured cups placed next to each other starting at positions δ

2 , respectively

− δ
2 + 2. In the latter case it also contains one uncoloured cup connect-

ing position zero and − δ
2 + 1. Using our diagrammatics will produce the

weights diagrams in (5.44), which in turn produce cup diagrams with n, re-
spectively m− 1 dotted cups placed next to each other starting at positions
δ
2 , respectively − δ

2 + 2, see (5.47). �

7.7. The proof of Proposition 7.4. The proof proceeds by induction on
the number of boxes in the corresponding hook partition (where we are
allowed to ignore the sign).

Proof of Proposition 7.4. In case of the empty partition the claim follows
from Lemma 7.8 above.

I Adding a box: In the situation that the partition for λ is obtained from
the one for µ by adding a box, we first summarize a few general results on
what kind of configurations are not possible in the two combinatorics.

• If for the µ it holds, that bi > 0 and we can add a box in row i. Then
bj > bi + 1 for all j < i. This implies that in the GS weight there is
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no symbol < or × at positions bi + 1, i.e. immediately to the right
of bi.
• If for the µ it holds, that ai > 0 and we can add a box in column i.

Then aj > ai + 1 for all j < i. This implies that in the GS weight
there is no symbol > or × at positions ai + 1.

Note that there can be a symbol ⊗ at the position ai + 1 respectively bi + 1
from the tail.

We start with the cases that the box is added far away from the diagonal,
i.e. not on the diagonal or next to it. In these cases the odd and even case
behave exactly the same.

The additional box is added far above the diagonal. We add the box in posi-
tion (j0, i0) and the box in question is not immediately above the diagonal.
In both the even and odd case bj0 >

1
2 is increased by 1 and all other a’s and

b’s are preserved. This means a symbol < is moved to the right from posi-
tion bj0 to bj0 + 1. Note that if the symbol < is part of a × there cannot be
a symbol ⊗ at position bj0 + 1 by construction of the coloured GS-diagram.

The table below lists the possible configurations at bj0 and bj0 + 1 (with
corresponding translations, obtained via T , displayed in the second row and
the symbols in brackets are added to indicate the shape of the cup diagram).

µ

λ

< ◦

◦ <

< > (◦)

◦ × (◦)

< > (⊗ ◦)

⊗ × (◦ ◦)

< ⊗ (◦)

⊗ < (◦)

× ◦

> <

× > (◦)

> × (◦)

µ

λ

× ∧

∧ ×

× ◦ (∧)

∧ ∨ (∧)

× ◦ (∧ ∧)

∧ ∨ (∧ ∧)

× ∧ (∧)

∧ × (∧)

∨ ∧

◦ ×

∨ ◦ (∧)

◦ ∨ (∧)

For the second row we argue as follows. Since bj0 > 0 with bj0 = µj0 −
j0− δ

2 + 1. This implies that S(µ)j0 = −bj0 , which in turn will be decreased
by 1 by assumption. Having either the symbol ∨ or × at position bj0 with
the symbol ∨ being moved to the right. Furthermore S(µ)j < S(µ)j0 − 1
since µj > µj0 for j < j0, which in turn implies that at position bj0 +1 there
is the symbol ∧ or ◦.

In all of the listed cases neither the tail length nor the number of dotted
cups is changed, thus all fake cups are unchanged, and if an ∧ in µ∞ is
frozen and moved, it is still frozen in λ∞. Hence the claim follows in this
case.

The box is added far below the diagonal. We add the box in position (j0, i0)
and not adjacent to the diagonal. In this case ai0 >

1
2 is increased by one

and all other ai’s and bi’s are left unchanged. Thus we move a symbol > to
the right. As before there cannot be the symbol ⊗ at position ai0 +1 if there
is the symbol × at position ai0 . In total this gives us the configurations in
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the first row below (showing positions ai0 and ai0 + 1)

µ

λ

> ◦

◦ >

> < (◦)

◦ × (◦)

> < (⊗ ◦)

⊗ × (◦ ◦)

> ⊗ (◦)

⊗ > (◦)

× ◦

< >

× < (◦)

< × (◦)

µ

λ

◦ ∧

∧ ◦

◦ × (∧)

∧ ∨ (∧)

◦ × (∧ ∧)

∧ ∨ (∧ ∧)

◦ ∧ (∧)

∧ ◦ (∧)

∨ ∧

× ◦

∨ × (∧)

× ∨ (∧)

For the second row note that since ai0 > 0 we have ai0 = µti0 − i0 + δ
2 =

j0 − 1 − i0 + δ
2 . Which implies S(µ)j0 = δ

2 + j0 − µi0 − 1 = ai0 + 1 > 0,
which will be decreased by 1 (since µi0 is increased by 1). Thus we have the
symbol ∧ or × at position ai0 + 1 with ∧ moved to the left. Furthermore
S(µ)j < S(µ)j0 − 1 since µj > µj0 for j < j0, which in turn implies that at
position ai0 there is either the symbol ∨ or ◦.

