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Abstract: In his 1984 Ph.D. thesis, J. Greene defined an analogue of the Euler integral1

transform for finite field hypergeometric series. Here we consider a special family of2

matrices which arise naturally in the study of this transform and prove a conjecture of Ono3

about the decomposition of certain finite field hypergeometric functions into functions of4

lower dimension.5
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1. Introduction and Statement of Results In his 1984 Ph.D. thesis [1], Greene initiated the
study of hypergeometric functions over finite fields which are in many ways similar to the classical
hypergeometric functions of Gauss. To define these functions, first let A and B be two multiplicative,

complex-valued characters of F×q extended to Fq by A(0) = B(0) = 0 and let

(
A

B

)
be the normalized

Jacobi sum (
A

B

)
:=

B(−1)
q

J(A,B) =
B(−1)
q

∑
x∈Fq

A(x)B(1− x). (1)

Here B denotes the complex conjugate of B. Greene defined the Gaussian hypergeometric function
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χ(x).



Version January 15, 2013 submitted to Mathematics 2 of 5

Here
∑

χ denotes the sum over all characters of Fq. These functions have deep connections to certain
combinatorial congruences of modular forms, as well as traces of Hecke operators and counting points
on certain modular varieties [2]. For example, if we let 2E1(λ) : y2 = x(x − 1)(x − λ) be the
Legendre form elliptic curve (λ 6= 0, 1), we have the following result whenever p ≥ 5 is a prime and
λ ∈ Q− {0, 1} satisfies ordp(λ(λ− 1)) = 0 [3]:

2F1

(
φp, φp

ε

∣∣∣∣∣λ
)
p

= −φp(−1) · 2a1(p;λ)

p
.

Here φp is the Legendre symbol modulo p, ε is the trivial character, and 2a1(p;λ) is the trace of Frobenius7

of 2E1(λ) at p. In analogy with the Euler integral transform for classical hypergeometric functions, it8

turns out that these Gaussian hypergeometric functions are traces of Gaussian hypergeometric functions9

of lower degree. More precisely, Greene proved the following fact:10

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
)
p

=
AnBn(−1)

p

p−1∑
y=0

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣∣x
)
p

· An(y)AnBn(1− y).
(2)

This transform is related to the modularity of other varieties as well. For example, Ahlgren and Ono11

relate special values of 4F3 hypergeometric functions to the coefficients of modular forms using the12

modularity of a certain Calabi-Yau threefold [4]. Thus, it is natural to consider the following matrix13

which plays the role of Euler’s integral transform in an important special case.14

Definition. Let p be an odd prime. Let q = pn ≥ 5 and Mq be the (q− 2)× (q− 2) matrix (aij) indexed
by i, j ∈ Fq − {0, 1} where

aij = φq(1− ij)φq(ij).

Here φq denotes the quadratic character in Fq. Based on numerical data, Ono made the following15

conjecture.16

Conjecture (Ono). Let fq be the characteristic polynomial of Mq. Then

fq(x) =

(x+ 1)(x− 1)(x+ 2)(x2 − q)(q−5)/2 if φq(−1) = 1

x(x2 − 3)(x2 − q)(q−5)/2 if φq(−1) = −1.

Our main result is the following.17

Theorem 1.1. Ono’s conjecture is true.18

Remark For the eigenvalues 0,±1,−2, we give explicit formulas for the eigenvectors (cf. Proposition19

2.1).20

The paper is organized as follows. In §2 we establish the claimed formulas for the eigenvalues λ ∈21

{0,±1,−2} using Jacobi sums. In §3 we complete the proof of the main theorem be proving that (x2 −22

q)
q−5
2 divides the characteristic polynomial of Mq and that x2 − 3 divides the characteristic polynomial23

when φq(−1) = −1.24
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2. Eigenvectors for λ ∈ {0,±1,−2} The claimed formulas for the eigenvectors can be deduced using25

the following well-known lemma which we prove for completion.26

Lemma 1. If a0, a1, a2 ∈ Fq and a2 6= 0, then

∑
x∈Fq

φq(a0 + a1x+ a2x
2) =

−φq(a2) if a21 6= 4a0a2

φq(a2)(q − 1) if a21 = 4a0a2.

Proof. Factor out a2 and complete the square to get∑
x∈Fq

φq(a0 + a1x+ a2x
2) = φq(a2)

∑
x∈Fq

φq((x− a)2 − b) = φq(a2)
∑
x∈Fq

φq(x
2 − b),

where a = − a1
2a2

and b = a21−4a0a2
4a2

. Then b = 0 if and only if the discriminant is 0, in which case the sum
is clearly φq(a2)(q − 1). If b 6= 0, then the change of variables y = x2 − b gives∑

x∈Fq

φq(x
2 − b) =

∑
y

φq(y)(φq(y + b) + 1) =
∑
y

φq(y)φq(y + b).

Now replacing y by b
2
(y − 1) and making the change of variables z = 1− y2 shows that∑

y

φq(y
2 + by) =

∑
y

φq(y
2 − 1) = φq(−1)

∑
z

φq(z)(φq(1− z) + 1) = φq(−1)J(φ, φ) = −1.