Again, in all cases neither the tail length nor the number of dotted cups
change, thus all fake cups are unchanged. Additionally if an ∧ in µ∞ is
frozen and moved in λ∞ it will be frozen in λ∞ as well.

To add a box on or adjacent to the diagonal we have to distinguish the even
and odd case.

. Case osp(2m+ 1|2n): We distinguish three possibilities: adding the box
exactly above the shifted diagonal, adding the box exactly below the shifted
diagonal, and adding the box on the diagonal.

The additional box is added exactly above the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 + 1
2 . In addition bj0 = 1

2 and
increased by 1, while all other a’s and b’s are left unchanged. Thus a symbol
> is moved from position 1

2 to position 3
2 . If this symbol is not part of a

symbol × then the arguments are the same as for adding a box far above
the diagonal and we refer to that case. If on the other hand it is part of
a × this implies that the indicator is (+) since ai0−1 = 1

2 . Thus the × at

position 1
2 is not coloured and one obtains the left block below.

µ

λ

× ◦

< >

× < (◦)

< × (◦)

µ

λ

∨ ∧

◦ ×

∨ ◦ (∧)

◦ ∨ (∧)

To obtain the right block, note that S(µ)j0 = −1
2 which is decreased to

−3
2 . Obtaining the other possible entries is done as before. Again neither

tail length nor number of dotted cups changes.

The additional box is added exactly below the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 −
3
2 . In addition ai0 = 1

2 and
increased by 1, while all other a’s and b’s are left unchanged. Thus a symbol
< is moved from position 1

2 to position 3
2 . If this symbol is not part of a

symbol × then the arguments are the same as for adding a box far below
the diagonal and we refer to that case. As in the case above this implies
that the indicator is (+) since ai0 = 1

2 and we obtain the left block below.
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µ

λ

× ◦

> <

× > (◦)

> × (◦)

µ

λ

∨ ∧

× ◦

∨ × (∧)

× ∨ (∧)

For the right block note that S(µ)j0 = 3
2 which is decreased to 1

2 . The rest
of the arguments is the same as before.

The additional box is added exactly on the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 −
1
2 . In addition ai0 = −1

2

and increased by 1, while all other a’s and b’s are left unchanged. The 1
2

position for µ contains only the symbol × and the indicator is (−) since
ai0 = −1

2 . Thus in the GS combinatorics adding the box on the diagonal
does not change the diagrammatic weight itself but the indicator from (−)
to (+). Which decreases the tail length by 1.

Since in this case S(µ)j0 = 1
2 and decreased to −1

2 thus changing the
first cup from a dotted cup to an undotted cup and preserving all frozen
variables.
. Case osp(2m|2n): Again we distinguish three possibilities: adding the
box exactly above the shifted diagonal, adding the box exactly below the
shifted diagonal, and adding the box on the diagonal.

The additional box is added exactly above the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 + 1. In addition bj0 = 1 and
increased by 1, while all other a’s and b’s are left unchanged. This is done
in the same way as adding a box far above the diagonal.

The additional box is added exactly below the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 − 1. In addition ai0 = 0 and
increased by 1, while all other a’s and b’s are left unchanged.

Note that bj0−1 > 0. Furthermore the rest of the diagonal to the lower
right is empty, implying ai = 0 for i > i0 and bj = 0 for j > j0 − 1, which
implies that in the tail we have exactly once the symbol > and possibly some
×. The × are distributed onto the coloured diagram, leaving > at position
zero. This leads to the following configurations (at positions zero and 1, the
rest is unchanged) in the first row:

µ

λ

> ◦

◦ >

> < (◦)

◦ × (◦)

> < (⊗ ◦)

⊗ × (◦ ◦)

> ⊗ (◦)

⊗ > (◦)

µ

λ

◦ ∧

3 ◦

◦ × (∧)

3 ∨ (∧)

◦ × (∧ ∧)

3 ∨ (∧ ∧)

◦ ∧ (∧)

3 ◦ (∧)

The second line is obtained as follows. It holds S(µ)j0 = 1 which implies
that at position 1 there is either an ∧ or a ×. In addition, since µj > µj0
for j < j0 it holds that S(µ)j ≤ −1 for j < j0 (the case = −1 giving us the
symbol × at position 1) and since µj ≤ µj0 for j > j0 it holds S(µ)j ≥ 2 for
j > j0.

Again, neither tail length nor number of dotted cups changes.
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The additional box is added exactly on the diagonal. We add the box in
position (j0, i0) and thus it holds i0 − j0 = δ

2 . In addition bj0 = 0 and
increased by 1, while all other a’s and b’s are left unchanged. It holds ai0 = 0
as are all ai for i > i0 and all bj for j > j0. Which means that the diagram
with a tail has only the symbol × at position zero (possibly multiple times),
with all but one being distributed when forming the diagram without tail.
Since we add a box on the diagonal all bj > 1 for j < j0 and all ai ≥ 1 for
i < i0. This implies that we have the symbol ◦ or > at position 1, giving us
the following configurations in the left block below (showing positions zero
and 1)

µ

λ

⊗ ◦

> <

⊗ > (◦)

> × (◦)

µ

λ

3 ∧

◦ ×

3 ◦ (∧)

◦ ∨ (∧)

For the right block, note that µj0 = j0 + δ
2 − 1, hence S(µ)j0 = 0, which will

be decreased by 1. Furthermore S(µ)j < −1 for j < j0 since µj > µj0 for
j < j0 and S(µ)j ≥ 1 for j > j0. Giving us that we have the symbol 3 at
position zero and the either ∧ or ◦ at position 1.

Note that in both cases the tail length decreases by 1 each, but we also
loose the decoration on the first dotted cup from the left or loose the dotted
cup altogether, thus all fake cups and corresponding frozen vertices remain
unchanged.

Since the cup diagrams agree, their leftmost label determines if they are
coloured (in the sense of [GS13] or dotted in our sense, hence the statement
follows from the definition of (7.55). �

Definition 7.9. Assume λ ∈ X+(g) and let D be the cup diagram asso-
ciated with pλ∞ in the sense of Gruson and Serganova. Then a consistent
labelling of D is a labelling of the vertices with >, <, ×, ◦ such that the
core symbols match with the core symbols of pλ∞ and each cup is labelled
by precisely one × and one ◦.
Definition 7.10. For a tailless weight ν ∈ X+(g) let A(λ, ν) = 1 if GS(ν) is
a consistent labelling of D and A(λ, ν) = 0 otherwise. In case of a consistent
labelling we let c(λ, ν) be the number of coloured cups plus the number of
coloured cups labelled ◦ and × in this order and we set β to be the number
of cups with left vertex at position zero labelled with × via ν. Here o = 1

2
in the odd case and o = 0 in the even case.

8. Counting formulas

We present now several dimension formulas for homomorphism spaces.

8.1. Dimensions of homomorphism spaces: alternating formula.
We start with the following dimension formula deduced from the results,
[GS13, Theorems 1 to 4], of Gruson and Serganova:5

Proposition 8.1. Let λ, µ ∈ X+(g). Then

(1) in the even case (r = 2m) we have HomF ′(P
g(λ), P g(µ)) = {0} if

am > 0 > am′ or am < 0 < am′ in the notation, (4.21) and (4.26)

5It might help to say that the first condition is only implicitly contained in [GS13].
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(2) and otherwise

dim HomF ′(P
g(λ), P g(µ)) =

∑
a(λ, ν)a(µ, ν) (8.59)

where the sum runs through all tailless dominant weights ν and

a(η, ν) = (−1)β(−1)c(η,ν)A(λ, µ) (8.60)

for any η ∈ X+(g).

Remark 8.2. Note that a(η, ν) ∈ {−1, 0, 1}. In particular, the numbers are
not always non-negative, and the above sum might have some (non-trivial)
cancellations. In the framework of Gruson and Serganova, the a(η, ν) are co-
efficients expressing the so-called Euler classes Eg(ν) in terms of simple mod-
ules, i.e. we have in the Grothendieck group [Eg(ν)] =

∑
ν a(λ, ν)[Lg(λ)].

Proof. We have dim HomF ′(P
g(λ), P g(µ)) = [P g(µ) : Lg(λ)], where [P g(µ) :

Lg(λ)] denotes the Jordan-Hölder multiplicities of Lg(λ) in P g(µ)] or al-
ternatively the coefficient of the class [Lg(λ)] in the Grothendieck group
when the class [P g(λ)] is expressed in the classes of the simple modules. On
the other hand, the classes [Eg(ν)] of the Euler characteristics (for tailless
dominant ν) are also linearly independent in the Grothendieck group and

[P g(λ)] =
∑
ν

a(λ, ν)[Eg(ν)] and [Eg(λ)] =
∑
µ

a(µ, ν)[Lg(µ)]

by [GS13, Lemma 3, Theorem 1], so 8.59 claim holds. Formula 8.60 is just
a concise reformulation of [GS13, Theorem 2, Theorem 3, Theorem 4]. �

8.2. Dimensions of homomorphism spaces: positive formula. We
first show that the cancellations addressed in Remark 8.2 appear precisely
if the corresponding space of homomorphisms vanishes completely. This
allows us to get the following rather easy and explicit dimension formula.