This follows from the classical evaluation of J(φ, φ) (for example, see [5]).27

We are in position to prove the first case of Theorem 1.1 when λ ∈ {0,±1,−2}.28

Proposition 2.1. If φq(−1) = 1, then λ ∈ {±1,−2} are eigenvalues for the matrices Mq. If
φq(−1) = −1, then λ = 0 is an eigenvalue for Mq. These eigenvalues have the following corresponding
eigenvectors v = (vk)k∈Fq−{0,1}:

λ = −1, vk = −φq(k) + 1,

λ = +1, vk = 2(φq(k
2 − k)− φq(k)− 1),

λ = −2, vk = φq(k
2 − k) + φq(k) + 1,

λ = 0, vk = −φq(k2 − k) + φq(k) + 1.

Proof. We will give the full calculation for the eigenvalue λ = −1 when φq(−1) = 1. The other three
cases follow similarly.
When λ = −1, we must check the formula

−vk =
∑
s 6=0,1

φq(1− ks)φq(ks)vs.

Using the lemma, we have29 ∑
s 6=0,1

−φq(1− ks)φq(k) +
∑
s 6=0,1

φq(1− ks)φq(ks) = φq(k) + φq(1− k)φq(k)− 1− φq(1− k)φq(k)

= φq(k)− 1.

30
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3. Determining the ±
√
3 and ±√q Eigenspaces Here we complete the proof of Theorem 1.1 by31

computing the remaining eigenvalues. We begin with the ±
√
3-eigenvalues when φq(−1) = −1.32

Proposition 3.1. If φq(−1) = −1, then the characteristic polynomial of Mq is divisible by (x2 − 3).33

Proof. We consider the matrix M2
q with entries bi,j . Using the lemma, we find bi,j = −(1 + φq(ij) +

φq(i − i2)φq(j − j2)) if i 6= j, and bi,i = q − 3. By a similar calculation as in the proof of Proposition
2.1, we find that v = (vk), v

′ = (v′k) are eigenvectors with eigenvalue 3 for M2
q , where

vk := 1 + φq(k), v′k := 1 + φq(k
2 + k).

This follows by verifying

3vk = (q − 3)(1 + φq(k))−
∑

s∈Fq\{0,1,k}

(1 + φq(s))(1 + φq(ks) + φq(k − k2)φq(s− s2)),

and

3v′k = (q − 3)(1 + φq(k
2 + k))−

∑
s∈Fq\{0,1,k}

(1 + φq(s
2 + s))(1 + φq(ks) + φq(k − k2)φq(s− s2))

for the vectors v and v′ respectively. As the characteristic polynomial ofMq is in Z[x], we find that x2−334

divides the characteristic polynomial of Mq.35

We now finish the proof of Theorem 1.1.36

Proposition 3.2. The characteristic polynomial of Mq is divisible by (x2 − q) q−5
2 .37

Proof. We begin by defining the following matrix related to Mq. Let p, q be as above. Let M̃q =38

(φq(1− ij))i,j∈Fq
be a q× q matrix indexed by values of Fq. Then Mq is a the conjugate of a sub-matrix39

of M̃q. Suppose M̃q has an eigenspace of dimension d. Then this eigenspace has a subspace of dimension40

d − 2 of eigenvectors (vk) with v0 = v1 = 0. Thus it can be easily seen that Mq has an eigenspace of41

dimension d − 2 corresponding to the same eigenvalue. Using this fact, it suffices to prove that the42

characteristic polynomial of M̃q is divisible by (x2 − q) q−1
2 .43

Consider the matrix M̃2
q =

(∑
k∈Fq

φq(1− ik)φq(1− jk)
)
i,j∈Fq

. For each a ∈ Fq − {0,−1}, let44

Va = (vi)i∈Fq be a vector indexed by elements of Fq such that va = 1, v−1 = −φq(−a), and vi = 0 for45

all i ∈ Fq − {−1, a}. Then if (ui) = M̃q

2
Va, we have46

(ui) =

∑
j∈Fq

vj
∑
k∈Fq

φq(1− ik)φq(1− jk)


=

∑
k∈Fq

φq(1− ik)φq(1− ak)− φq(−a)
∑
k∈Fq

φq(1− ik)φq(1 + k)

 .

Since a 6= 0,−1, by Lemma 1 we find47

u0 = 0,

ua = q − 1 + φq(−a)2 = q,

u−1 = −φq(−a)− φq(−a)(q − 1) = −qφq(−a).
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For all other i, we have ui = φq(ia) − φq(−a)φq(−i) = 0. Hence Va is an eigenvector for M̃2
q with48

eigenvalue q.49

We may also define V0 = (vi) so that v0 = 1, and vi = 0 for all other i ∈ Fq. Then if (ui) = M̃q

2
V0, we50

have u0 =
∑

k∈Fq
φq(1) = q, and ui =

∑
k∈Fq

φq(1− ik) = 0 for i 6= 0. Hence V0 is also an eigenvector51

for the eigenvalue q. This gives us a total of q − 1 linearly independent eigenvectors corresponding to52

the eigenvalue q. Each eigenvalue (counting multiplicities) of M̃2
q is the square of an eigenvalue of M̃q.53

Thus, M̃q has eigenvalues ±√q of multiplicities that sum to q − 1 and so Mq has eigenvalues ±√q of54

multiplicities summing to at least q − 5. By Lemma 1, we have that Trace(Mq) = −1 − φq(−1). But55

we already know that the sum of all other eigenvalues is −1 − φq(−1). Hence, the multiplicities of the56

±√q eigenvalues must be equal.57
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