Proposition 8.3. Let λ, µ ∈ X+(g) with am ≥ 0 and a′m ≥ 0 in the nota-
tion from (4.21) respectively (4.26) and let pλ, pµ be the corresponding hook
partitions. Then the following are equivalent

(I) HomF ′(P
g(λ), P g(µ)) 6= 0,

(II) (pλ?, 1) (pµ?, 1) has no non-propagating line and every component has
an even number of dots.

In these cases moreover, the following holds

(1) a(λ, ν)a(µ, ν) ∈ {0, 1} for any tailless ν ∈ X+(g), and
(2) dim HomF ′(P

g(λ), P g(µ)) = 2c, where c is the number of closed com-
ponents.

Proof. For (I) ⇒ (II) it is enough to show that HomF ′(P
g(λ), P g(µ)) 6= 0

implies we have no non-propagating line and that each closed component
has an even number of dots, since then only the leftmost line is allowed to
carry dots and by definition of (pλ?, 1) and (pµ?, 1) the total number of dots
is even. By (8.59) we have dim HomF ′(P

g(λ), P g(µ)) =
∑

ν a(λ, ν)a(µ, ν)
and a(λ, ν) is non-zero if putting the GS-weight GS(ν) on top of the cup
diagram D associated with GS(λ) results in a picture where the labels >
and < in λ and ν agree and each cup has the two symbols ◦, × in any order
at its two endpoints. Clearly it is zero if there is a non-propagating line,
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since the line must have ◦’s at the end, but has an odd total number of cups
and caps.

If non-zero, then it is (−1)x+z+y, where x is the number of coloured cups
in C and y = y(λ, ν) is the number of coloured cups with × ◦ in this order
at the endpoints when putting ν on top, and z = 1 if λ has the indicator
(+) and ν has a × at position 1

2 . In particular, x doesn’t depend on ν.

Let K be a closed component of pλ?pµ?. If a(λ, ν)a(µ, ν) 6= 0 then we
can find a weight ν ′ such that GK(ν ′) agrees with GK(ν) at all vertices
not contained in K, but the symbols × and ◦ swapped for the vertices
contained in K. Assume now that K has an odd total number of dots. If K
does not contain the vertex 1

2 then (−1)y(λ,ν)+y(µ,ν) = −(−1)y(λ,ν′)+y(µ,ν′),
hence a(λ, ν)a(µ, ν) = −a(λ, ν ′)a(µ, ν ′) and so the two contributions cancel.

The same holds if K does contain the vertex 1
2 but with the same indicator

(+) or (−) in λ and µ. In case the symbols differ then we have an even
number of coloured cups and caps in K, hence

(−1)y(λ,ν)+y(µ,ν) = (−1)y(λ,ν′)+y(µ,ν′) and

(−1)z(λ,ν)+z(µ,ν) = −(−1)z(λ,ν
′)+z(µ,ν′)

implying again a(λ, ν)a(µ, ν) = −a(λ, ν ′)a(µ, ν ′). Hence each closed compo-
nent requires an odd number of dots and so (I) implies (II).

For the converse note that (II) implies that the diagram is orientable, each
line in a unique way and each closed component in exactly two ways. The
same holds if we remove the dots. After applying T, any such orientation
gives an allowed labelling ν in the sense of [GS13]. We claim that the
corresponding value A := a(λ, ν)a(µ, ν) is equal to 1. By definition A :=

(−1)x(λ)+x(µ)+z(λ,ν)+z(µ,ν)(−1)y(λ,ν)+y(µ,ν). If X := pλ?pµ? is a small circle
then it has either no dots, hence no coloured cups and there is nothing to
check. Or two dots and two coloured cups (and the same indicator) and the
statement is clear as well. Otherwise, if X contains a kink without coloured
cups and caps then we can remove the kink to obtain a new λ and µ with
the same value A attached. So we assume there is no such kink, but then it
contains a configuration of the form (dashed lines indicate the colouring)

or

Removing the colouring and also the newly created uncoloured kink changes
λ and µ, but not the corresponding value A. Hence it must be equal to 1.

Altogether every orientation of the circle diagram pλ?pµ? gives a contri-
bution of 1 to dim HomF ′(P

g(λ), P g(µ)) =
∑

ν a(λ, ν)a(µ, ν). But on the
other hand the number of possible ν’s is precisely the number of orientations.
Therefore all the remaining statements follow. �

8.3. The Dimension Formula. We finally use Proposition 8.3 to deduce:

Theorem 8.4 (Dimension formula). Consider G = OSp(r|2n) and λ, µ ∈
X+(G). Then the dimension of HomF (P (λ), P (µ)) equals the number of
orientations λνµ of λµ if the circle diagram λµ is defined and contains no
non-propagating line, and the dimension is zero otherwise.
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Proof. For λ ∈ X+(G) let λg ∈ X+(g) such that am ≥ 0 in the notation from
(4.21) (with λ replaced by λg) and the hook partitions underlying λ and λg

are the same. Now consider H := HomF (P (λ), P (µ)) as in the theorem. We
will freely use Proposition 4.18 to it to swap the roles of λ and µ.

If λ = (λg,+) and µ = (µg,−) (or the reversed signs), then H = 0 by
Remark 4.7 and Lemma 4.16 and λµ is not orientable by Proposition 6.15;
thus the claim holds.

If λ = (λg,±) and µ = (µg)G. Then dimH = dim HomF ′(P
g(λg), P g(µg))

by Proposition 4.17, and the latter is given by Proposition 8.3. Then the
claim follows by comparing Proposition 8.3 with Proposition 6.16.

If λ = (λg)G and µ = (µg)G, then dimH = dim HomF ′(P
g(λg), P g(µg))

again by Proposition 4.17. Moreover by Proposition 6.10 λ and µ have
a (dotted) ray at zero. In particular, the circle diagram λµ has, apart
from a straight line L passing through zero and built from two dotted rays,
only closed components or rays containing no dots at all (since they are to
the right of the propagating line). Hence by Remark 5.19 the diagram is
orientable if and only if every component has an even number of dots. The
number of orientations is then obviously equal to 2c, where c is the number
of closed components. Thus the claim follows with Proposition 8.3.

If finally λ = (λg,±) and µ = (µg,±). Then again it holds dimH =
dim HomF ′(P

g(λg), P g(µg)) by Proposition 4.17(3). Then the claim follows
by comparing Proposition 8.3 with Corollary 6.11. �

Hence we also established the Theorem 7.1.

9. Examples

9.1. The classical case: OSp(r|0). We start with the case OSp(3|0). The
irreducible modules in F are labelled by (1, 1)-hook partitions, that means
partitions which fit into one column, all with an attached sign, see Propo-
sition 4.6 and Lemma 4.21. The tail length is always zero, see Definition
4.22. The table below shows in the first and third column the partitions
together with their signs and next to it (on the right) the corresponding
weight diagrams from Definition 6.6. Since all non-core symbols are frozen,
i.e. the associated cup diagram consists consist of rays.

(∅,+) ◦ ∧ ∨ ∨ ∨ ∨ ∨ . . . (∅,−) ◦ ∨ ∨ ∨ ∨ ∨ ∨ . . .

( ,+) ∧ ◦ ∨ ∨ ∨ ∨ ∨ . . . ( ,−) ∨ ◦ ∨ ∨ ∨ ∨ ∨ . . .

( ,+) ∧ ∨ ◦ ∨ ∨ ∨ ∨ . . . ( ,−) ∨ ∨ ◦ ∨ ∨ ∨ ∨ . . .(
,+
)
∧ ∨ ∨ ◦ ∨ ∨ ∨ . . .

(
,−
)
∨ ∨ ∨ ◦ ∨ ∨ ∨ . . .

(1a,+) ∧ ∨ . . . ∨a+1◦ ∨ . . . (1a,−) ∨ ∨ . . . ∨a+1◦ ∨ . . . (2, 1a−1)

Additionally, the last column shows the unique partitions pγ such that
pγ∞, obtained via S(pγ), is the weight diagram in the fourth column. Note
that the partitions in the first and last column together form a pair of as-
sociated partitions in the sense of Weyl, i.e. their first rows are of length
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less or equal to r = 3 and together sum up to r = 3, and the partitions co-
incide otherwise. Associated partitions correspond to irreducible OSp(3|0)
representations that are isomorphic when restricted to SOSp(3|0). For more
details on associated partitions see e.g. [FH91, § 19.5]. Hence our diagram-
matics could be seen as extending Weyl’s notion of associated partitions.

The same is true more generally for OSp(2m+ 1|0). The two weight dia-
grams attached to the two different signs for a given partition exactly differ
at the first symbol. Changing this first symbol from an ∧ to a ∨ exactly pro-
duces the associated partition. A pair of associated partitions corresponds
to representations that differ by taking the tensor product with the sign rep-
resentation, see [FH91, Exercise 19.23], which agrees with Proposition 4.6.

In the case OSp(2m|0) the irreducible modules are labelled by partitions
that have at most m columns and they have a sign iff the partition has
strictly less than m columns, in which case the two partitions are associated
in Weyl’s sense. In case of a partition with m columns the partition is
associated to itself, which corresponds to the fact that the weight diagram
starts with the symbol 3 at position zero and therefore it does not obtain
a sign in our convention.

9.2. The smallest non-semisimple case: OSp(3|2). Let us come back to
the example in the introduction, the category F(OSp(3|2)). The various di-
agrammatic weights are listed in the table below. We first list the (1, 1)-hook
partitions, then the sequence S(pλ) and the corresponding weight diagrams.

pλ S(pλ) pλ∞ (pλ,+) (pλ,−)

∅ (1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ∧ ∧? ? ? ∧ ∧ ∧ ∨ ∨ ··· ∧ ∧ ∨ ∨ ∨ ···

(−1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ∨ ∧? ? ? ∨ ∧ ∨ ∨ ∨ ··· ∨ ∧ ∧ ∨ ∨ ···

(−3
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,...) ◦ ×? ? ? ◦ × ∨ ∨ ∨ ··· ◦ × ∧ ∨ ∨ ···

(−1
2 ,

1
2 ,

5
2 ,

7
2 ,

9
2 ,...) × ◦? ? ? × ◦ ∨ ∨ ∨ ··· × ◦ ∧ ∨ ∨ ···

(−3
2 ,

1
2 ,

5
2 ,

7
2 ,

9
2 ,...) ? ∨ ∧? ? ∨ ∨ ∧ ∨ ∨ ··· ∧ ∨ ∧ ∨ ∨ ···

(−5
2 ,

1
2 ,

5
2 ,

7
2 ,

9
2 ,...) ? ◦ ×? ? ∨ ◦ × ∨ ∨ ··· ∧ ◦ × ∨ ∨ ···

(−5
2 ,

1
2 ,

3
2 ,

7
2 ,

9
2 ,...) ? ? ∨ ∧? ∨ ∨ ∨ ∧ ∨ ··· ∧ ∨ ∨ ∧ ∨ ···

(−7
2 ,

1
2 ,

3
2 ,

5
2 ,

9
2 ,...) ? ? ? ∨ ∧ ∨ ∨ ∨ ∨ ∧ ··· ∧ ∨ ∨ ∨ ∧ ···

From the weight diagram one can read of (using Proposition 7.5) the
blocks and obtain easily the cup diagrams (including those from the in-
troduction) for the indecomposable projective modules. Using now The-
orem 7.1, Theorem B and the multiplication rule for circle diagrams from
[ES13a], one deduces the shape and relations for the quiver from Theorem A.
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The block containing L(∅,−) is equivalent. All other blocks are obviously
semisimple (and of atypicality 0).

Remark 9.1. Although the category F = F(OSp(3|2)) decomposes as
F+ ⊕ F− with the summands equivalent to F(SOSp(3|2)), we still pre-
fer to work with the whole F due to its connection to Deligne’s category,
see [Del96], [CH15] and to the Brauer algebras, in particular because (1.3)
is not surjective for SOSp(3|2). To see this observe that

(∅,+)

##

(∅,−)
.
=

  (
,−
) .

=

bb

vv

and
(

,−
)

``

uu
( ,−)

.
=

66

( ,−)

66

show pieces of the quiver corresponding to the two summands F±. On the
vertices one can see the labellings of the indecomposable projective modules
P (λ) and the corresponding associated partition in case the sign is −. The
number of boxes in the partitions corresponding to + respectively to the
associated partition equals the tensor power d such that P (λ) appears as
a summand in V ⊗d. Observe that these numbers are always even for the
quiver on the left and odd for the quiver on the right, in agreement with
Remark 4.9. If one now restricts to G′, then resP (λ,+) ∼= resP (λ,+) and of
course all non-trivial homomorphisms stays non-trivial. Therefore there are
non-trivial morphism from V ⊗d to V ⊗d

′
for some d, d′ such that d 6≡ d′mod 2.

These morphisms cannot be controlled by the Brauer or Deligne category.

9.3. The smallest even case: OSp(2|2) and OSp vs SOSp. We chose
now one of the most basic non-classical cases, to showcase the differences
between the OSp and the SOSp situation.

In case of SOSp(2|2) the block containing the trivial representation Lg(0)
contains all irreducible representations of the form Lg(±aε1 + aδ1). Abbre-
viating the Lg(±aε1 + aδ1) by (±a, a) we obtain for it the quiver

· · ·
f−3 --

(−2, 2)
g−3

jj

f−2 ,,
(−1, 1)

g−2

ll

f−1 ,,
(0, 0)

g−1

mm

f0 ,,
(1, 1)

g0
ll

f1 ,,
(2, 2)

g1
ll

f2
** · · ·

g2
ll

subject to the relations fi+1 ◦ fi = 0 = gi ◦ gi−1 and gi ◦ fi = gi−1 ◦ fi−1.
The shape of the quiver and the relations follow from Proposition 8.3.

Alternatively one can also use translation functors studied in [GS13].
Switching to OSp(2|2) corresponds here to take in some sense the smash

product of the original path algebra with the group Z/2Z generated by
the involution σ and consider the corresponding category of modules, see
e.g. [RR85, Example 2.1] for an analogous situation. More precisely we
obtain the following: the representation Lg(0) is doubled up to L(0,+) and
L(0,−) while Lg(aε1 +aδ1) and Lg(−aε1 +aδ1) give the same representation
L((a|a)G), see Definition 4.10. This results is that the following quiver
describes the principal block of F (where we used the elements from X+(G)
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as labels for the vertices),

(0,+)
f+

��
(1|1)G

g+

\\

g−ww

f1 ,,
(2|2)G

g1
ll

f2 ,,
(3|3)G

g2
ll

f3 --
(4|4)G · · ·

g3
ll

(0,−)

f−
77

subject to the same kind of zero relations as above. Moreover, the induced
grading via Corollary C corresponds exactly to the grading given by the path
lengths. Observe that the trivial block of atypicality 1 here is equivalent to
the blocks of atypicality 1 for OSp(3|2) (in contrast to the SOSp-case). We
expect that the passage to the smash product rings is a general procedure to
pass between the representation theory of the orthosymplectic and special
orthosymplectic group.

9.4. Illustration of the Dimension Formula for OSp(4|4): In this sec-
tion we apply Theorem 7.1 respectively the Dimension Formula to calculate
the (graded) dimensions of the morphism spaces between certain projective
indecomposable modules in the principal block for OSp(4|4). Below is a list
of cup diagrams, whose weight sequences are all diagrammatically linked
and in the same block as the trivial representation with sign +.

λ0 =
3 ∧ ∧ ∧ ∧ ∨ ···

λ1 =
3 ∨ ∧ ∧ ∨ ∨ ···

λ2 =
3 ∧ ∨ ∧ ∨ ∨ ···

λ3 =
3 ∧ ∨ ∨ ∧ ∨ ···

λ4 =
3 ∧ ∨ ∨ ∨ ∧ ···

λ5 =
3 ∨ ∨ ∧ ∧ ∨ ···

λ6 =
3 ∨ ∧ ∨ ∧ ∨ ···

λ6 =
3 ∨ ∧ ∨ ∨ ∧ ···

By building all possible circle diagrams by pairing these cup diagrams
and checking the possible orientations and the degrees of those, one directly
deduces the following table giving the Hilbert-Poincaré polynomials of the
morphism spaces, where we abbreviate E(q) = 1 + 2q + q2,



54 MICHAEL EHRIG AND CATHARINA STROPPEL

λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7

λ0 E(q) q+q3 q2

λ1 E(q) q+q3 q2 q2 q+q3

λ2 q+q3 E(q) q+q3 q+q3 q2

λ3 q+q3 q2 q+q3 E(q) q+q3 q2 q+q3 q2

λ4 q+q3 E(q) q2 q+q3

λ5 q2 q+q3 q2 E(q) q+q3 q2

λ6 q2 q+q3 q2 q+q3 q2 q+q3 E(q) q+q3

λ7 q2 q+q3 q2 q+q3 E(q)

Note that the Hilbert-Poincaré polynomials of the endomorphism spaces are
constant, namely always equal to E(q). This is a general phenomenon. By
Lemma 6.13, each block has a well-defined defect def which coincides with
the number of cups in each cup diagram. Then by Theorem B and the
definition of the diagram algebra [ES13a, Theorem 6.2 and Corollary 8.8]
we always have an isomorphism of algebras EndB(P (λ)) ∼= C[X]/(X2)⊗ def

with deg(X) = 2.
As predicted by Proposition 4.18 the table is symmetric. Moreover one

can convince oneself that the listed cup diagrams are the only ones such that
the corresponding projective indecomposable can have a non-zero morphism
to P (λ0). One observes that there is, up to scalars, only one degree 1
morphism from P (λ0) to P (λ3) and vice-versa, but the endomorphism ring
of P (λ0) has dimension 2 in degree 2. Thus the algebra cannot be generated
in degrees ≤ 1. In particular, the principal block in this case is not Koszul.

9.5. Some higher rank examples: OSp(7|4) and OSp(6|4). Finally we
calculate the weight and cup diagrams for the two special cases of OSp(7|4),
with δ

2 = 3
2 , and OSp(6|4), with δ

2 = 1. The first column lists the (3, 2)-hook
partition, follows by two columns showing first the sequence S(pλ) and then
the associated weight and cup diagrams (both if it includes a sign).
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OSp(7|4) OSp(6|4)

pλ S(pλ)
(pλ,+)
(pλ,−)

S(pλ)
(pλ,+)
(pλ,−)

resp. pλ

∅ ( 3
2
, 5
2
, 7
2
, 9
2
, 11

2
,...)

◦ ∧ ∧ ∧ ∧ ∧ ···

◦ ∨ ∧ ∧ ∧ ∨ ··· (1,2,3,4,5,...)

◦ ∧ ∧ ∧ ∧ ∧ ···

◦ ∧ ∧ ∧ ∧ ∨ ···

( 1
2
, 5
2
, 7
2
, 9
2
, 11

2
,...)

∧ ◦ ∧ ∧ ∧ ∧ ···

∧ ◦ ∧ ∧ ∧ ∨ ··· (0,2,3,4,5,...)

3 ◦ ∧ ∧ ∧ ∧ ···

3 ◦ ∧ ∧ ∧ ∨ ···

(− 1
2
, 5
2
, 7
2
, 9
2
, 11

2
,...)

∨ ◦ ∧ ∧ ∧ ∨ ···

∨ ◦ ∧ ∧ ∧ ∧ ··· (−1,2,3,4,5,...)

◦ ∨ ∧ ∧ ∧ ∨ ···

◦ ∨ ∧ ∧ ∧ ∧ ···

(− 1
2
, 3
2
, 7
2
, 9
2
, 11

2
,...)

∨ ∧ ◦ ∧ ∧ ∨ ···

∨ ∧ ◦ ∧ ∧ ∧ ··· (−1,1,3,4,5,...)

◦ × ◦ ∧ ∧ ∨ ···

◦ × ◦ ∧ ∧ ∧ ···

(− 1
2
, 1
2
, 7
2
, 9
2
, 11

2
,...)

× ◦ ◦ ∧ ∧ ∨ ···

× ◦ ◦ ∧ ∧ ∧ ···
(−1,0,3,4,5,...)

3 ∨ ◦ ∧ ∧ ∨ ···

3 ∨ ◦ ∧ ∧ ∧ ···

(− 3
2
, 1
2
, 7
2
, 9
2
, 11

2
,...)

∧ ∨ ◦ ∧ ∧ ∨ ···

∧ ∨ ◦ ∧ ∧ ∧ ··· (−2,0,3,4,5,...)

3 ◦ ∨ ∧ ∧ ∨ ···

3 ◦ ∨ ∧ ∧ ∧ ···

(− 3
2
,− 1

2
, 7
2
, 9
2
, 11

2
,...)

∨ ∨ ◦ ∧ ∧ ∧ ···

∨ ∨ ◦ ∧ ∧ ∨ ··· (−2,−1,3,4,5,...)

◦ ∨ ∨ ∧ ∧ ∧ ···

◦ ∨ ∨ ∧ ∧ ∨ ···

(− 1
2
, 1
2
, 5
2
, 9
2
, 11

2
,...)

× ◦ ∧ ◦ ∧ ∧ ···

× ◦ ∧ ◦ ∧ ∨ ···
(−1,0,2,4,5,...)

3 ∨ ∧ ◦ ∧ ∨ ···

3 ∨ ∧ ◦ ∧ ∧ ···

(− 3
2
,− 1

2
, 1
2
, 9
2
, 11

2
,...)

× ∨ ◦ ◦ ∧ ∧ ···

× ∨ ◦ ◦ ∧ ∨ ···
(−2,−1,0,4,5,...)

3 ∨ ∨ ◦ ∧ ∧ ···

In this case we have higher defect. We leave it to the reader to check that
the blocks are all equivalent to blocks which we have seen already (namely
to those with the same atypicality).
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